JPS6189553A - Integrated enzyme fet - Google Patents

Integrated enzyme fet

Info

Publication number
JPS6189553A
JPS6189553A JP59210783A JP21078384A JPS6189553A JP S6189553 A JPS6189553 A JP S6189553A JP 59210783 A JP59210783 A JP 59210783A JP 21078384 A JP21078384 A JP 21078384A JP S6189553 A JPS6189553 A JP S6189553A
Authority
JP
Japan
Prior art keywords
fet
enzyme
substrate
measurement
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59210783A
Other languages
Japanese (ja)
Inventor
Toyoe Moriizumi
森泉 豊栄
Yuji Miyahara
裕二 宮原
Norimoto Yogoshi
余越 紀元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59210783A priority Critical patent/JPS6189553A/en
Publication of JPS6189553A publication Critical patent/JPS6189553A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable highly sensitive measurement, by forming a reference electrode and at least one kind of integrated enzyme FET on a substrate having a good insulating property. CONSTITUTION:In integrated enzyme FET for measuring an objective substance by the differential measurement of the change in phase boundary potential, for example, reference FET and at least one kind of enzyme FET are formed to a substrate having a good insulating property comprising saphire, tantalum oxide or rubby to eliminate the interference of the enzyme FET and the reference FET. Therefore, the lowering in threshold value voltage is prevented and highly sensitive measurement is enabled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は集積化酵素FET(電界効果トランジスター)
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an integrated enzyme FET (field effect transistor)
It is related to.

(従来の技術) 酵素のもつ基質や阻害剤に対する高い特異性と電極の簡
便性や迅速性とを組合せて構成される酵素電極は、物質
の計測手段として優れた性能を発揮するために医療や化
学工業の分野で実用化されている。最近、臨床検査や生
体計測の分野において、酵素電極の小型化、高感度化お
よび多機能化が要求されている。本発明の集積化酵素I
FKTはこれらの要請に応じるものである。
(Prior art) Enzyme electrodes, which combine the high specificity of enzymes for substrates and inhibitors with the simplicity and rapidity of electrodes, are widely used in medical and medical applications due to their excellent performance as a means of measuring substances. It has been put into practical use in the chemical industry. Recently, in the fields of clinical testing and bioinstrumentation, enzyme electrodes have been required to be smaller, more sensitive, and more multifunctional. Integrating enzyme I of the present invention
FKT responds to these demands.

酵素電極の小型化の試みとしては、計測デバイスとして
半導体センサーを用いるものが知られている。例えば、
半導体センサーとして工5FET(イオン感応性電界効
果トランジスター)と固定化酵素膜とを組合わせた酵素
FETが提案され、ペニシリン、尿素、アセチルコリン
などの測定が試みられている。又、シリコン異方性エツ
チング技術を用いて製作したクラーク型酸素電極と固定
化酵素膜とを組合せたグルコース測定用センサーやパラ
ジウム−MOSFET (金属酸化物PET)と固定化
酵素膜とを組合せた尿素測定用センサーも提案されてい
る。これらの中で小型化、高感度化および多機能化の目
的から実用性が高いものとして酵素F11iTが注目さ
れる。
As an attempt to miniaturize enzyme electrodes, it is known that a semiconductor sensor is used as a measurement device. for example,
An enzyme FET, which is a combination of an ion-sensitive field effect transistor (FET) and an immobilized enzyme membrane, has been proposed as a semiconductor sensor, and attempts have been made to measure penicillin, urea, acetylcholine, etc. We also have a glucose measurement sensor that combines a Clark-type oxygen electrode and an immobilized enzyme membrane manufactured using silicon anisotropic etching technology, and a urea sensor that combines a palladium-MOSFET (metal oxide PET) and an immobilized enzyme membrane. Measurement sensors have also been proposed. Among these, the enzyme F11iT is attracting attention as a highly practical enzyme for the purpose of miniaturization, high sensitivity, and multifunctionality.

多機能型酵素PETを安価に製造する方法として半導体
積層化技術の利用が考えられている。通常、酵素が固定
化された酵素FETと酵素が固定化されていないFET
との組合せにより差動回路を形成させ、目的とする物質
を検出する方式が採用される。この差動回路を用いる結
果として、測定中の試料溶液の温度変化や閉度化などに
よる出力変動を自動的に補傷することができる。
The use of semiconductor stacking technology is being considered as a method for manufacturing multifunctional enzyme PET at low cost. Usually, enzyme FETs have enzymes immobilized on them and FETs on which enzymes are not immobilized.
A method is adopted in which a differential circuit is formed by combining the two, and the target substance is detected. As a result of using this differential circuit, it is possible to automatically compensate for output fluctuations due to temperature changes or degree of closure of the sample solution during measurement.

(発明の解決しようとする間頌点) JILnataらは1つのシリコン基板上に酵素FRi
Tと参照FETとを集積化し、ドレイン電流の差動をと
ることによりペニシリン濃度の測定を行なった。しかし
、この方式では閉時性の傾きがNernst式の傾きと
直接的に対応しないので不便である。
(Node point to be solved by the invention) JILnata et al.
The penicillin concentration was measured by integrating T and a reference FET and taking the difference in drain current. However, this method is inconvenient because the slope of the closing characteristic does not directly correspond to the slope of the Nernst equation.

一方、酵素FETと参照FETを同一基板上に集積化し
、界面電位変化の差動をとることも考えられる。この場
合、基板としてシリコンを使用してこれを接地した測定
系では閉時性の傾きが小さくなり、感度が悪くなる欠点
がある。
On the other hand, it is also conceivable to integrate the enzyme FET and the reference FET on the same substrate and take the difference in interfacial potential changes. In this case, a measurement system in which silicon is used as the substrate and is grounded has the drawback that the slope of the closing characteristic becomes small, resulting in poor sensitivity.

本発明者らはこの原因について鋭意検討した結果、傾き
が小さくなる原因はしきい値電圧の変化によることを明
らかにした◇ (間伽点を解決するための手段) そして、その原因を除失するためにS酵素FETと参照
FETとの千渉をなくすことが必要であり、この手段と
して絶縁性の良好な基板を使用する方法を見出した。す
なわち本発明は酵素FETと参照FIICTを同一基板
上に形成させ、界面電位変化の差動測定により目的物質
を測定する集積化酵素FETにおいて、基板として絶縁
性の物質を使用したことを特徴とする集積化酵素IP1
!:Tである。
As a result of intensive investigation into the cause of this, the inventors of the present invention found that the cause of the decrease in the slope is due to a change in the threshold voltage◇ (Means for resolving the gap) And the cause was eliminated. In order to achieve this, it is necessary to eliminate the interference between the S-enzyme FET and the reference FET, and as a means for this purpose, we have found a method of using a substrate with good insulation. That is, the present invention is characterized in that an insulating material is used as the substrate in an integrated enzyme FET in which an enzyme FET and a reference FIICT are formed on the same substrate and a target substance is measured by differential measurement of changes in interfacial potential. Integrating enzyme IP1
! :It is T.

本発明では超小型で高感度の多機能型酵素FETを集積
化されたデバイスとして参照N、極と同一基板上に作成
し、界面電位変化の差動をとる測定方式において、参照
電極と少くとも一種の酵素FETを絶縁性良好な基鈑上
に形成することによりしきい値電圧の低下を防ぐことが
可能となった。これにより、従来の工C回路作成法に近
い形で大力1に安価で均一性の高いデバイスの作成が達
成され本発明が完成した。
In the present invention, an ultra-small and highly sensitive multifunctional enzyme FET is fabricated as an integrated device on the same substrate as the reference electrode, and in a measurement method that takes the difference in interfacial potential changes, at least one By forming a type of enzyme FET on a substrate with good insulation, it has become possible to prevent a decrease in threshold voltage. As a result, the present invention has been completed by achieving the production of a device that is extremely inexpensive and highly uniform in a manner similar to the conventional C circuit production method.

本発明において使用される絶縁性良好な基板としてはサ
ファイア、タンタルオキサイド、ルビーなどがある。
Examples of substrates with good insulation used in the present invention include sapphire, tantalum oxide, and ruby.

本発明において使用される集積化複合FETの作成には
従来の半導体集積化プロ七スがそのまま利用可能である
Conventional semiconductor integrated processors can be used as they are for producing the integrated composite FET used in the present invention.

又、色素、抗原、抗体などを膜状に固定化する方法も公
知の方法を適用することができる。
Furthermore, known methods can be applied to immobilize dyes, antigens, antibodies, etc. in a membrane.

同一基板上に集積化される酵素FETの数は1個に限定
されるものではなく、むしろ、測定しようとする物質の
種類に応じて複数の異なった酵素?EiTを集積化する
ことが好ましい。さらに、測定精度を向上するために標
準電極が用いられるが、この標準電極を酵素FETおよ
び参照FETと同一の基板上に形成させた方が好都合の
場合もある。
The number of enzyme FETs integrated on the same substrate is not limited to one, but rather a number of different enzymes depending on the type of substance to be measured. It is preferable to integrate the EiT. Additionally, a standard electrode is used to improve measurement accuracy, and it may be advantageous to form this standard electrode on the same substrate as the enzyme FET and the reference FET.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 サファイア(Al□0.)基板上に0.61t mのシ
リコラフイーにより形成したパターン通りに部分エラ次
に、残されたシリコーン層を1000℃で450 OA
の厚さにウェット酸化して二酸化ケイ素(S1O2)層
を形成した。ソース・ドレイン部分にはリンを拡散させ
てソース・ドレインを作成した。ゲート部分はウェット
醸化(900℃、1000A)により二酸化ケイ素とし
た後、水素プラズマ処理を行ない活性化した面にpaw
Dで窒化ケイ素(Si3N4)を成長させた。
Example: A sapphire (Al□0.) substrate was formed with a 0.61 tm silicon roughy. Next, the remaining silicone layer was heated to 450 OA at 1000°C.
A silicon dioxide (S1O2) layer was formed by wet oxidation to a thickness of . The sources and drains were created by diffusing phosphorus into the source and drain parts. The gate part was made into silicon dioxide by wet fermentation (900℃, 1000A), and then hydrogen plasma treatment was performed to activate the activated surface.
Silicon nitride (Si3N4) was grown in D.

フォトリソグラフィーを用いて、Si、N4をプラズマ
エツチング(ay、ガス)、S1%2をフッ化水紫酸を
用いてエツチングしてフンタクトホールを形成した。次
に、ソース・ドレイン部分にアルミニウムを真空蒸着し
て電極を形成した。
Using photolithography, Si and N4 were etched by plasma etching (AY, gas), and S1%2 was etched using fluoride-hydrogen-hydrogen acid to form hole-touch holes. Next, aluminum was vacuum-deposited on the source and drain portions to form electrodes.

得られた集積化工5FETの大きさは、チップ:2.5
 X 2.5mj*チャネル長=20μm、チャネル巾
2500μであり、同一チップ上に3個の工5FETが
形成されていた。
The size of the obtained integrated 5FET is chip: 2.5
X2.5mj*channel length=20μm, channel width 2500μm, and three 5FETs were formed on the same chip.

製作した工5IFEiTを配線し、シリコーンゴムでマ
ウントした後、γ−アミノプロビルトリエトキSl++
ノ4〜./−hp甲丁ぐ\を田1翫イμ−に妨箇Si3
N、表面を化学修飾し、表面にアミノ基を導入した。処
理条件はエタノール90%、1−APTES5%、水5
%の溶液により室温で30分浸漬とした0 次に、三酢酸セルロース250 ”F 、ジクロルメタ
ン10+d、50%グルタルアルデヒド水溶液100μ
!、4−アミノメチル−1,8−オクタンジアミン50
0μlからなる均一な溶液をゲート部分に滴下して有機
膜を形成した。リン酸緩衝液(pH7,o、 0.0:
LM )で十分洗浄後S1つのゲートにウレアーゼ溶液
(ウレアーゼ2600U声0.01Mリン酸緩衝液、p
H−17,O)を1満々下し4℃、10時間反応させウ
レアーゼを有機膜に固定化した。
After wiring the fabricated IFEiT and mounting it with silicone rubber,
No4~. /-HP Kochogu\ to 田1翫いμ- し3
N, the surface was chemically modified to introduce amino groups onto the surface. Treatment conditions were 90% ethanol, 5% 1-APTES, 5% water.
% solution for 30 minutes at room temperature. Next, cellulose triacetate 250"F, dichloromethane 10+d, 50% glutaraldehyde aqueous solution 100μ
! , 4-aminomethyl-1,8-octanediamine 50
A uniform solution consisting of 0 μl was dropped onto the gate portion to form an organic film. Phosphate buffer (pH 7, o, 0.0:
After thorough washing with LM), add urease solution (Urease 2600U, 0.01M phosphate buffer, p
A full amount of H-17,O) was added and reacted at 4°C for 10 hours to immobilize urease on the organic membrane.

上記のようにして作成した同一基板上に形成された複数
(3個)の工5FETのうち、1個のウレアーゼ固定化
XFETと他の酵素を固定化していない1個の工5FI
CT (参照FET )とを第1図に示すように結線し
て尿素測定系を組立てた。
Among the multiple (3) engineered 5FETs formed on the same substrate as described above, one urease-immobilized XFET and one engineered 5FI with no other enzyme immobilized.
CT (reference FET) was connected as shown in FIG. 1 to assemble a urea measurement system.

測定は、複合化酸素FIICT−参照IPETを0.0
1M、田7.0のリン酸緩衝溶液1−に浸漬しておき、
種々の濃度の尿素溶液1−を添加することにより実施し
た。測定温度は恒温槽により36°Cに保持した。溶液
中の尿素は酵素FETの有機膜面でウレアーゼにより分
解してアンモニアを生成して溶液の田を上昇させた。溶
液S i、 N、界面電位の変化が差動回路の出力とし
て測定された。溶液の電位はAg−190:L電極によ
って一定に保たれているので、アンモニア生成による溶
液の用度化(酵素FET上のみで起る)によって生ずる
溶液−3i、N。
The measurement was performed using complex oxygen FIICT-reference IPET of 0.0
Immerse in 1M, 7.0 phosphate buffer solution 1-,
It was carried out by adding urea solutions 1- at various concentrations. The measurement temperature was maintained at 36°C using a constant temperature bath. Urea in the solution was decomposed by urease on the organic membrane surface of the enzyme FET, producing ammonia and causing the solution to rise. Changes in solution S i,N and interfacial potential were measured as the output of the differential circuit. Since the potential of the solution is kept constant by the Ag-190:L electrode, the solution-3i,N resulting from the dilution of the solution by ammonia production (occurs only on the enzyme FET).

界面の電位変化は尿素の濃度に比例した。A、 B端子
に現われた界面電位変化を差動アンプに入力し、その差
をレコーダーに時間変化として記録させた。
The potential change at the interface was proportional to the urea concentration. The interfacial potential changes appearing at the A and B terminals were input to a differential amplifier, and the difference was recorded as a time change on a recorder.

測定結果の1例を第2図に示した。第2図から明らかな
ように、尿素濃度10−4g/−〜10−り〜の範囲に
亘って尿素の測定が可能である。測定の応答時間は約3
0秒であった。
An example of the measurement results is shown in Figure 2. As is clear from FIG. 2, urea can be measured over a urea concentration range of 10-4 g/- to 10-1 g/-. Measurement response time is approximately 3
It was 0 seconds.

(発明の効果) 本発明は参照FETと少くとも1個の酵素FETを同一
基板上に形成させた集積化酵素IPETを用いて、界面
電位変化の差動測定により目的物質を測定する方式にお
いて、基板として絶縁性の物質を使用することにより、
従来のシリコーンを基板とした集積化酵素FF1Tでは
達成できなかった高感度測定を可能にしたものである。
(Effects of the Invention) The present invention provides a method for measuring a target substance by differential measurement of interfacial potential changes using an integrated enzyme IPET in which a reference FET and at least one enzyme FET are formed on the same substrate. By using an insulating material as a substrate,
This enables highly sensitive measurements that could not be achieved with the conventional integrated enzyme FF1T using silicone as a substrate.

さらに、従来のドレイン電流の差動測定に比較して簡単
な測定および演算が可能となった。
Furthermore, it has become possible to perform simpler measurements and calculations than conventional differential measurements of drain currents.

本発明は通常の半導体集積化プロセスがそのまま適用で
き、安価に大量のデバイスを製造するのに適するととも
に、超小型化が達成でき、血液や尿などの試料中に含ま
れる生化学物質や免疫物質の測定などに威力を発揮する
The present invention can be applied directly to a normal semiconductor integration process, is suitable for manufacturing a large number of devices at low cost, and can achieve ultra-miniaturization. It is effective for measurements such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は集積化酵素FETによる尿素測定系の回路を示
す。 第2図は尿素0度と出力電圧との関係を示す。 特許出願人  東洋紡績株式会社 易10 1 線環電極 2  ワしアーヤ゛固角1ヒPET 3 参ν泥FE丁 4 羞’17)槽悟各 5  しコー7一
FIG. 1 shows a circuit for a urea measurement system using an integrated enzyme FET. FIG. 2 shows the relationship between 0 degrees urea and output voltage. Patent Applicant: Toyobo Co., Ltd. E10 1 Wire ring electrode 2 Washer 1 hard angle 1 PET 3 Reference FE 4 Sha'17) Tank 5 Shiko 71

Claims (1)

【特許請求の範囲】[Claims] 酵素FETと参照FETを同一基板上に形成させ、界面
電位変化の差動測定により目的物質を測定する集積化酵
素FETにおいて、基板として絶縁性の物質を使用した
ことを特徴とする集積化酵素FET
An integrated enzyme FET in which an enzyme FET and a reference FET are formed on the same substrate and a target substance is measured by differential measurement of changes in interfacial potential, characterized in that an insulating material is used as the substrate.
JP59210783A 1984-10-08 1984-10-08 Integrated enzyme fet Pending JPS6189553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210783A JPS6189553A (en) 1984-10-08 1984-10-08 Integrated enzyme fet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210783A JPS6189553A (en) 1984-10-08 1984-10-08 Integrated enzyme fet

Publications (1)

Publication Number Publication Date
JPS6189553A true JPS6189553A (en) 1986-05-07

Family

ID=16595059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210783A Pending JPS6189553A (en) 1984-10-08 1984-10-08 Integrated enzyme fet

Country Status (1)

Country Link
JP (1) JPS6189553A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111454A (en) * 1986-10-29 1988-05-16 Nec Corp Production of immobilized enzyme film
JP2008039523A (en) * 2006-08-03 2008-02-21 Toyohashi Univ Of Technology Ph detector
US8502277B2 (en) 2003-08-29 2013-08-06 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
JP2018504612A (en) * 2014-11-07 2018-02-15 プロテオセンス Device, system, and method for detecting an analyte

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111454A (en) * 1986-10-29 1988-05-16 Nec Corp Production of immobilized enzyme film
US8502277B2 (en) 2003-08-29 2013-08-06 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
US8766326B2 (en) 2003-08-29 2014-07-01 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor
US8772099B2 (en) 2003-08-29 2014-07-08 Japan Science And Technology Agency Method of use of a field-effect transistor, single-electron transistor and sensor
US9506892B2 (en) 2003-08-29 2016-11-29 Japan Science And Technology Agency Field-effect transistor, single-electron transistor and sensor using the same
JP2008039523A (en) * 2006-08-03 2008-02-21 Toyohashi Univ Of Technology Ph detector
JP2018504612A (en) * 2014-11-07 2018-02-15 プロテオセンス Device, system, and method for detecting an analyte

Similar Documents

Publication Publication Date Title
US4894339A (en) Immobilized enzyme membrane for a semiconductor sensor
WO2009144878A1 (en) Sensor and method for manufacturing the same
Chi et al. Study on separative structure of EnFET to detect acetylcholine
US5387328A (en) Bio-sensor using ion sensitive field effect transistor with platinum electrode
JPS61118652A (en) Semiconductor device
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
US20060148118A1 (en) Fabrication of array pH sensitive EGFET and its readout circuit
JP2633281B2 (en) Electrochemical sensor and manufacturing method thereof
Poghossian et al. Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier
EP0235024B1 (en) Enzyme sensor and method of manufacture same
US7638157B2 (en) Method of fabricating electrode assembly of sensor
JPS6189553A (en) Integrated enzyme fet
JPS6029658A (en) Urea sensor
Schöning et al. A novel silicon-based sensor array with capacitive EIS structures
JP2760335B2 (en) Protein sensor
JPH037066B2 (en)
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
JP3167022B2 (en) Gas sensor
JPH0713611B2 (en) Immunosensor and immunodetection method
JPS59210356A (en) Triglyceride sensor
JPS62132160A (en) Biosensor using separation gate type isfet
JPH0365866B2 (en)
JPS61176845A (en) Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film
JPS6366454A (en) Enzyme sensor and manufacture thereof
JPH02249962A (en) Fet sensor