JPS63208753A - Immune sensor and immune detection - Google Patents

Immune sensor and immune detection

Info

Publication number
JPS63208753A
JPS63208753A JP62040438A JP4043887A JPS63208753A JP S63208753 A JPS63208753 A JP S63208753A JP 62040438 A JP62040438 A JP 62040438A JP 4043887 A JP4043887 A JP 4043887A JP S63208753 A JPS63208753 A JP S63208753A
Authority
JP
Japan
Prior art keywords
electrode
antibody
antigen
iridium oxide
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62040438A
Other languages
Japanese (ja)
Other versions
JPH0713611B2 (en
Inventor
Teruaki Katsube
勝部 昭明
Takeyuki Kawaguchi
武行 川口
Hisashi Jo
尚志 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62040438A priority Critical patent/JPH0713611B2/en
Publication of JPS63208753A publication Critical patent/JPS63208753A/en
Publication of JPH0713611B2 publication Critical patent/JPH0713611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To permit selective detection of the dilute antigen material and antibody in an aq. soln. with high sensitivity by using an iridium oxide electrode covered with the antibody or antigen material as a working electrode and detecting the potential difference between said electrode and reference electrode. CONSTITUTION:Two sheets of electrodes are formed by immobilizing human IgG together with a monomolecular film of stearic acid by using a Langmuir- Blogett's technique on an electrode formed of the thin iridium oxide film formed to 500-1,000Angstrom film thickness by a sputtering method on a glass substrate, by which two sheets of electrodes are formed. The antigen of the one electrode is deactivated by projection of UV rays to form the reference electrode Ref. The aq. anti-human IgG antibody soln. is dropped to a phosphoric acid buffer soln. into which the working electrode of the non-deactivated antigen is immersed together with the reference electrode Ref. The potential generated on the surface of the IgG immobilized film is then measured by an amplifier A.

Description

【発明の詳細な説明】 本発明は新規な免疫センサ、及び希薄濃度の抗原又は抗
体を短時間で検出できる免疫検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel immunosensor and an immunodetection method capable of detecting dilute concentrations of antigens or antibodies in a short time.

近年、各種の微少な化学物質を検出するセン、すとして
、電界効果型トランジスタ(FieldE rrect
  T ransistOr、以下、FETと略す)を
利用した化学センサ、例えば、イオン選択性FETや酵
素FET等が研究されている。これらのセンサは、従来
のガラスPH電極等に比べて高速応答性に優れ、高イン
ピーダンスであるほか、IC製造技術利用により量産性
、超小型化などの点でも有利である。
In recent years, field effect transistors have been used as sensors for detecting various minute chemical substances.
Chemical sensors using transistors (hereinafter abbreviated as FETs), such as ion-selective FETs and enzyme FETs, are being researched. These sensors have excellent high-speed response and high impedance compared to conventional glass PH electrodes, etc., and are also advantageous in terms of mass production and ultra-miniaturization due to the use of IC manufacturing technology.

一般に、FETセンサは基板、バリヤー膜及び感応膜か
ら形成される。基板MO8FETでゲート金属を取り去
った構造(以下、MO8FET基板と略す)が代表的で
ある。また、バリヤー膜は通常、酸化シリコン又は窒化
シリコンが用いられる。更に、感応膜は目的に応じて、
例えば、PHセンサの場合には酸化アルミニウムや酸化
タンタル膜が一般的であり、酸素センサの場合にはグル
コースオキシダーゼやウレアーゼ等が用いられている。
Generally, FET sensors are formed from a substrate, a barrier film, and a sensitive film. A typical structure is a MO8FET substrate with the gate metal removed (hereinafter abbreviated as MO8FET substrate). Further, silicon oxide or silicon nitride is usually used for the barrier film. Furthermore, depending on the purpose, the sensitive membrane can be
For example, in the case of a PH sensor, aluminum oxide or tantalum oxide membranes are commonly used, and in the case of oxygen sensors, glucose oxidase, urease, etc. are used.

これらのFETセンサは、応答速度や検出感度の点では
一応満足できる特性を示すものもあるが、共通の問題点
として、1)ゲート部の遮光効果が不十分な場合光に対
して感応するという欠点や、2)ゲート部に遮光効果の
有る通常の金属薄膜電極を設けた場合、種々の検体液中
での該金属薄膜表面と溶液との界面電位が一定とならず
、電極表面での抗原抗体反応に伴う微少な電位変化を検
出できないという問題点、更に3)長時間使用時に信号
のドリフトが見られるという欠点があった。こうした欠
点は、特に自然光下での水溶液中の希薄物質、例えば抗
原や抗体タンパク等を検出する際に問題となり、高感度
かつ安定な免疫FETセンサの実現を阻んでいた。
Although some of these FET sensors exhibit satisfactory characteristics in terms of response speed and detection sensitivity, they have a common problem: 1) They become sensitive to light if the light shielding effect of the gate part is insufficient. 2) When a normal metal thin film electrode with a light-shielding effect is provided at the gate part, the interfacial potential between the metal thin film surface and the solution in various sample solutions is not constant, and the antigen on the electrode surface is There were two problems: 3) minute potential changes associated with antibody reactions could not be detected; and 3) signal drift was observed during long-term use. These drawbacks pose a problem particularly when detecting dilute substances such as antigens and antibody proteins in aqueous solutions under natural light, and have prevented the realization of highly sensitive and stable immuno-FET sensors.

また、抗原や抗体の検出法としては、これまで酵素標識
抗体を用いるEIA法や放射性元素で標識した抗体を用
いるRIA法が一般的であるが、前者は試料の調整に手
間と時間がかかり、後者は放射性元素の取扱い施設を必
要とする等の問題点を有していた。さらに別の方法とし
て、抗体や抗原を金属電極の表面に固定化して、抗原・
抗体反応に伴う表面電位変化を検出する試みもあるが、
通常の金属薄膜電極を設けた場合、既に上述した様に、
種々の検体液中での該金属薄膜表面と溶液との界面電位
が一定とならず、電極表面での抗原抗体反応に伴う微少
な電位変化を検出できないという問題点があった。
In addition, conventional methods for detecting antigens and antibodies include the EIA method using enzyme-labeled antibodies and the RIA method using antibodies labeled with radioactive elements, but the former requires time and effort in sample preparation. The latter had problems such as requiring facilities to handle radioactive elements. Another method is to immobilize antibodies and antigens on the surface of metal electrodes.
Although there are attempts to detect changes in surface potential associated with antibody reactions,
When a normal metal thin film electrode is provided, as already mentioned above,
There was a problem in that the interfacial potential between the surface of the metal thin film and the solution in various sample liquids was not constant, making it impossible to detect minute potential changes accompanying antigen-antibody reactions on the electrode surface.

かかる状況に鑑みて本発明者らは、上記の様な欠点を有
さないFETセンサを鋭意研究の結果、酸化イリジウム
膜をゲート部に直接、又は導電体を介して設置する事に
より、上記の欠点が殆ど見られないFETが得られる事
、及び該酸化イリジウム膜上に抗体又は抗原物質層を設
ける事により、水溶液中の希薄な抗原物質や抗体を感度
良く、選択的に、かつ少量の検体量で検出できる事を見
いだし本発明に到達した。すなわち本発明は、抗体また
は抗原物質の薄膜を被覆した酸化イリジウム電極を作用
電極とする免疫センサであり、又当該作用電極を参照電
極と粗合せ抗原物質または、抗体を含む溶液と接触させ
、該作用電極上での抗原−抗体反応に伴う電位変化を、
電位変化、電流変化或は電荷量変化として検出する事を
特徴とする免疫検出方法である。
In view of this situation, the inventors of the present invention have conducted extensive research into creating an FET sensor that does not have the above-mentioned drawbacks. By installing an iridium oxide film on the gate portion directly or via a conductor, the present inventors have found that the above-mentioned problems can be overcome. By obtaining an FET with almost no defects, and by providing an antibody or antigen substance layer on the iridium oxide film, it is possible to detect dilute antigen substances and antibodies in aqueous solutions with high sensitivity, selectively, and in small quantities. The present invention was achieved by discovering that the amount can be detected. That is, the present invention is an immunosensor that uses an iridium oxide electrode coated with a thin film of an antibody or an antigenic substance as a working electrode, and the working electrode is brought into contact with a reference electrode and a roughly combined antigenic substance or a solution containing an antibody. The potential change associated with the antigen-antibody reaction on the working electrode is
This is an immunodetection method characterized by detection as a change in potential, a change in current, or a change in the amount of charge.

本発明の更に好ましい態様としては、 (1)  M OS F E Tのゲート金属として酸
化イリジウムを用い、この上に抗体タンパクまたは、抗
原物質の薄膜を設けて作用電極としたFET免疫センサ
More preferred embodiments of the present invention include: (1) An FET immunosensor in which iridium oxide is used as the gate metal of the MOSFET, and a thin film of an antibody protein or an antigen substance is provided thereon to serve as a working electrode.

Oi)  抗体または抗原物質の薄膜を被覆した酸化イ
リジウム電極を、MOSFETのゲート領域以外に導電
性配線を介して分離して設けたFET免疫センサ が挙げられる。
Oi) An example is an FET immunosensor in which an iridium oxide electrode coated with a thin film of an antibody or an antigen substance is provided outside the gate region of the MOSFET and separated via a conductive wiring.

本発明に用いられる電極材料、又はゲート金属としての
酸化イリジウム膜は、通常スパッタリングにより、膜厚
5oo−1ooo入になるように製膜される。該膜はそ
の表面上に抗体や抗原物質の薄膜を固定化して、抗原・
抗体反応に伴う膜電位変化を検出する電極として用いる
事が出来る。別の態様として、上記の酸化イリジウム膜
をMOSFETのゲート部に直接、又は導電体を介して
ゲート領域以外に設ける事も可能である。ここで言うM
OSFETとは、p型又はn型シリコンウェハに逆符号
の不純物をドープして(接合深さ5−10μ)形成した
ソース電極及びドレイン電極、更にこれらの電極と電極
の間の表面上にゲート部(ゲート長; 10−1ooμ
、 ケート巾:  100−500μ) ヲ有するもの
で、かつゲート金属を取り除いたものであって、通常、
5oo−1ooo人の酸化シリコン層及びその上に形成
された500−1000人の窒化シリコン層から成る。
The iridium oxide film used as the electrode material or gate metal used in the present invention is usually formed by sputtering to a film thickness of 500 to 1000 mm. The membrane immobilizes a thin film of antibodies or antigenic substances on its surface, and
It can be used as an electrode to detect membrane potential changes associated with antibody reactions. As another embodiment, it is also possible to provide the above-mentioned iridium oxide film directly on the gate portion of the MOSFET or in a region other than the gate region via a conductor. M here
OSFET is a p-type or n-type silicon wafer doped with impurities of opposite sign (junction depth 5-10μ) to form source and drain electrodes, and a gate part on the surface between these electrodes. (Gate length; 10-1ooμ
, gate width: 100-500μ) and with the gate metal removed, usually
It consists of a 500-1000 thick silicon oxide layer and a 500-1000 thick silicon nitride layer formed thereon.

前記酸化イリジウム膜を直接ゲート部に設置する場合は
、高温下でスパッタリングにより製膜する事が多いので
、MO8FET基板を損傷する可能性があり、酸化タン
タル等の中間層を設ける事が好ましい。また、酸化イン
リジウム膜をゲート領域以外に設ける場合は該膜の基板
はガラスやプラスチック等の絶縁体やFETと同一のシ
リコーン基板が好適に用いられ、金属導線や半導体導線
を介してゲート部に接続される。分離ゲートをゲート部
と接続する導線としては、異種金属との接合界面の形成
を避ける為、酸化イリジウムを用いるのが好ましい。
When the iridium oxide film is placed directly on the gate portion, it is often formed by sputtering at high temperatures, which may damage the MO8FET substrate, so it is preferable to provide an intermediate layer such as tantalum oxide. In addition, when an inridium oxide film is provided outside the gate region, the substrate for the film is preferably an insulator such as glass or plastic, or the same silicone substrate as the FET, and is connected to the gate portion via a metal conductor wire or a semiconductor conductor wire. be done. It is preferable to use iridium oxide as the conductive wire connecting the isolation gate to the gate portion in order to avoid the formation of a bonding interface with different metals.

次に、本発明に用いられる抗体や抗原物質は、免疫反応
に関わるものであって分子内にイオン性基を有し、10
0μV以上、好ましくは1  mV以上の膜電位を示す
I(IG、IIJA、10 E、IoM等の免疫グロブ
リンや絨毛性性腺刺激ホルモン(+−(CG)、ガン胎
児性抗原(CEA)などが挙げられ、抗体としては、こ
れらの抗原に対するポリクローナル又はモノクローナル
な抗体が用いられる。
Next, the antibodies and antigenic substances used in the present invention are related to immune reactions, have ionic groups in their molecules, and have 10
Immunoglobulins such as I (IG, IIJA, 10E, IoM, etc.) and chorionic gonadotropin (+- (CG), carcinoembryonic antigen (CEA), etc.) exhibiting a membrane potential of 0 μV or more, preferably 1 mV or more. Polyclonal or monoclonal antibodies against these antigens are used.

これらの抗原及び抗体分子は、単独で又は他の脂質分子
と組み合わせて薄膜状、好ましくは単分子膜にした後、
前記の酸化イリジウム電極上に固定される。該電極上へ
の抗体及び抗原の固定化法としては、浸漬吸着法、流延
法及びラングミュア・プロジェット法等が採用される。
These antigen and antibody molecules are formed into a thin film, preferably a monolayer, either alone or in combination with other lipid molecules, and then
It is fixed on the iridium oxide electrode mentioned above. As a method for immobilizing antibodies and antigens on the electrode, immersion adsorption method, casting method, Langmuir-Prodgett method, etc. are employed.

かくして、酸化イリジウム電極上に抗体又は抗原が固定
された素子が、抗原又は抗体を含む被検体溶液に浸漬さ
れると、該電極上での抗原−抗体反応に伴って、その表
面膜電位が変化する。その結果、該膜電位変化量を直接
、又は電流に変換して、低雑音増幅回路を通して検出す
る事により、抗原や抗体の検出が可能となる。
Thus, when an element with an antibody or antigen immobilized on an iridium oxide electrode is immersed in an analyte solution containing the antigen or antibody, the surface membrane potential changes as a result of the antigen-antibody reaction on the electrode. do. As a result, antigens and antibodies can be detected by detecting the amount of change in membrane potential directly or by converting it into an electric current and detecting it through a low-noise amplification circuit.

また、FETデバイスの場合には、ゲート電極上での抗
原−抗体反応に伴ってソース・ドレイン間の電流又は電
圧変化が誘起され、抗原や抗体の検出が可能となる。上
記の抗原−抗体反応検出に際して採用されるドレイン電
圧は、5−10Vであり、ゲート電圧は上記の抗原・抗
体の膜表面電位変化のしきい値により異なるが、0−S
V好ましくは、0−2vの範囲で実験により決定される
Furthermore, in the case of a FET device, a current or voltage change between the source and drain is induced due to the antigen-antibody reaction on the gate electrode, making it possible to detect the antigen or antibody. The drain voltage employed in the above antigen-antibody reaction detection is 5-10V, and the gate voltage varies depending on the threshold of the membrane surface potential change of the antigen/antibody, but is 0-S
V is preferably determined experimentally in the range of 0-2v.

上記の抗原・抗体反応の検出は、電極表面上での電荷量
変化、又は、ソース・ドレイン間の電流又は電圧変化を
読みだす事により行われる。その際の電流又は電圧の変
化量は検体液中の抗原又は抗体濃度に依存する。
Detection of the above-mentioned antigen-antibody reaction is performed by reading the change in the amount of charge on the electrode surface or the change in current or voltage between the source and drain. The amount of change in current or voltage at that time depends on the antigen or antibody concentration in the sample fluid.

抗原や抗体の濃度が希薄で、電流又は電圧の変化量が小
さい場合には、バイポーラ−型又は接合FET内蔵型の
低雑音増幅器を併用し、デバイス周辺の電界シールドを
行うことにより、抗原・抗体反応に伴う電気信号の検出
が容易になる。
When the concentration of antigens and antibodies is dilute and the amount of change in current or voltage is small, antigens and antibodies can be detected by using a low-noise amplifier with a built-in bipolar or junction FET and shielding the electric field around the device. It becomes easier to detect electrical signals associated with reactions.

また、この抗原・抗体反応の検出に要する時間は、これ
らの濃度や電極表面の面積及び、抗体または抗原の固定
量に依存するが、同一条件で比較した場合、後述の実施
例4に示す様に、従来のEIA法やRIA法に比べ極め
て迅速である。
Furthermore, the time required to detect this antigen-antibody reaction depends on the concentration thereof, the area of the electrode surface, and the amount of immobilized antibody or antigen, but when compared under the same conditions, it is as shown in Example 4 below. Moreover, it is extremely quick compared to the conventional EIA method and RIA method.

本発明では更に、数種類の抗体又は/及び抗原を、個別
の酸化イリジウム電極上に固定化したものを、同一の固
体基板上に設置する事により、検体液中の複数の抗原又
は/及び抗体を同時に検出する事も可能である。
Furthermore, in the present invention, several types of antibodies and/or antigens are immobilized on individual iridium oxide electrodes and are placed on the same solid substrate, thereby allowing multiple antigens and/or antibodies in the sample fluid to be immobilized on individual iridium oxide electrodes. It is also possible to detect them simultaneously.

以上説明した本発明の免疫検出方法は、従来の方法に比
べ簡便・迅速であり、また光や共存イオンの影響を殆ど
受けず、これまでのFETセンサと比べても極めて安定
である為、その開発の工業的意義は大である。以下、実
施例を挙げて本発明を更に詳しく説明するが、本発明は
これらに限定されるものではない。
The immunodetection method of the present invention described above is simpler and faster than conventional methods, is hardly affected by light or coexisting ions, and is extremely stable compared to conventional FET sensors. The industrial significance of this development is significant. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 ガラス基板(1cll×1α)上にスパッタリング法に
より形成した酸化イリジウム薄膜(2#1IllX7履
、a厚:約700人)電極上に、ラングミュア・ブロー
ジェット法を用いて、ヒト1gGをステアリン酸中分子
膜と共に固定化した。上記方法で作成した2枚のIII
IG固定化電極を用意し、一方の電極の抗原を紫外線照
射により失活させ参照電極とし、増幅器(A)を介して
、図1に示した回路構成で出力電圧の時間応答を測定し
た。上記電極が浸漬されたリン酸緩衝液10威に抗ヒト
ICIG抗体水溶液(10〜100μす)を滴下すると
、抗原・抗体反応によりTgG固定化膜表面に電位が発
生する。この電位は、酸化イリジウム電極と増幅器とを
含む低インピーダンス(1にΩ)回路に電流を流し、I
−V(電流−電圧)コンバータ増幅器により出力される
。この時、検出される電荷量、すなわち電流の時間積分
量はリン酸緩衝液中に添加した抗体の量に比例する。図
2に、検出された電荷酸と抗体濃度との関係を示す。こ
の測定回路系により、1x10−7モル/r1の抗体が
検出可能であった。
Example 1 Human 1gG was stearinized on an iridium oxide thin film (2#1IllX7 shoes, a thickness: about 700 people) electrode formed by sputtering on a glass substrate (1cll x 1α) using the Langmuir-Blodgett method. It was immobilized with a molecular membrane in acid. Two sheets III created using the above method
IG-immobilized electrodes were prepared, and the antigen on one electrode was inactivated by ultraviolet irradiation to serve as a reference electrode, and the time response of the output voltage was measured using the circuit configuration shown in FIG. 1 via an amplifier (A). When an anti-human ICIG antibody aqueous solution (10 to 100 μm) is dropped into 10 μm of the phosphate buffer solution in which the electrode is immersed, a potential is generated on the surface of the TgG-immobilized membrane due to the antigen-antibody reaction. This potential causes a current to flow through a low impedance (1 to Ω) circuit containing an iridium oxide electrode and an amplifier,
-V (current-voltage) output by a converter amplifier. At this time, the amount of charge detected, that is, the time-integrated amount of current, is proportional to the amount of antibody added to the phosphate buffer. FIG. 2 shows the relationship between the detected charged acid and antibody concentration. With this measurement circuit system, it was possible to detect 1 x 10-7 mol/r1 of antibody.

実施例2 図31図4及び図5に、本実施例で用いたゲート分離型
FETの構成を示す。まず、1 cm X 2 crn
のp型シリコンウェハにリンのn型不純物を拡散し、ソ
ース電極(S’)、ドレイン電極(D′ )を形成した
後、ウェハ表面を酸化処理して、約2000人の5iO
z層を形成した。その後、ソース・ドレイン間の表面ゲ
ート部(50μm巾X1000μm長)、及び図3の分
離ゲート電極部(2#lIIIX7M)に約800人の
膜厚の酸化イリジウム層をスパッタリングにより設け、
上記の表面ゲート部と分離ゲート電極部も強化イリジウ
ム薄膜で連結した。
Example 2 FIGS. 31 and 5 show the structure of the gate isolation type FET used in this example. First, 1 cm x 2 crn
After diffusing an n-type impurity of phosphorus into a p-type silicon wafer to form a source electrode (S') and a drain electrode (D'), the wafer surface was oxidized and 5iO
A z layer was formed. After that, an iridium oxide layer with a thickness of about 800 mm was formed by sputtering on the surface gate part (50 μm width x 1000 μm length) between the source and drain and the isolated gate electrode part (2#lIIIX7M) in FIG.
The above-mentioned surface gate part and separated gate electrode part were also connected with a reinforced iridium thin film.

かくしてシリコン基板上に製作した同一の免疫FET電
極二本を用意し、それらの分離ゲート電極上に、それぞ
れ抗ヒトIgGを浸漬・吸着法により固定化した。その
後、一方の電極上の抗体を紫外線照射により失活させ、
参照電極とした後、リン酸緩衝液5蛇中に上記の二本の
分離ゲート電極を浸漬した。次いで、この緩衝液中に濃
度不明のIgGの水溶液を滴下した後、抗原・抗体反応
に伴うゲート電極表面上の膜電位変化を測定した。
Two identical immuno-FET electrodes thus fabricated on a silicon substrate were prepared, and anti-human IgG was immobilized on each of their separate gate electrodes by a dipping/adsorption method. After that, the antibody on one electrode is inactivated by ultraviolet irradiation,
After being used as a reference electrode, the above two separated gate electrodes were immersed in a phosphate buffer solution. Next, an aqueous solution of IgG of unknown concentration was dropped into this buffer solution, and then the change in membrane potential on the gate electrode surface due to the antigen-antibody reaction was measured.

この測定に際しては、ゲート電圧は白金電極により一定
(O〜2V)となる様に設定し、ドレイン電圧としては
5■印加した処、I(IG溶溶液滴下3抄 なり、予め作成しておいた検量線より求めたI(110
1度は、2X10″Gモル/1であった。
In this measurement, the gate voltage was set to be constant (0 to 2 V) using a platinum electrode, and the drain voltage was 5. I (110
1 degree was 2×10″G mole/1.

実施例3 実施例2に於て、酸化イリジウム薄膜より成るゲート部
をFET本体から分離せずに直接、ソース・ドレイン間
表面上膜け、その表面上に抗ヒト1(IG抗体を同様に
固定化して、実施例2と同様にして抗原・抗体反応を行
った。検体液滴下復のドレイン電圧の変化量は、30秒
後に約70 mVと一定になり、検量線より求めたI(
I G濃度は、2,8X10’iモル/すであった。上
記抗体液中に新たな電解質として塩化カリウムを0.1
− 0.5wt%になる様に添加し、同様に抗原・抗体
反応を行ったが、ドレイン電圧の変化量は、上記の場合
と同様、30秒後に約70 mVと再現性の良い結果が
得られた。
Example 3 In Example 2, the gate portion made of an iridium oxide thin film was directly coated on the surface between the source and drain without separating it from the FET body, and anti-human 1 (IG antibody) was similarly immobilized on the surface. The antigen-antibody reaction was carried out in the same manner as in Example 2.The amount of change in the drain voltage after dropping the sample liquid became constant at about 70 mV after 30 seconds, and the I(
The IG concentration was 2,8 x 10'i mol/su. Add 0.1 potassium chloride as a new electrolyte to the above antibody solution.
- 0.5 wt% was added and the antigen-antibody reaction was performed in the same way, but the amount of change in drain voltage was about 70 mV after 30 seconds, which was a result with good reproducibility, as in the case above. It was done.

また、本実施例に於ける、抗原・抗体反応の検出に当た
って、外部光の影響は全く認められなかっIこ 。
Furthermore, in this example, no influence of external light was observed in the detection of antigen-antibody reactions.

実施例4 本実施例は、EIA法に比べて本発明のFETデバイス
を用いれば、抗原・抗体反応の検出が極めて迅速に行え
る事を示す。
Example 4 This example shows that antigen-antibody reactions can be detected extremely quickly by using the FET device of the present invention compared to the EIA method.

実施例1で用いた、酸化イリジウム電極表面に3 X 
10−”モルの抗ヒトI9G抗体をステアリン酸バリウ
ムと共に、ラングミュア・プロジェット法により固定し
たものを2枚用意し、内1枚は、実施例1と同様の電荷
量測定回路に組み込んだ処、10−7モル/旦のヒトI
(IGが30−40秒で検出できた。一方、もう一枚の
抗ヒトIaG固定サンプルを用い、上記と同一濃度のヒ
トIOG水溶液に浸。
3X on the surface of the iridium oxide electrode used in Example 1
Two sheets were prepared in which 10-''mol of anti-human I9G antibody was immobilized together with barium stearate by the Langmuir-Prodgett method, one of which was incorporated into the same charge measurement circuit as in Example 1. 10-7 mol/day human I
(IG could be detected in 30-40 seconds. On the other hand, another anti-human IaG fixed sample was used and immersed in a human IOG aqueous solution with the same concentration as above.

漬後、その表面にベルオキシターゼ標識抗ヒトI(IG
抗体を更に反応させ、しかる後、過酸化水素水と0−フ
ェニレンジアミンを系に加えEIAを行った処、10−
7モル/文のヒトIaGの検出に合計160分を要した
After soaking, peroxidase-labeled anti-human I (IG) was added to the surface.
After further reaction with the antibody, hydrogen peroxide solution and 0-phenylenediamine were added to the system and EIA was performed.
A total of 160 minutes was required to detect 7 mol/state of human IaG.

比較例1 本例は、ゲート金属として、酸化イリジウム以外の金属
−を用いた場合に、抗原抗体反応に伴う電位変化が検出
できない事を示す。
Comparative Example 1 This example shows that when a metal other than iridium oxide is used as the gate metal, a potential change accompanying an antigen-antibody reaction cannot be detected.

ゲート金属として酸化イリジウムの代わりに、700人
の厚みのアルミニウム薄膜を用いて実施例3と同様にし
て抗ヒトI(IG抗体を固定化した後、実施例2と同様
にして抗原・抗体反応を行った。
Instead of iridium oxide as the gate metal, an aluminum thin film with a thickness of 700 mm was used to immobilize anti-human I (IG antibody) in the same manner as in Example 3, and then an antigen-antibody reaction was carried out in the same manner as in Example 2. went.

検体液滴下後のドレイン電圧の変化量は、検体液中の電
解質=度によって変わり実質的には、抗原抗体反応の検
出は不可能であった。
The amount of change in the drain voltage after dropping the sample liquid varied depending on the electrolyte concentration in the sample liquid, and it was virtually impossible to detect an antigen-antibody reaction.

比較例2 本例は、ゲート金属を取り除いた通常のMOSFETを
用いて、抗原抗体反応を行った場合の、外部光の影響に
ついて示す。
Comparative Example 2 This example shows the influence of external light when an antigen-antibody reaction is performed using a normal MOSFET with the gate metal removed.

実施例2に於て、ゲート金属を用いずゲート絶縁股上に
抗体を直接固定し、同様に抗原・抗体反応を350ルク
スの外部光照射下で行った処、ドレイン電圧の変化は3
−5mVの間で一定せず、また外部光のオン・オフによ
り変動した。
In Example 2, when the antibody was directly immobilized on the gate insulating crotch without using a gate metal and the antigen-antibody reaction was similarly performed under external light irradiation of 350 lux, the change in drain voltage was 3.
It was not constant within -5 mV and varied depending on whether the external light was turned on or off.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は抗原固定電極の構成と測定回路を表わす。 図中、ICIGは免疫グロブリンGを、Rer、は参照
電極を、Rは抵抗、Aは増幅器、■は電X計を表わす。 また、3 hieldは、電界や磁界による電気信号ノ
イズに対する遮蔽治具を意味する。 図2は抗IOG濃度と検出電荷量の関係を表わす。 図中、Qは検出電荷量を、抗IgGとは抗原物質である
ヒトIgGに対する抗体を意味する。 図3は免疫FET(平面図)を表わす。 図中、SとS′はそれぞれFETのソースとソース電極
を、DとD′はドレインとドレイン電極を表し、Gは分
離ゲートを表す。また、CはFETのゲート部と分離ゲ
ートとを連結する酸化イリジウムから成る導線を意味す
る。更に、A−A’とB−B’は各々、本発明のFET
の長手方向及び横方向の断面を表す。 図4は免疫FET (A−A’ 断面図)を表わす。 図中、Cは酸化イリジウムを表し、Eはエポキシ樹脂を
表す。 図5は免疫FET (B−8’ 断面図)を表わす。 図中、SとS′はそれぞれFETのソースとソース電極
を、DとD′はドレインとドレイン電極を表す。また、
CはFETのゲート部と分離ゲートとを連結する酸化イ
リジウムから成る導線を特徴する 特許出願人 帝 人 株 式 会 社 」
FIG. 1 shows the configuration of the antigen-immobilized electrode and the measurement circuit. In the figure, ICIG stands for immunoglobulin G, Rer stands for a reference electrode, R stands for a resistance, A stands for an amplifier, and ■ stands for an electro-X meter. Further, 3 shield means a shielding jig against electrical signal noise caused by electric fields and magnetic fields. FIG. 2 shows the relationship between anti-IOG concentration and detected charge amount. In the figure, Q represents the amount of detected charge, and anti-IgG means an antibody against human IgG, which is an antigenic substance. FIG. 3 represents the immunoFET (top view). In the figure, S and S' represent the source and source electrode of the FET, D and D' represent the drain and drain electrode, respectively, and G represents the isolation gate. Further, C means a conductive wire made of iridium oxide that connects the gate portion of the FET and the isolation gate. Furthermore, A-A' and B-B' each represent a FET of the present invention.
represents a longitudinal and transverse cross section. FIG. 4 shows an immune FET (A-A' sectional view). In the figure, C represents iridium oxide and E represents epoxy resin. FIG. 5 shows an immune FET (B-8' sectional view). In the figure, S and S' represent the source and source electrode of the FET, respectively, and D and D' represent the drain and drain electrode, respectively. Also,
Patent applicant Teijin Ltd. C is characterized by a conducting wire made of iridium oxide that connects the gate part of the FET and the isolation gate.

Claims (1)

【特許請求の範囲】 1、抗体又は抗原物質の薄膜を被覆した酸化イリジウム
電極を作用電極とする免疫センサ。 2、当該作用電極と参照電極との間の電位差を増幅して
、電圧、電流又は電荷量として検出する手段を有する特
許請求の範囲第1項記載の免疫センサ。 3、当該参照電極が、当該作用電極の抗体又は抗原物質
を不活性化したものである特許請求の範囲第2項記載の
免疫センサ。 4、該作用電極が、MOSFET上のゲート領域に設け
られている特許請求の範囲第1項〜第3項記載のいずれ
かの免疫センサ。 5、当該作用電極が、MOSFETのゲート領域以外に
、導電性配線を介して分離して設けられている特許請求
の範囲第4項記載の免疫センサ。 6、抗体または抗原物質の薄膜を被覆した酸化イリジウ
ム電極からなる作用電極と参照電極とを、抗原物質また
は抗体を含む溶液と接触させ、当該作用電極上での抗原
−抗体反応に伴う電位変化を、電位変化、電流変化又は
電荷量変化として読みとる免疫検出方法。
[Claims] 1. An immunosensor whose working electrode is an iridium oxide electrode coated with a thin film of an antibody or an antigen substance. 2. The immunosensor according to claim 1, comprising means for amplifying the potential difference between the working electrode and the reference electrode and detecting it as a voltage, current, or charge amount. 3. The immunosensor according to claim 2, wherein the reference electrode is one in which the antibody or antigen substance of the working electrode is inactivated. 4. The immunosensor according to any one of claims 1 to 3, wherein the working electrode is provided in a gate region on a MOSFET. 5. The immunosensor according to claim 4, wherein the working electrode is provided apart from the gate region of the MOSFET via a conductive wiring. 6. A working electrode made of an iridium oxide electrode coated with a thin film of an antibody or antigenic substance and a reference electrode are brought into contact with a solution containing the antigenic substance or antibody, and a potential change due to the antigen-antibody reaction on the working electrode is caused. , an immunodetection method that reads as a change in potential, a change in current, or a change in the amount of charge.
JP62040438A 1987-02-25 1987-02-25 Immunosensor and immunodetection method Expired - Lifetime JPH0713611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040438A JPH0713611B2 (en) 1987-02-25 1987-02-25 Immunosensor and immunodetection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040438A JPH0713611B2 (en) 1987-02-25 1987-02-25 Immunosensor and immunodetection method

Publications (2)

Publication Number Publication Date
JPS63208753A true JPS63208753A (en) 1988-08-30
JPH0713611B2 JPH0713611B2 (en) 1995-02-15

Family

ID=12580644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040438A Expired - Lifetime JPH0713611B2 (en) 1987-02-25 1987-02-25 Immunosensor and immunodetection method

Country Status (1)

Country Link
JP (1) JPH0713611B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285755A (en) * 1988-09-22 1990-03-27 Teijin Ltd Immune sensor and detection of immune reaction
US4927502A (en) * 1989-01-31 1990-05-22 Board Of Regents, The University Of Texas Methods and apparatus using galvanic immunoelectrodes
WO2005022142A1 (en) * 2003-08-29 2005-03-10 National Institute For Materials Science Biomolecule detecting element and method for analyzing nucleic acid using the same
JP2006030198A (en) * 2004-07-14 2006-02-02 Heraeus Sensor Technology Gmbh Platform chip or high-temperature stable sensor having conductor structure exposed to external influence, method for manufacturing platform chip or sensor, and use of sensor
JP2011102729A (en) * 2009-11-10 2011-05-26 Sharp Corp Analyzing chip device, chemical sensor chip housing adaptor used analyzing chip device analyzer, and analyzing method using the analyzing chip device
JP2020153695A (en) * 2019-03-18 2020-09-24 株式会社東芝 Ion sensor, ion sensor kit, and ion detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287986B (en) * 2005-06-14 2012-01-18 三美电机株式会社 Field effect transistor, biosensor provided with it, and detecting method
WO2008132656A2 (en) * 2007-04-27 2008-11-06 Nxp B.V. A biosensor chip and a method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203951A (en) * 1983-05-06 1984-11-19 Kuraray Co Ltd Production of bioelectrochemical sensor
JPS60158348A (en) * 1984-01-28 1985-08-19 Horiba Ltd Isfet sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203951A (en) * 1983-05-06 1984-11-19 Kuraray Co Ltd Production of bioelectrochemical sensor
JPS60158348A (en) * 1984-01-28 1985-08-19 Horiba Ltd Isfet sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285755A (en) * 1988-09-22 1990-03-27 Teijin Ltd Immune sensor and detection of immune reaction
US4927502A (en) * 1989-01-31 1990-05-22 Board Of Regents, The University Of Texas Methods and apparatus using galvanic immunoelectrodes
WO2005022142A1 (en) * 2003-08-29 2005-03-10 National Institute For Materials Science Biomolecule detecting element and method for analyzing nucleic acid using the same
JP2006030198A (en) * 2004-07-14 2006-02-02 Heraeus Sensor Technology Gmbh Platform chip or high-temperature stable sensor having conductor structure exposed to external influence, method for manufacturing platform chip or sensor, and use of sensor
JP2011102729A (en) * 2009-11-10 2011-05-26 Sharp Corp Analyzing chip device, chemical sensor chip housing adaptor used analyzing chip device analyzer, and analyzing method using the analyzing chip device
JP2020153695A (en) * 2019-03-18 2020-09-24 株式会社東芝 Ion sensor, ion sensor kit, and ion detection method

Also Published As

Publication number Publication date
JPH0713611B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US9506892B2 (en) Field-effect transistor, single-electron transistor and sensor using the same
JP3874772B2 (en) Biologically related substance measuring apparatus and measuring method
US4444892A (en) Analytical device having semiconductive organic polymeric element associated with analyte-binding substance
US4238757A (en) Field effect transistor for detection of biological reactions
US8698210B2 (en) Sensor and method for manufacturing the same
US20060197118A1 (en) Detection of molecular interactions using a field effect transistor
EP0096095B1 (en) Semiconductor device, sensor and method for determining the concentration of an analyte in a medium
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
JPS63208753A (en) Immune sensor and immune detection
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
JP2614905B2 (en) Immunosensor
JP2760335B2 (en) Protein sensor
Tomoya et al. Fabrication of N-Type Silicon Nanowire Biosensor for Sub-10-Femtomolar Concentration of Immunoglobulin
RU178317U1 (en) FIELD TRANSISTOR FOR DETERMINING BIOLOGICALLY ACTIVE COMPOUNDS
JPS62132160A (en) Biosensor using separation gate type isfet
JPH0326345B2 (en)
RU223220U1 (en) Biosensor for indication of biological particles
JPS6189553A (en) Integrated enzyme fet
JP2009250633A (en) Sensor and detection method
Sun et al. A sub-micron CMOS-based ISFET array for biomolecular sensing
JPS6113180B2 (en)
JPH0452409B2 (en)
JP2855718B2 (en) Potentiometric sensor
WO2008068692A1 (en) Method of manufacturing a semiconductor sensor device and semiconductor sensor device obtained with such method
Zachariah et al. Immunologically sensitive field-effect transistors