JPS58167907A - Device for detecting central position of rotation of rotary body - Google Patents

Device for detecting central position of rotation of rotary body

Info

Publication number
JPS58167907A
JPS58167907A JP5158182A JP5158182A JPS58167907A JP S58167907 A JPS58167907 A JP S58167907A JP 5158182 A JP5158182 A JP 5158182A JP 5158182 A JP5158182 A JP 5158182A JP S58167907 A JPS58167907 A JP S58167907A
Authority
JP
Japan
Prior art keywords
prism
measured
rotation
light
interference fringes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5158182A
Other languages
Japanese (ja)
Other versions
JPS6334402B2 (en
Inventor
Joji Matsuda
浄史 松田
Tomoaki Nagasu
永寿 伴章
Suketsugu Enomoto
祐嗣 榎本
Yoshitaro Yoshida
嘉太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5158182A priority Critical patent/JPS58167907A/en
Priority to US06/424,629 priority patent/US4529310A/en
Publication of JPS58167907A publication Critical patent/JPS58167907A/en
Publication of JPS6334402B2 publication Critical patent/JPS6334402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To facilitate the separation of a pedestal component and a signal component, in the measurement of a part, whose rotary speed is slow, by detecting the center of the rotation of the rotary surface highly accurately by applying a laser doppler method. CONSTITUTION:Light from a laser generating device 5 is split into two luminous fluxes F1 and F2 by a beam splitter 7 through a mirror 6. The image of the luminous flux F1 is formed to a focal position 0 through polarizers 8a and 9. Meanwhile, the image of the luminous flux F2 is formed at the focal position 0 through a prism 10 and the polarizers 8b and 9. The interference fringes at the focal position 0 are projected on a plane to be measured 12. The interference fringes are dispersed by minute convex and concave parts on the plane to be measured 12. The light is transduced to electricity by a photoelectric tube 13 and analyzed by a spectrum analyzer 14.

Description

【発明の詳細な説明】 この発明は回転物体の回転中心位置を検出するだめの装
置に関するものである。工作機械において、被加工物の
平面状の加工面を超精密仕上げする場合には、通常その
加工面を工作機械に取付けて回転させ、刃物台に取りつ
けたダイヤモンドバイト等を加工面の外周部から回転中
心部に向けて進める。而してこのバイト等を加工面の回
転中心に向けて正確に進めるためには、加工面の回転中
心位値を検出して、それを刃物台の制御にフィードバッ
クさせればよいわけであり、この発明の発明者等は先に
レーザードツプラ法を応用してこの身工面の回転中心位
置を検出するための装置を関1した。この新たに開発さ
れた回転物体の回転中:◆位置検出装置は回転面の回転
中心を高精度にか)簡単に検出することが出来るのであ
るが、回転面の中心部近傍のように回転速度の遅い部分
においてペデスタル成分と信号成分との分離がより簡単
に行えればいっそう!lましいと考えられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the rotation center position of a rotating object. When performing ultra-precision finishing on a flat machined surface of a workpiece using a machine tool, the machined surface is usually attached to the machine tool and rotated, and a diamond bit, etc. attached to the tool post is inserted from the outer periphery of the machined surface. Proceed toward the center of rotation. In order to accurately move the tool tool toward the center of rotation of the machined surface, it is necessary to detect the rotation center position of the machined surface and feed it back to the control of the tool rest. The inventors of the present invention have previously developed a device for detecting the center of rotation of a body surface by applying the laser Doppler method. During the rotation of this newly developed rotating object: ◆The position detection device can easily detect the center of rotation of the rotating surface with high accuracy, but the rotational speed near the center of the rotating surface It would be even better if it were easier to separate the pedestal component and signal component in the slow part of the signal! It is considered embarrassing.

この発明は上記のごとき事情に鑑みてなされたものであ
って、レーザドツプラ法を応用して高精度にかつ簡単に
回転面の回転中心を検出する事ができ、かつ特に、回転
速度の遅い部分の測定においてペデスタル成分と信号成
分との分離が容易な回転中心位置検出部属を菱供するこ
とを目的とするものである。
This invention was made in view of the above circumstances, and it is possible to easily and highly accurately detect the center of rotation of a rotating surface by applying the laser Doppler method, and is particularly useful for detecting the center of rotation of a rotating surface with low rotation speed. The object of the present invention is to provide a rotation center position detection unit that can easily separate the pedestal component and the signal component during measurement.

この目的に対応して、この発明の回転物体の1転中心位
置検出装置は、二光束法もしくは参隔光異し〜ザドツプ
ラ用干渉縞発生装置と、顕微鏡と1.21□び干渉縞測
定装置とを備え、前記レーザトップ−)用干渉縞発生装
置によって発生したレーザトップう用干渉縞を被測定物
の表面に結像させ、前記干渉縞測定装置によって前記被
測定物の表面上の前記レーザドツプラ用干渉縞を測定す
るように構成し、二光束法もしくは自照先決における二
光束のうちの一方の光束の光路中に横状のプリズムを位
置させ、かつ前記光路における前記プリズムの厚さが変
化する方向に前記プリズムが移動し得るように構成した
ことを特徴と讐る。
Corresponding to this purpose, the device for detecting the center position of one rotation of a rotating object of the present invention includes an interference fringe generating device for the two-beam method or differential beam method, a microscope, and an interference fringe measuring device. The laser top interference fringes generated by the laser top interference fringe generator are imaged on the surface of the object to be measured, and the interference fringe measuring device is configured to image the laser dots on the surface of the object to be measured. a horizontal prism is positioned in the optical path of one of the two beams in the two-beam method or the self-illumination method, and the thickness of the prism in the optical path is varied. The present invention is characterized in that the prism is configured to be movable in the following directions.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図において、1は回転中心位置検出装置である。1
転中心位置検出鋏置1は干渉縞発生騎置2、顕微鏡3、
干渉縞測定装置4を備えている。干渉縞発生@I12は
レーザ発生装置5を備え、かつレーザ発生装置5からの
レーザの進行方向に順次ミラー6、ビームスプリッタ7
.2個のポラライザ8a 、8b 1他のポラライザ9
、レンズ11を備えている。特に重要なこととして光束
Fにはビームスプリンタ7とポラライザ8bとの間には
横状のプリズム10が挿入されている。このプリズム1
0はその厚みが変化する方向に移動し得るよう占構成さ
れている。2個のポラライザ8a 、 8b−;頃ビー
ムスプリッタ7からの光束F、、 F2の光量をH致さ
せるためのものであり、他のポラライザ9jポラライザ
sa、sbを使用したためにF、 F+    2 光束に生じた偏光状態の相違を一致させるためのもので
ある。顕微鏡3は対物レンズを被測定面に対向させて配
設される。被測定1i112は工作物の仕上げ面であっ
て、工作機械のチャック等に挾みつけられて回転するも
のであり、これがこの発明の装置によって回転中心位置
を検出しようとする対象物である。干渉縞測定装置4は
光電管13゜スペクトラムアナライザ14を備えている
In FIG. 1, 1 is a rotation center position detection device. 1
The rotation center position detection scissors holder 1 includes an interference fringe generating holder 2, a microscope 3,
It is equipped with an interference fringe measuring device 4. Interference fringe generation @I12 includes a laser generator 5, and a mirror 6 and a beam splitter 7 in order in the direction of movement of the laser from the laser generator 5.
.. 2 polarizers 8a, 8b 1 other polarizer 9
, and a lens 11. What is particularly important is that a horizontal prism 10 is inserted between the beam splinter 7 and the polarizer 8b. This prism 1
0 is configured so that it can move in the direction in which its thickness changes. The two polarizers 8a and 8b- are used to match the light intensity of the light fluxes F, F2 from the beam splitter 7, and because the other polarizers 9j and polarizers sa and sb are used, the light fluxes are F, F+2. This is to match the difference in polarization state that has arisen. The microscope 3 is arranged with an objective lens facing the surface to be measured. The object to be measured 1i 112 is the finished surface of a workpiece, which is rotated while being clamped by a chuck of a machine tool, and this is the object whose center of rotation is to be detected by the apparatus of the present invention. The interference fringe measuring device 4 is equipped with a phototube 13° spectrum analyzer 14.

レーザ発生装置5から発光したレーザ光はミラー6で光
路賓換したのちビームスプリッタ7へ入射し、ここで2
つの光束F、、F2に分割する。光束F1はポラライザ
8aで光量sniされ、ざらにポラライザ9で偏光調整
されたのち、レンズ11を通し・四焦点位lIOに結像
する。
The laser beam emitted from the laser generator 5 has an optical path diverted by a mirror 6, and then enters the beam splitter 7, where the 2
The light beam is divided into two light beams F, , F2. The light flux F1 is made into a light quantity sni by a polarizer 8a, roughly adjusted in polarization by a polarizer 9, and then passes through a lens 11 to form an image at a four-focal position lIO.

゛、7Ii方光束Fはプリズム10で周波数変調され、
次掬でポラライザ8bで光量肩書され、さらにポラライ
ザ9で偏光調整されたのち、レンズ11を通して焦点位
置Oに結像する。したがって、この2つの光束F、、F
2が焦点位置Oで互いに重なり合い干渉縞が生じる。
゛, 7Ii direction light flux F is frequency modulated by the prism 10,
In the next step, the light quantity is determined by the polarizer 8b, the polarization is further adjusted by the polarizer 9, and then an image is formed at the focal point O through the lens 11. Therefore, these two luminous fluxes F, , F
2 overlap each other at the focal position O, resulting in interference fringes.

この焦点位置Oにおける干渉縞は顕微鏡3を通して被測
定面12上に投影されるが、この干渉縞は回転移動する
1被測定1lli12上の微小な凹凸によって散乱され
、その光が光電管13で光電変換され電気信号がスペク
トラムアナライザ14によりて解゛析される。
The interference fringes at this focal position O are projected onto the surface to be measured 12 through the microscope 3, but these interference fringes are scattered by minute irregularities on the rotationally moving object 1lli12, and the light is photoelectrically converted by the phototube 13. The electrical signal is analyzed by a spectrum analyzer 14.

第21!lIに示す如く、周波数1.1.  の光が被
測定面12上の被測定点に、その移動方向に各々(π/
2)−β、(π/2)+βの方向から入射したとすると
、■を被測定点の移動速度、λを波長とすると ’+−1(1+ (Vslnβ/λ))F2−F6(1
−(Vslnβ/λ))二光束差動型LDVのドツプラ
信号周波I!fはず −1f、  −ず、I−(2VS
ln  β ) /λであるから、このずを測定するこ
とによって被測(1点の速度Vを検出することができ、
さらにこの清度v−0の点を求めれば、被測定面12の
1転54心位−を検出することができる。速度v−0の
蓋を検出するためには第3図に示すごとく干渉縞の測定
を、被測定11i12上のX方向め複数の任意点、及、
びY方向の複数の任意点において行う。
21st! As shown in lI, the frequency 1.1. The light of
2) If it is incident from the direction of −β, (π/2)+β, then if ■ is the moving speed of the measured point and λ is the wavelength, '+-1(1+ (Vslnβ/λ))F2-F6(1
-(Vslnβ/λ)) Doppler signal frequency I of two-beam differential type LDV! f should be -1f, -zu, I-(2VS
ln β ) /λ, the velocity V of the measured point (one point) can be detected by measuring this factor,
Furthermore, by finding the point of cleanliness v-0, it is possible to detect the 54th center of one rotation of the surface to be measured 12. In order to detect the lid at a velocity v-0, as shown in FIG. 3, interference fringes are measured at multiple arbitrary points in the
and at multiple arbitrary points in the Y direction.

ところで、ここで注意すべきことは、プリズム10の椿
花である。すなわち、プリズム10が存在せず、かつ、
被測定1112の1転速度が低い場合には第4118に
示すように、被測定fli12による散乱光からの信号
成分はペデスタル成分に埋もれた状態となって両者の弁
別が困難である。そこでこの弁別を可能にするために本
発明ではプリズム10を設けたのであるが、プリズム1
0は第5図に示すごとく、直行する2面S1、S2とプ
リズム頂角eの斜面S3とを持つ横状で、その材質はた
とプリズム10で光路長が変えられ、光束F1、F2の
位相関係が変化し、かつ、プリズム10′の厚みを連続
的に蛮えることによって位相関係も連続的に変化し、し
たがって二光束F2、F2の周波数に差が生じる。プリ
ズム10の厚みを連続的に変化させることは、プリズム
10を斜1IiS3と平行な方向に連続的に移動させる
ことによって行なう。この場合の二光束Fls F2の
周波数の差Δf、は、nをプリズム10の屈折率、Vd
をプリズム10の厚さの増加速度、vpをプリズム10
の移動速度とすると、 Δf、、−(1−n 、:、 )  ・Vd/λVd 
−vp −sin e したがって、光束F1、F、とに周波数の差Δf、が生
じる。このとき、二光束差動型り、D、V、のドツプラ
信号周波数tと被測定l1i12の回転速度との関係は f−2sinβ−f、−V/C−Δt0ただし、Cは光
速である。
By the way, what should be noted here is the camellia flower on the prism 10. That is, the prism 10 does not exist, and
When the single rotation speed of the measured object 1112 is low, as shown in 4118, the signal component from the scattered light by the measured fli 12 is buried in the pedestal component, making it difficult to distinguish between the two. Therefore, in order to make this discrimination possible, a prism 10 is provided in the present invention.
As shown in Fig. 5, the prism 10 has a horizontal shape with two perpendicular surfaces S1 and S2 and a slope S3 with the prism apex angle e, and the material and the optical path length are changed by the prism 10, and the phase of the light beams F1 and F2 is changed. By changing the relationship and continuously increasing the thickness of the prism 10', the phase relationship also changes continuously, and therefore a difference occurs between the frequencies of the two light beams F2 and F2. Continuously changing the thickness of the prism 10 is performed by continuously moving the prism 10 in a direction parallel to the diagonal 1IiS3. In this case, the frequency difference Δf between the two luminous fluxes Fls F2 is expressed as follows: n is the refractive index of the prism 10, and Vd
is the rate of increase in the thickness of prism 10, vp is the rate of increase in the thickness of prism 10
If the moving speed is Δf, -(1-n, :, ) ・Vd/λVd
-vp -sin e Therefore, a frequency difference Δf occurs between the light beams F1 and F. At this time, the relationship between the Doppler signal frequency t of the two-beam differential type, D and V, and the rotational speed of the measured object l1i12 is f-2sinβ-f, -V/C-Δt0, where C is the speed of light.

このようにして、干渉縞からの信号をペデスタル干渉縞
の測定を第6図に示す如く行ってもよい。
In this way, the signal from the interference fringes may be used to measure the pedestal interference fringes as shown in FIG.

すなわち、被測定面12上のXY座榔軸上に2個の干渉
縞A、Bが生ずるように干渉縞発生装置を構成する。こ
の様にt個の干渉縞A、Bを同時に被測定面12上に形
成すれば、それらの測定によりX軸上の8点の速度とY
軸上のA点の速度がプリズムによってシフトされた周波
数に対応する速度に等しくなる点を捜して被測定面12
の回転中心位置として検出することが出来る。駿だ、プ
リズムによってシフトされた周波数の位置に対して得ら
れたドツプラ信号の周波数が高い方にずれたか、低い方
にずれたかを調べiことにより、速度軸中心までの距離
rは、r−v/ω、によって与えられる。A点、8点の
検出から、それぞれV軸及び×軸方向の点A、Bからの
距離の大きさがr′の式から求まり、方向は速度の正負
から求められる。この場合には、回転面の角速度ωを回
転中心から光分離れた位置で前もって測定しておく必要
がある。(本発明のようにμオーダーの中心位1検出を
問題としている場合は、角速度ωを測定する位置は回転
中心から数センチメートル鐘れていれば十分である。)
この方法の利点は検出−を移動じなくても良い点にある
That is, the interference fringe generating device is configured so that two interference fringes A and B are generated on the XY seat axis on the surface to be measured 12. If t interference fringes A and B are formed simultaneously on the surface to be measured 12 in this way, by measuring them, the velocities at 8 points on the X axis and the Y
The surface to be measured 12 is searched for a point where the speed at point A on the axis is equal to the speed corresponding to the frequency shifted by the prism.
It can be detected as the rotation center position. By checking whether the frequency of the Doppler signal obtained with respect to the position of the frequency shifted by the prism has shifted higher or lower, the distance r to the center of the velocity axis can be calculated as r- It is given by v/ω. From the detection of points A and 8, the distances from points A and B in the V-axis and x-axis directions, respectively, are determined from the formula r', and the direction is determined from the sign of the velocity. In this case, it is necessary to measure the angular velocity ω of the rotating surface in advance at a position separated by light from the center of rotation. (If the problem is to detect a center position on the μ order as in the present invention, it is sufficient that the position at which the angular velocity ω is measured is several centimeters away from the center of rotation.)
The advantage of this method is that the detector does not have to be moved.

この様な干渉縞A、Bの形成のためには、レーザ光を分
割して必要数の多光束を得る必要があり、そのためには
、多光束ビームスプリッタを必要とするが、この多光束
ビームスプリッタを、多重露光したホログラムによって
構成する事ができ、これにともなってレーザドツプラ用
土渉縞発生装置の構成を簡単にすることができる。すな
わち、第7図にはこの発明の他の実施例に係わる回転中
心位置検出装置1aが示されており、この回転中心及び
レンズ17で構成されている。光束Fにはプリズム10
が挿入されている。レンズ15.16はビームエキスパ
ンダを構成し、レーザビームは拡大して平行光来となっ
たのちホログラムHを照明する。ホログラム′″Hから
は複数の物体光が再生されて、レンズ17を通り、焦点
位置d&:集光して干渉縞を形成する。
In order to form such interference fringes A and B, it is necessary to divide the laser beam to obtain the required number of multiple beams, and for this purpose, a multi-beam beam splitter is required, but this multiple beam The splitter can be constituted by a hologram subjected to multiple exposures, thereby simplifying the configuration of the interpolation fringe generating device for laser Doppler. That is, FIG. 7 shows a rotational center position detecting device 1a according to another embodiment of the present invention, which is composed of this rotational center and a lens 17. As shown in FIG. Prism 10 is used for the luminous flux F.
is inserted. Lenses 15 and 16 constitute a beam expander, and the laser beam is expanded to become parallel light, and then illuminates the hologram H. A plurality of object beams are reproduced from the hologram ''H, pass through the lens 17, and are focused at a focal point d&: to form interference fringes.

多光束ビームスプリッタとして機能するホログラムHを
作製する方法は次の通りである。すなわち、(1)まず
、物体光02を参照ビームR3,R4によりをおく。
The method for producing the hologram H that functions as a multi-beam beam splitter is as follows. That is, (1) First, the object light 02 is focused on the reference beams R3 and R4.

(3)前と同様に、物体光へを参照光R,,R,によっ
て、ブロックH,,H4に記録°する。
(3) As before, the object beam is recorded in blocks H, , H4 by the reference beams R,,R,.

これらの操作によりブロックH1に物体光04、ブロッ
クH8に物体光q1ブロックH4に物体光0□、04が
記録された。次に、これらを再生するときは第10.1
1aiに示すように、このホログラムHに参照ビームR
1、R8、へを包含するような参照光Rをあてると、ホ
ログラムHの作製されている部分から物体光02.04
が再生される。この場合参照ビームR1の光路のみには
プリズム10を挿入する。
Through these operations, object light 04 was recorded in block H1, object light q1 was recorded in block H8, and object light 0□, 04 was recorded in block H4. Next, when playing these, please refer to section 10.1.
As shown in 1ai, a reference beam R is attached to this hologram H.
1, R8, and the object beam 02.04 from the part where the hologram H is made.
is played. In this case, the prism 10 is inserted only in the optical path of the reference beam R1.

このときひとつの物体光は二つの参照ビームによってホ
ログラムに記録されているので二つの平行に進むビーム
として再生される。従って二つづつ平行な2組の平行に
進むビームが再生されること1誓る。ビームは2組ある
ので2点に干渉縞が形成される。
At this time, since one object beam is recorded in the hologram by two reference beams, it is reproduced as two beams traveling in parallel. Therefore, it is assumed that two sets of parallel beams, two by two, are reproduced. Since there are two sets of beams, interference fringes are formed at two points.

なおホログラムにレンズ17の作用を同時に記録させて
、レンズ17を省略することも可能である。
Note that it is also possible to omit the lens 17 by simultaneously recording the action of the lens 17 on the hologram.

この場合のホログラムHの作製は、ホログラムHの記録
を第10図のレンズ17の後方で行い、かつ、こうして
作製したホログラムHなホログラムHに代替する。また
、ホログラムHからの再生光をレンズ17を通してホロ
グラムHに他の参照光Rを用いて記録し、こうして作製
されたホログラムH′をホログラムHに代替して使用す
る。
In this case, the hologram H is produced by recording the hologram H behind the lens 17 in FIG. 10, and replacing the hologram H with the hologram H thus produced. Further, the reproduction light from the hologram H is recorded on the hologram H through the lens 17 using another reference light R, and the hologram H' thus produced is used in place of the hologram H.

次ぎに、これらを再生するときは、第12図及び第13
図に示すように、ホログラムHに参照ビー作によってそ
れぞれ被測定面のY−0μm。
Next, when playing these, please refer to Figures 12 and 13.
As shown in the figure, Y-0 μm of the surface to be measured is measured by reference to hologram H.

Y−300μ−の位置をX方向にスキャンして測定した
結果のグラフであるが、それぞれX方向の距離とドツプ
ラ信号周波数tとが比例し、f−0となる点、すなわち
回転中心位置が良好に検出されることを確認することが
出来る。
This is a graph of the results of scanning and measuring the position of Y-300μ- in the X direction.The distance in the X direction and the Doppler signal frequency t are proportional to each other, and the point where f-0, that is, the rotation center position, is good. You can confirm that it is detected.

以上の説明から明らかな通り、この発明によれば高精度
に、かつ簡単に回転面の回転・中心を検出することが出
来、特に被測定面の回転速度が低い場合にもペデスタル
成分と信号成分との弁別が容易に出来る回転中心位置検
出装置な豐ることが出来る。
As is clear from the above explanation, according to the present invention, the rotation and center of the rotating surface can be detected easily and with high precision, and the pedestal component and signal component can be detected especially when the rotational speed of the surface to be measured is low. It is possible to use a rotation center position detection device that can easily distinguish between

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に関わる回転中心位置検出
装置を示す構成説明図、第2図は干渉縞形成部位への光
束の入射角を示す説明図、第3図は被測定面上の測定部
位を示す説明図、第4図は信号成分とペデスタル成分を
示すグフフ、第5図はプリズムを示す説明図、第6N1
1は干渉縞を示すザ説明図、第10Illは多重露光ホ
ログラムの再生操作を示す斜I!説明図、第11図は多
重露光ホログラムの再生操作を示す側面説明図、第12
図はレンズ効果を記録したホログラムの再生操作を示す
斜視説明図、第13図はレンズ効果を記録したホログラ
ムの再生操作を示す側m*明図、第14図は測定結果を
示すグラフ、及び第15図は測定結果を示すグラフであ
る。 1・・・回転中心位置検出@胃  2・・・干渉縞発生
装置  3・・・顕微鏡  4・・・干渉縞測定装置 
 5・・・レーザ発生装置  6・・・ミラー  7・
・・ビーム第1図 3 第5図 ’アリrb $to+=aSJIJ& シフ11?ll
第6図 第7図 4−′ 第14図 第15図 手続補正書(芳入) 昭和57 年 9月2.?日 l、事件の表示 昭和 67年特許願第 61681    号2 発明
の名称 回転物体の回転中心位置検出装置 3、 補正をする者 事件との関係  特許出願人 住  所  東京都千代田区霞が関1丁目3番1号(1
14)氏  名  工業技術院長    石 坂 誠 
−4指定代理人  〒305 5 補正命令の日付 昭和67年6月1 i”” B 第5図 5■皮譬丈シフト量                
:Δf。
FIG. 1 is an explanatory diagram showing the configuration of a rotation center position detection device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the incident angle of a light beam to an interference fringe forming area, and FIG. Fig. 4 is an explanatory diagram showing the measurement site, Fig. 4 is an explanatory diagram showing the signal component and pedestal component, Fig. 5 is an explanatory diagram showing the prism, Fig. 6N1
1 is an explanatory diagram showing interference fringes, and 10th Ill is an oblique I! diagram showing the reproduction operation of a multiple exposure hologram. An explanatory diagram, Fig. 11 is a side explanatory diagram showing the reproduction operation of a multiple exposure hologram, and Fig. 12 is an explanatory diagram.
The figure is a perspective explanatory view showing the reproduction operation of a hologram recording a lens effect, FIG. 13 is a side m* bright view showing a reproduction operation of a hologram recording a lens effect, and FIG. Figure 15 is a graph showing the measurement results. 1... Rotation center position detection @ stomach 2... Interference fringe generator 3... Microscope 4... Interference fringe measuring device
5... Laser generator 6... Mirror 7.
...Beam Figure 1 Figure 3 Figure 5 'Ari rb $to+=aSJIJ & Schiff 11? ll
Figure 6 Figure 7 4-' Figure 14 Figure 15 Procedural amendment (Yoshiiri) September 2, 1982. ? 1, Indication of the case Patent Application No. 61681 of 1988 2 Name of the invention Rotational center position detection device for rotating objects 3 Person making the amendment Relationship to the case Patent applicant Address 1-3 Kasumigaseki, Chiyoda-ku, Tokyo No. 1 (1
14) Name Makoto Ishizaka, Director of the Institute of Industrial Science and Technology
-4 Designated agent 〒305 5 Date of amendment order June 1, 1985 i”” B Figure 5 5 ■ Amount of shift in skin length
:Δf.

Claims (1)

【特許請求の範囲】[Claims] ;光束法もしくは参照光法レーザドツプラ用干渉−発生
装置と、鎖倣鏡と、及び干渉縞測定装置とjF&−備え
、前記レーザドツプラ用干渉縞発生装置に縫って発生し
たレーザドツプラ用干渉縞を被測定物の表面に結像させ
、前記干渉縞測定装置によっ工前記被測定物の表面上の
前記レーザドツプラ用・干渉縞を測定するように構成し
、二光束法もしく“は参照光法におけ−る二光束のうち
の一方の光束の光路中に横状めプリズムを位置させ、か
つ前記光路における前記プリズムの厚さが変化する方向
に前記プリズムが移動し得るように構成したことを特徴
とする回転物体の回転中心位置検出装置。
A beam method or a reference beam method is provided with a laser Doppler interference generating device, a chain copying mirror, and an interference fringe measuring device; The laser Doppler interference fringes on the surface of the object to be measured are measured by the interference fringe measuring device, and in the two-beam method or the reference beam method. A horizontal prism is positioned in the optical path of one of the two luminous fluxes, and the prism is configured to be movable in a direction in which the thickness of the prism in the optical path changes. A device for detecting the rotation center position of a rotating object.
JP5158182A 1981-12-17 1982-03-30 Device for detecting central position of rotation of rotary body Granted JPS58167907A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5158182A JPS58167907A (en) 1982-03-30 1982-03-30 Device for detecting central position of rotation of rotary body
US06/424,629 US4529310A (en) 1981-12-17 1982-09-27 Device for detection of center of rotation of rotating object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158182A JPS58167907A (en) 1982-03-30 1982-03-30 Device for detecting central position of rotation of rotary body

Publications (2)

Publication Number Publication Date
JPS58167907A true JPS58167907A (en) 1983-10-04
JPS6334402B2 JPS6334402B2 (en) 1988-07-11

Family

ID=12890900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158182A Granted JPS58167907A (en) 1981-12-17 1982-03-30 Device for detecting central position of rotation of rotary body

Country Status (1)

Country Link
JP (1) JPS58167907A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218123A (en) * 1984-04-13 1985-10-31 Mitsubishi Electric Corp Positioning device of laser beam
JPS61159104A (en) * 1984-12-29 1986-07-18 Omron Tateisi Electronics Co Detecting device for center of rotation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449534A (en) * 1987-08-20 1989-02-27 Topcon Corp Air-flow blow device for non-contact type tonometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218123A (en) * 1984-04-13 1985-10-31 Mitsubishi Electric Corp Positioning device of laser beam
JPS61159104A (en) * 1984-12-29 1986-07-18 Omron Tateisi Electronics Co Detecting device for center of rotation

Also Published As

Publication number Publication date
JPS6334402B2 (en) 1988-07-11

Similar Documents

Publication Publication Date Title
JP4672255B2 (en) Method and apparatus for polishing a workpiece surface
CN103090786B (en) Apparatus and method for measuring object with interferometry
JPS58167907A (en) Device for detecting central position of rotation of rotary body
JPH0256604B2 (en)
US7471398B2 (en) Method for measuring contour variations
JPS58105006A (en) Detector for rotation center position of rotary object
US4529310A (en) Device for detection of center of rotation of rotating object
JPS60104206A (en) Optical measuring device
JP3421309B2 (en) Surface shape measuring method and surface shape measuring instrument
JPS6117908A (en) Three-dimensional shape measuring instrument
JP2004279075A (en) Lens eccentricity measuring method and measuring device
JP2753545B2 (en) Shape measurement system
JPS6117907A (en) Three-dimensional shape measuring instrument
JPS59211810A (en) Fine angle measuring apparatus by light heterodyne interference method
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
SU1578462A1 (en) Method of measuring angular rotations of object
JPH0469508A (en) Method and instrument for optical contactless shape measurement
JPS60211306A (en) Adjusting method of optical system of fringe scan shearing interference measuring instrument
JPH0470539A (en) Method and apparatus for measuring chromatic aberration
JPS59225308A (en) Minute gap measuring method and apparatus
JPS59162405A (en) Optical-type mechanical-quantity measuring device
JPS63204182A (en) Method and apparatus for measuring laser doppler speed
JPH11166881A (en) Eccentricity measuring method and device
JPH0714334A (en) Head floating amount measuring device for hard disk
JPH0634315A (en) Interference measuring apparatus