JPH0469338B2 - - Google Patents

Info

Publication number
JPH0469338B2
JPH0469338B2 JP58080887A JP8088783A JPH0469338B2 JP H0469338 B2 JPH0469338 B2 JP H0469338B2 JP 58080887 A JP58080887 A JP 58080887A JP 8088783 A JP8088783 A JP 8088783A JP H0469338 B2 JPH0469338 B2 JP H0469338B2
Authority
JP
Japan
Prior art keywords
electrode
reference electrode
fet
sensor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58080887A
Other languages
Japanese (ja)
Other versions
JPS59206756A (en
Inventor
Keiji Tsukada
Hiroyuki Myagi
Takuya Maruizumi
Masao Hotsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58080887A priority Critical patent/JPS59206756A/en
Priority to DE19843417137 priority patent/DE3417137C2/en
Publication of JPS59206756A publication Critical patent/JPS59206756A/en
Publication of JPH0469338B2 publication Critical patent/JPH0469338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、溶液中の特定化学物質濃度を測定す
る電界効果トランジスタ(FET)化学センサー
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a field effect transistor (FET) chemical sensor for measuring the concentration of a specific chemical in a solution.

〔発明の背景〕 従来のFET化学センサーは、飽和カロメル参
照電極と共通するか、あるいは同一チツプ上に
pH測定用センサーと参照電極を平行に並べて使
用するものなどであつた(D.Harame et al,
IEEE IEDM p.467〜470(1981),K.Shimada et
al,Med.& Biol Eng.& Comput 1980,18,
p.741〜745)。これらは電極としてFET化学セン
サーと参照電極を別々に必要とすることから電極
数が多いこと、あるいはFET化学センサーと参
照電極を並べたものの場合は、広い面積のチツプ
を必要とするなどの問題があつた。
BACKGROUND OF THE INVENTION Conventional FET chemical sensors have a saturated calomel reference electrode in common or on the same chip.
A sensor for pH measurement and a reference electrode were used in parallel (D.Harame et al.
IEEE IEDM p.467-470 (1981), K. Shimada et
al, Med. & Biol Eng. & Comput 1980, 18,
p.741-745). These devices require a separate FET chemical sensor and reference electrode as electrodes, resulting in a large number of electrodes, or if the FET chemical sensor and reference electrode are arranged side by side, a chip with a large area is required. It was hot.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、参照電極のリード線を無くす
ることにより外部からの電気的ノイズを低減し得
るFET化学センサーを提供することにある。
An object of the present invention is to provide a FET chemical sensor that can reduce external electrical noise by eliminating a reference electrode lead wire.

〔発明の概要〕[Summary of the invention]

本発明は、シリコン基板上のSiO2層内にソー
ス用電極およびドレイン用電極を設け、上記
SiO2層上にイオン感応膜を設けたFET化学セン
サーにおいて、上記SiO2層上に参照電極を形成
し、上記ソース用電極と上記参照電極とを、上記
SiO2層内において電気的に接続したことを特徴
とする。
The present invention provides a source electrode and a drain electrode in the SiO 2 layer on a silicon substrate, and
In an FET chemical sensor in which an ion-sensitive film is provided on two SiO layers, a reference electrode is formed on the two SiO layers, and the source electrode and the reference electrode are connected to the
It is characterized by electrical connection within the two SiO layers.

本発明のFET化学センサーは、血液自動分析
装置用センサーなどとして用いられ、ゲート部分
上にイオン感応膜を塗布したものは、血液の電解
質イオン(pH,Na+,K+,Cl-)の濃度を測る
ものであり、ウレアーゼ固定化酵素膜を塗布した
ものは、尿素センサーとなる。
The FET chemical sensor of the present invention is used as a sensor for automatic blood analyzers, etc., and the one with an ion-sensitive membrane coated on the gate part measures the concentration of electrolyte ions (pH, Na + , K + , Cl - ) in blood. The sensor coated with a urease-immobilized enzyme membrane becomes a urea sensor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により、その構成及び動
作を説明する。
Hereinafter, the configuration and operation of the present invention will be explained using examples.

第1の実施例について述べる。第1図はpH測
定用FETセンサーの平面図を示し、Si基板1上
に参照電極5とFET化学センサーを形成してい
る。第2図に第1図のA−Aの断面図を、第3図
にB−B断面図を示す。FET化学センサー自体
は従来のFET化学センサーの構造をとつており、
基板1としてp型Siを用いドレイン2とソース3
にn+拡散層を形成し、チヤンネル部分にn形表
面層8を形成したnチヤンネルデイプリーシヨン
形のFETである。ゲート4にはSiO211,Si3N4
12の膜を形成し、その上にイオン感応膜として
Ta2O513を形成している。一方参照電極5は
Ag15とAgCl16から成つておりSiO211中の
Poly−Si17と薄いTi14膜を介して接触して
いる。Poly−Si18はソース3用電極としての
Poly−Si10と参照電極5の電極としてのPoly
−Si17とが一体化されたもので、これにより参
照電極5とFETのソース3が電気的に接続され
ている。素子の外部電極としてPoly−Si9のド
レイン電極の上部にAl電極6を形成した。同様
に参照電極5とソース3の共通電極18の上部に
Al電極7を形成した。この事により従来必要と
したFET化学センサーのドレイン電極とソース
電極及び参照電極の3個を2個にする事が出来
た。
A first example will be described. FIG. 1 shows a plan view of a FET sensor for pH measurement, in which a reference electrode 5 and a FET chemical sensor are formed on a Si substrate 1. FIG. 2 shows a sectional view taken along line AA in FIG. 1, and FIG. 3 shows a sectional view taken along line BB. The FET chemical sensor itself has the structure of a conventional FET chemical sensor.
Using p-type Si as the substrate 1, drain 2 and source 3
This is an n-channel depletion type FET in which an n + diffusion layer is formed in the channel portion and an n-type surface layer 8 is formed in the channel portion. Gate 4 contains SiO 2 11, Si 3 N 4
12 films are formed on top of which an ion-sensitive film is formed.
Ta 2 O 5 13 is formed. On the other hand, the reference electrode 5
It consists of Ag15 and AgCl16, and is composed of SiO 2 11.
It is in contact with Poly-Si 17 through a thin Ti 14 film. Poly-Si18 is used as an electrode for source 3.
Poly-Si10 and Poly as reference electrode 5
-Si 17 is integrated, thereby electrically connecting the reference electrode 5 and the source 3 of the FET. An Al electrode 6 was formed on the drain electrode of Poly-Si 9 as an external electrode of the device. Similarly, on the top of the reference electrode 5 and the common electrode 18 of the source 3
An Al electrode 7 was formed. This made it possible to reduce the conventionally required three elements of the drain electrode, source electrode, and reference electrode of the FET chemical sensor to two.

次にこの素子の動作原理を述べる。この素子を
溶液につけると、H+イオンの濃度により、ゲー
ト4膜で発生している界面電位が発生する。ここ
で参照電極5によつて溶液に基準電位が与えられ
るが、参照電極5とFETのソース3が電気的に
接続されているので、両者の電位は等電位になつ
ている。この事によりH+イオンの濃度変化によ
るゲート電圧VGの変化は、ゲート−ソース間電
位VGSの変化となる。この変化がドレイン−ソー
ス間電流IDSの変化になつて現われる。この変化
を測定する事により溶液中のH+イオン濃度つま
りpHを測定出来る。第4図は第一の実施例によ
つてpH応答を調べたものでpH変化に対するドレ
イン−ソース電流IDS変化をゲート−ソース電位
VGS変化に変換しなおしてプロツトしたもので
54mV/pHの感度が得られた。
Next, the operating principle of this device will be described. When this element is immersed in a solution, an interfacial potential is generated in the gate 4 film due to the concentration of H + ions. Here, a reference potential is applied to the solution by the reference electrode 5, and since the reference electrode 5 and the source 3 of the FET are electrically connected, their potentials are equal. As a result, a change in the gate voltage V G due to a change in the concentration of H + ions becomes a change in the gate-source potential V GS . This change appears as a change in the drain-source current IDS . By measuring this change, the H + ion concentration, or pH, in the solution can be measured. Figure 4 shows the pH response investigated using the first example.
This is converted back to V GS change and plotted.
A sensitivity of 54 mV/pH was obtained.

第5図に第二の実施例を示す。FET化学セン
サーの動作は第一の実施例と同じであるが、ソー
ス3の上部に参照電極5をとりつけてあることが
特徴である。第6図に第5図のC−Cの断面図を
示す。ソース3電極としてのPoly−Si10上部
のSiO211,Si3N412,Ta2O513膜をエツチ
ングしてホールを作りPoly−Si10に薄いTi1
4膜を形成した後、参照電極5としてAg15,
AgCl16を形成する。この構造により参照電極
5とFET化学センサーのソース3電位を同じに
出来、かつ参照電極の面積を必要としないため素
子面積を大幅に削減出来た。
FIG. 5 shows a second embodiment. The operation of the FET chemical sensor is the same as in the first embodiment, but the feature is that a reference electrode 5 is attached above the source 3. FIG. 6 shows a sectional view taken along line CC in FIG. 5. The SiO 2 11, Si 3 N 4 12, and Ta 2 O 5 13 films on the top of the Poly-Si 10 as the source 3 electrode are etched to form holes and a thin Ti 1 layer is added to the Poly-Si 10.
After forming 4 films, Ag15,
Forms AgCl16. With this structure, the potential of the reference electrode 5 and the source 3 of the FET chemical sensor can be made the same, and since the area of the reference electrode is not required, the device area can be significantly reduced.

第7図に第三の実施例を示す。第三の実施例
は、炭酸ガスFETセンサーで第二の実施例のpH
測定用FETセンサーの上部にガス透過膜19で
内部ゲル20を挾みこんだ構造をとつている。動
作原理は、この素子を溶液につけたとき、溶液中
の炭酸ガスがガス透過膜19を透過して内部ゲル
20に溶けこむので、内部ゲル20のpHが変化
する。このpH変化を下部のpHFETセンサーに
よつてとらえる。この事により溶液中の炭酸ガス
濃度を測定出来る。このように、参照電極と
FET化学センサーを一体化した構造をとる事に
より、膜で内部ゲルを挾みこむ炭酸ガスセンサー
における素子の小型化を可能にする事が出来る。
FIG. 7 shows a third embodiment. The third embodiment uses a carbon dioxide FET sensor to detect the pH of the second embodiment.
It has a structure in which an internal gel 20 is sandwiched between a gas permeable membrane 19 and a gas permeable membrane 19 above the measurement FET sensor. The operating principle is that when this element is immersed in a solution, carbon dioxide gas in the solution passes through the gas permeable membrane 19 and dissolves into the internal gel 20, so that the pH of the internal gel 20 changes. This pH change is detected by the pHFET sensor at the bottom. This allows the concentration of carbon dioxide in the solution to be measured. In this way, the reference electrode and
By adopting a structure that integrates the FET chemical sensor, it is possible to miniaturize the element in a carbon dioxide gas sensor that sandwiches an internal gel with a membrane.

また第一、第二実施例のゲート膜上にさらに酵
素固定膜をつける事により、酵素センサーとして
作動した。
Further, by further attaching an enzyme-immobilized membrane on the gate membrane of the first and second embodiments, it operated as an enzyme sensor.

上述した本発明の各実施例によれば、参照電極
とFETを基板上で一体化する事により、化学セ
ンサー素子の面積を小さく出来た。この事により
局所的なイオン濃度を測定出来るため試料の量を
少なく出来る。また生体から発生する電気的ノイ
ズを低減出来るため、生体モニターとしての植め
込み型センサーが可能となる。更に、参照電極の
リード線が不用となり、外部計測回路が極めて簡
単になる。
According to each of the embodiments of the present invention described above, the area of the chemical sensor element can be reduced by integrating the reference electrode and the FET on the substrate. This makes it possible to measure local ion concentrations, which allows the amount of sample to be reduced. Furthermore, since electrical noise generated from living organisms can be reduced, it becomes possible to use implantable sensors as biological monitors. Furthermore, a lead wire for the reference electrode is no longer required, and the external measurement circuit becomes extremely simple.

一体化に伴う具体的な効果を述べる。参照電極
とセンサーのソース部を接続する事によりセンサ
ーのリード線の本数を3本から2本にする事が出
来た。
Describe the specific effects of integration. By connecting the reference electrode and the sensor source, we were able to reduce the number of sensor lead wires from three to two.

さらにセンサーのソース部に直接参照電極をつ
ける事により、参照電極面積をSR、FET化学セ
ンサーの面積をSFとすると一体化した素子面積
は、従来素子面積で必要であつたSR+SFがSFだけ
ですむようになつた。
Furthermore, by attaching a reference electrode directly to the source part of the sensor, if the reference electrode area is S R and the area of the FET chemical sensor is S F , the integrated element area is S R + S F , which was required for the conventional element area. But now I only need SF .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、参照電極のリード線を無くす
ることができるので、化学センサーに対する外部
からの電気的ノイズを低減でき、かつ溶液中の被
検物質濃度を極めて簡素化された構成の化学セン
サーで測定することが可能となる。
According to the present invention, since the lead wire of the reference electrode can be eliminated, it is possible to reduce electrical noise from the outside to the chemical sensor, and the chemical sensor has an extremely simplified configuration that can reduce the concentration of the analyte in the solution. It becomes possible to measure by

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の参照電極とFET
化学センサーを一体化した素子の平面図、第2図
は第1図のA−A線断面図、第3図は第1図のB
−B線断面図、第4図は第一の実施例のセンサー
のpH応答を示す特性図、第5図は本発明の他の
実施例の参照電極をFETのソース部分の上部に
取り付けた素子の平面図、第6図は第5図のC−
C線断面図、第7図は本発明のさらに他の実施例
の酵素固定膜をゲート膜上にとりつけた素子の断
面図である。 1……Si基板、2……ドレイン、3……ソー
ス、4……ゲート、5……参照電極(Ag/
AgCl)、6ドレイン用Al電極、7……ソース用
Al電極、8……n型表面層、9……ドレイン用
Poly−Si電極、10……ソース用Poly−Si電極、
11……SiO2、12……Si3N4、13……Ta2
O5、14……Ti、15……Ag、16……AgCl、
17……参照電極用電極Poly−Si、18……
Poly−Si、19……ガス透過膜、20……内部
ゲル。
Figure 1 shows the reference electrode and FET of one embodiment of the present invention.
A plan view of an element that integrates a chemical sensor, Figure 2 is a sectional view taken along line A-A in Figure 1, and Figure 3 is a cross-sectional view taken along line B in Figure 1.
-B cross-sectional view, Figure 4 is a characteristic diagram showing the pH response of the sensor of the first embodiment, and Figure 5 is an element in which a reference electrode of another embodiment of the present invention is attached above the source part of the FET. The plan view of Fig. 6 is C- of Fig. 5.
A cross-sectional view taken along the line C and FIG. 7 are cross-sectional views of a device in which an enzyme-immobilized membrane according to still another embodiment of the present invention is attached on a gate membrane. 1...Si substrate, 2...Drain, 3...Source, 4...Gate, 5...Reference electrode (Ag/
AgCl), 6 Al electrode for drain, 7... for source
Al electrode, 8... n-type surface layer, 9... for drain
Poly-Si electrode, 10...Poly-Si electrode for source,
11...SiO 2 , 12...Si 3 N 4 , 13...Ta 2
O 5 , 14...Ti, 15...Ag, 16...AgCl,
17... Reference electrode Poly-Si, 18...
Poly-Si, 19... Gas permeable membrane, 20... Internal gel.

Claims (1)

【特許請求の範囲】 1 シリコン基板上のSiO2層内にソース用電極
およびドレイン用電極を設け、上記SiO2層上に
イオン感応膜を設けたFET化学センサーにおい
て、上記SiO2層上に参照電極を形成し、上記ソ
ース用電極と上記参照電極とを、上記SiO2層内
において電気的に接続したことを特徴とする
FET化学センサー。 2 上記参照電極は、導電性材料を介して上記ソ
ース用電極の上部に配置されていることを特徴と
する特許請求の範囲第1項記載のFET化学セン
サー。
[Claims] 1. In an FET chemical sensor in which a source electrode and a drain electrode are provided in a SiO 2 layer on a silicon substrate, and an ion-sensitive film is provided on the SiO 2 layer, a reference is made on the SiO 2 layer. An electrode is formed, and the source electrode and the reference electrode are electrically connected within the SiO 2 layer.
FET chemical sensor. 2. The FET chemical sensor according to claim 1, wherein the reference electrode is placed above the source electrode via a conductive material.
JP58080887A 1983-05-11 1983-05-11 Fet chemical sensor combined with reference electrode Granted JPS59206756A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58080887A JPS59206756A (en) 1983-05-11 1983-05-11 Fet chemical sensor combined with reference electrode
DE19843417137 DE3417137C2 (en) 1983-05-11 1984-05-09 Chemically sensitive field effect transistor measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080887A JPS59206756A (en) 1983-05-11 1983-05-11 Fet chemical sensor combined with reference electrode

Publications (2)

Publication Number Publication Date
JPS59206756A JPS59206756A (en) 1984-11-22
JPH0469338B2 true JPH0469338B2 (en) 1992-11-05

Family

ID=13730852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080887A Granted JPS59206756A (en) 1983-05-11 1983-05-11 Fet chemical sensor combined with reference electrode

Country Status (2)

Country Link
JP (1) JPS59206756A (en)
DE (1) DE3417137C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3519397A1 (en) * 1985-05-30 1986-12-04 Siemens AG, 1000 Berlin und 8000 München Sensor for gas analysis and detection
JPS6283641A (en) * 1985-10-08 1987-04-17 Sharp Corp Sensor element
JPH0725688Y2 (en) * 1985-12-18 1995-06-07 新電元工業株式会社 Semiconductor ion sensor
FR2672158B1 (en) * 1991-01-24 1993-04-09 Commissariat Energie Atomique SENSOR FOR THE DETECTION OF CHEMICAL SPECIES OR PHOTONS USING A FIELD EFFECT TRANSISTOR.
US20110100810A1 (en) * 2008-06-30 2011-05-05 Nxp B.V. Chip integrated ion sensor
JP5527139B2 (en) * 2010-09-28 2014-06-18 大日本印刷株式会社 Measuring method using biosensor and biosensor
TWI432724B (en) 2010-10-18 2014-04-01 Ind Tech Res Inst Microsystem for analyzing blood

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672339A (en) * 1979-11-16 1981-06-16 Kuraray Co Ltd Fet multisensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672339A (en) * 1979-11-16 1981-06-16 Kuraray Co Ltd Fet multisensor

Also Published As

Publication number Publication date
JPS59206756A (en) 1984-11-22
DE3417137C2 (en) 1987-03-26
DE3417137A1 (en) 1984-11-15

Similar Documents

Publication Publication Date Title
US4508613A (en) Miniaturized potassium ion sensor
US4218298A (en) Selective chemical sensitive FET transducer
US4739380A (en) Integrated ambient sensing devices and methods of manufacture
US5384028A (en) Biosensor with a data memory
Poghossian et al. Detecting both physical and (bio‐) chemical parameters by means of ISFET devices
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
US20040079636A1 (en) Biomedical ion sensitive semiconductor sensor and sensor array
Tsukada et al. An integrated chemical sensor with multiple ion and gas sensors
US5078855A (en) Chemical sensors and their divided parts
US5387328A (en) Bio-sensor using ion sensitive field effect transistor with platinum electrode
Seo et al. ISFET glucose sensor based on a new principle using the electrolysis of hydrogen peroxide
US20070000778A1 (en) Multi-parameter sensor with readout circuit
Poghossian Method of fabrication of ISFET-based biosensors on an Si–SiO2–Si structure
US10739305B1 (en) Biosensing systems and methods using a FET
JPH0469338B2 (en)
KR101901193B1 (en) Biosensor
JP2514280B2 (en) Integrated ion sensor
JP3167022B2 (en) Gas sensor
US8410530B2 (en) Sensitive field effect transistor apparatus
Alcacer et al. eHealth system with ISFET-based immunosensor for heart failure biomarker detection in saliva
JPS6073351A (en) Element for fet chemical sensor
Van den Vlekkert Ion-sensitive field effect transistors
JPH0422293Y2 (en)
Harame INTEGRATED CIRCUIT CHEMICAL SENSORS.
JPS62110145A (en) Environment detector and manufacture thereof