JPH11166881A - Eccentricity measuring method and device - Google Patents

Eccentricity measuring method and device

Info

Publication number
JPH11166881A
JPH11166881A JP34859197A JP34859197A JPH11166881A JP H11166881 A JPH11166881 A JP H11166881A JP 34859197 A JP34859197 A JP 34859197A JP 34859197 A JP34859197 A JP 34859197A JP H11166881 A JPH11166881 A JP H11166881A
Authority
JP
Japan
Prior art keywords
eccentricity
light beams
curvature
lens
measurement surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34859197A
Other languages
Japanese (ja)
Inventor
Akihiro Nakauchi
章博 中内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34859197A priority Critical patent/JPH11166881A/en
Publication of JPH11166881A publication Critical patent/JPH11166881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eccentricity measuring device and method suited for measuring the eccentricity of an optical system of rotation symmetry, such as a lens surface or a reflecting surface, and an aspherical surface, etc. SOLUTION: A measuring surface consisting of a surface of rotation symmetry is mounted on a rotating shaft so that their respective axes of rotation symmetry are coincident. Two coherent light beams 2a, 2b are made to pass through different areas of a variable-focal-distance condensing lens 5 whose optical axis 12 coincides with that of the rotating shaft, to collect the two light beams 2a, 2b at the apparent center of curvature of the measuring surface and to make the beams cross each other. The two light beams 2a, 2b diverging from the center of curvature are made to impinge on different areas of the measuring surface, and the two light beams 2a, 2b reflected by the measuring surface are made to overlap each other to form interference fringes. Then the fluctuation of interference fringe information which is caused when the measuring surface is rotated about the rotating shaft 12 is detected by a light detection means 9, so that when the eccentricity of the measuring surface with respect to the rotating shaft 12 is calculated, the condensing lens 5 changes at least either one of its focal distance or focal position depending on the magnitude of the radius of curvature of the measuring surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏心測定装置及び
偏心測定方法に関し、特にレンズ面や反射面、そして非
球面等の回転対称な光学部材の曲率中心の基準となる軸
(例えば光学系の光軸)からの隔たり、即ち偏心を測定
するのに好適なものである。特に複数の光学部材を鏡筒
内に保持した状態で測定するのに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eccentricity measuring apparatus and an eccentricity measuring method, and more particularly to an axis (for example, an optical system) which is a reference of a center of curvature of a rotationally symmetric optical member such as a lens surface, a reflecting surface, and an aspheric surface. It is suitable for measuring the distance from the optical axis, that is, the eccentricity. In particular, it is suitable for measurement with a plurality of optical members held in a lens barrel.

【0002】[0002]

【従来の技術】レンズ光学部材等の偏心を測定する偏心
測定装置は種々提案されている。図2は特公昭51−4
2495号公報に開示されている偏心測定装置の要部概
略図である。同図では二光束干渉を利用してレンズ面の
偏心を測定している。
2. Description of the Related Art Various eccentricity measuring devices for measuring the eccentricity of a lens optical member or the like have been proposed. Figure 2 shows the Japanese Patent Publication No. 51-4
It is a principal part schematic diagram of the eccentricity measuring device disclosed by No. 2495. In the figure, the eccentricity of the lens surface is measured using two-beam interference.

【0003】同図では光源1からの可干渉性の光束2を
光束分割素子3の分割面3aで干渉性のある二光束2
a,2bに分割し、集光レンズ5に導光している。そし
て集光レンズ5により二光束2a,2bを被測定面8の
曲率中心13の近傍で集光交差するようにしてから被測
定面8に入射させている。その後、被測定面8で反射し
たこれらの光を、元の光路に戻し、分割面3aを介して
光検出手段9面上で重ね合わせることにより干渉縞を生
じさせている。そして被測定物8を基準軸12を中心に
回転させた時に発生する干渉縞の変動から測定面8で反
射した二光束の位相差を測定し、その結果から被測定面
8の偏心を検出している。
In FIG. 1, a coherent light beam 2 from a light source 1 is converted into a coherent two light beam 2 by a splitting surface 3 a of a light beam splitting element 3.
a and 2b, and the light is guided to the condenser lens 5. Then, the two light beams 2a and 2b are made to converge and intersect in the vicinity of the center of curvature 13 of the surface 8 to be measured before being incident on the surface 8 to be measured. Thereafter, the light reflected by the surface 8 to be measured is returned to the original optical path, and is superimposed on the surface of the light detecting means 9 via the dividing surface 3a to generate interference fringes. Then, the phase difference between the two light beams reflected by the measurement surface 8 is measured from the fluctuation of the interference fringe generated when the device 8 is rotated about the reference axis 12, and the eccentricity of the surface 8 is detected from the result. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
偏心測定装置では、測定面の曲率半径の違いにより、各
々対応する長さの焦点距離の集光レンズを用いる必要が
ある為、集光レンズを多種用意する必要があった。この
ため、レンズ交換の負荷が大きく、作業効率が悪くなっ
ていた。また、1種類の集光レンズでは被測定面の測定
径が固定となってしまい、測定精度が十分でない場合が
あった。
However, in the conventional eccentricity measuring apparatus, it is necessary to use condensing lenses having focal lengths corresponding to each other due to the difference in the radius of curvature of the measurement surface. It was necessary to prepare various kinds. For this reason, the load of lens replacement was large, and the working efficiency was poor. In addition, with one type of condenser lens, the measurement diameter of the surface to be measured is fixed, and the measurement accuracy may not be sufficient.

【0005】又、測定面として非球面の偏心測定におい
ては、少なくとも2つの異なる径に関して測定する必要
があり、1つの集光レンズでは測定可能範囲が限定され
てくる為、非球面の偏心測定は難しかった。
Further, in the measurement of eccentricity of an aspherical surface as a measurement surface, it is necessary to measure at least two different diameters, and the measurement range is limited with one condenser lens. was difficult.

【0006】本発明は、上記の問題の解決を図ったもの
で、種々な曲率半径を有するレンズ面や反射面であって
も集光レンズの種類が少なくでき、レンズ交換の負荷を
軽減でき、装置全体の簡素化が図られ、作業効率の高い
高精度の測定ができる偏心測定装置及び偏心測定方法の
提供を目的とする。
The present invention has been made to solve the above-mentioned problem, and can reduce the number of types of condenser lenses even if the lens surface or the reflection surface has various radii of curvature. An object of the present invention is to provide an eccentricity measuring device and an eccentricity measuring method in which the entire device can be simplified and high-precision measurement with high working efficiency can be performed.

【0007】[0007]

【課題を解決するための手段】本発明の偏心測定方法
は、 (1-1) 回転対称面より成る測定面を回転軸に該回転対称
軸がそれと一致するように装着し、2つの可干渉性光束
を該回転軸に光軸を一致させた焦点距離可変の集光レン
ズの互いに異なった領域を通過させて該測定面の見かけ
の曲率中心に集光し、交差させ、該曲率中心から発散し
た2つの光束を該測定面の互いに異なった領域に入射さ
せ、該測定面で反射した2つの光束を重ね合わせて干渉
縞を形成し、該測定面を該回転軸を中心に回転させたと
きに生じる該干渉縞情報の変動を光検出手段で検出する
ことによって、該測定面の該回転軸に対する偏心量を求
める際、該集光レンズは該測定面の曲率半径の大きさに
基づいて焦点距離又は焦点位置の少なくとも一方を変化
させていることを特徴としている。
An eccentricity measuring method according to the present invention comprises the steps of: (1-1) mounting a measurement surface composed of a rotationally symmetric surface on a rotational axis such that the rotationally symmetric axis coincides with the rotational surface; The luminous flux passes through different regions of a variable focal length condensing lens whose optical axis is coincident with the rotation axis, is condensed at the apparent center of curvature of the measurement surface, intersects, and diverges from the center of curvature. When the two light beams thus obtained are incident on different areas of the measurement surface, the two light beams reflected on the measurement surface are superimposed to form an interference fringe, and the measurement surface is rotated about the rotation axis. When the amount of eccentricity of the measurement surface with respect to the rotation axis is obtained by detecting the fluctuation of the interference fringe information caused by the light detection means, the condenser lens focuses on the basis of the radius of curvature of the measurement surface. That at least one of the distance and the focal position has been changed. Features.

【0008】特に、 (1-1-1) 前記集光レンズは前記2つの光束の集光位置を
変化させていること。
In particular, (1-1-1) the condensing lens changes the condensing position of the two light beams.

【0009】(1-1-2) 前記集光レンズはそれを構成する
複数のレンズのうちの所定のレンズ間隔を変化させて焦
点距離を変化させていること。
(1-1-2) The focal length of the condenser lens is changed by changing a predetermined lens interval among a plurality of lenses constituting the condenser lens.

【0010】(1-1-3) 前記集光レンズはズームレンズで
あること。等を特徴としている。
(1-1-3) The condenser lens is a zoom lens. And so on.

【0011】本発明の偏心測定装置は、 (2-1) 構成(1-1) の偏心測定方法を利用していることを
特徴としている。
The eccentricity measuring apparatus of the present invention is characterized in that (2-1) the eccentricity measuring method of the constitution (1-1) is used.

【0012】[0012]

【発明の実施の形態】図1は本発明の偏心測定装置の要
部概略図である。図中、1はレーザー光源で可干渉性の
光束2を放射している。3は光束を二つの光束2a,2
bに分割し、又測定面(被測定面)からの反射後の二光
束を重ね合わせる光路分割手段である。5は焦点距離が
可変の集光レンズ(ズームレンズ)であり、光束分割素
子3からの2光束2a,2bを被測定面8′の曲率中心
位置13に集光交差させている。
FIG. 1 is a schematic view of a main part of an eccentricity measuring device according to the present invention. In the figure, reference numeral 1 denotes a laser light source which emits a coherent light beam 2. Reference numeral 3 denotes a light beam which is divided into two light beams 2a, 2a
b, and is an optical path dividing means for superposing the two light beams reflected from the measurement surface (measured surface). Reference numeral 5 denotes a condensing lens (zoom lens) having a variable focal length, and converges and intersects the two light beams 2a and 2b from the light beam splitting element 3 with the curvature center position 13 of the surface 8 'to be measured.

【0013】なお、集光レンズ5は焦点距離を変えると
き集光レンズ全体を光軸11の方向に移動させている。
9は光検出手段(受光手段)であり、測定面8で反射
し、戻ってきた二つの光束2a,2bで形成される干渉
縞を検出する。
When the focal length of the condenser lens 5 is changed, the entire condenser lens is moved in the direction of the optical axis 11.
Reference numeral 9 denotes light detecting means (light receiving means), which detects interference fringes formed by the two light beams 2a and 2b reflected by the measurement surface 8 and returned.

【0014】7は回転台であり、被測定物8を回転させ
ている。12は回転台7の回転軸で、光学系の光軸(基
準軸)に相当している。14は回転台7の回転方向検出
手段である。8は被測定物である。8′は被測定物8の
中の測定中の被測定面で、13は被測定面8′の曲率中
心(見かけの曲率中心)である。
Reference numeral 7 denotes a turntable for rotating the object 8 to be measured. Reference numeral 12 denotes a rotation axis of the turntable 7, which corresponds to the optical axis (reference axis) of the optical system. Reference numeral 14 denotes a rotation direction detecting unit for the turntable 7. Reference numeral 8 denotes an object to be measured. Reference numeral 8 'denotes a surface to be measured in the object 8 under measurement, and reference numeral 13 denotes a center of curvature (apparent center of curvature) of the surface 8' to be measured.

【0015】同図は測定面8′が第1面となっているの
で見かけの曲率中心13と曲率中心との位置が一致して
いる。同図では1つの測定物8を示しているが、通常は
多くの測定物が光軸11を一致させて測定物8の前後に
配置している。この為、測定面8′の曲率中心が集光レ
ンズ5側から見たとき光学的に変位し、見かけの曲率中
心に位置するようになる。10は演算装置であり、光検
出手段9と回転方向検出手段14からの信号から、被測
定面8′の回転軸12から偏心量を算出している。
In FIG. 1, since the measurement surface 8 'is the first surface, the positions of the apparent center of curvature 13 and the center of curvature coincide with each other. Although one measured object 8 is shown in FIG. 1, many measured objects are usually arranged before and after the measured object 8 with the optical axes 11 aligned. Therefore, the center of curvature of the measurement surface 8 ′ is optically displaced when viewed from the condenser lens 5 side, and is located at the apparent center of curvature. An arithmetic unit 10 calculates the amount of eccentricity from the rotation axis 12 of the surface 8 'to be measured based on signals from the light detection means 9 and the rotation direction detection means 14.

【0016】次に本実施例の作用を説明する。光源であ
るレーザー1からの光束2は、光束分割素子3(光分割
面3a)により、集光レンズ5の光軸11に平行な光束
2a,2bに分割され、集光レンズ5に入射する。集光
レンズ5に入射した二光束2a,2bが被測定物8の被
測定面8′の曲率中心位置(見かけの曲率中心位置)1
3にだいたい集光交差するように、集光レンズ5の焦点
距離と集光レンズ5全体を光軸方向に移動させて調整す
る。
Next, the operation of this embodiment will be described. A light beam 2 from a laser 1 as a light source is split by a light beam splitting element 3 (light splitting surface 3a) into light beams 2a and 2b parallel to the optical axis 11 of the condensing lens 5, and enters the condensing lens 5. The two luminous fluxes 2a and 2b incident on the condenser lens 5 are located at the center of curvature (apparent center of curvature) 1 on the surface 8 'of the object 8 to be measured.
The focal length of the condenser lens 5 and the entire condenser lens 5 are adjusted by moving the entire condenser lens 5 in the direction of the optical axis so as to approximately cross the condenser lens 3.

【0017】二光束2a,2bが集光交差する位置は被
測定面8′の曲率中心位置13にだいたい一致している
ので、被測定面8′の領域でで反射した二光束はそれま
での経路とほぼ同一光路を逆進して集光レンズ5を介し
て光束分割素子3まで戻り、光検出手段9面上で重ね合
わされ、干渉縞を生じる。二光束の干渉縞は位相差を含
んでおり、該位相差を光検出手段9で検出して、出力信
号が演算手段10に送られる。
Since the position where the two light beams 2a and 2b converge and intersect roughly coincides with the center of curvature 13 of the surface 8 'to be measured, the two light beams reflected in the area of the surface 8' to be measured The light returns to the light beam splitting element 3 via the condensing lens 5 while traveling backward along the same optical path as the path, and is superimposed on the surface of the light detecting means 9 to generate interference fringes. The interference fringes of the two light beams include a phase difference. The phase difference is detected by the light detecting means 9, and an output signal is sent to the calculating means 10.

【0018】光検出手段9からの出力信号を観測して、
干渉縞のコントラストが最大になるように集光レンズ5
の微調整を行っている。二光束2a,2bが集光交差す
る位置は被測定面8′の曲率中心にほぼ完全に一致させ
ている。この状態で回転台7を回転させて、光検出手段
9からの信号と回転方位検出手段14からの信号を演算
手段10で処理することによって、被測定面8′の偏心
(ここでは基準軸(光軸)11からの偏心量)の大きさ
と方位を求めている。
Observing the output signal from the light detecting means 9,
Condensing lens 5 so that the contrast of interference fringes is maximized.
Has been fine-tuned. The position where the two luminous fluxes 2a and 2b converge and intersect almost completely coincides with the center of curvature of the measured surface 8 '. In this state, the turntable 7 is rotated, and the signal from the light detecting means 9 and the signal from the rotational azimuth detecting means 14 are processed by the calculating means 10 so that the eccentricity of the surface 8 'to be measured (here, the reference axis ( The magnitude and direction of the eccentricity amount from the optical axis 11 are obtained.

【0019】図3に焦点距離が可変の集光レンズの近軸
屈折力配置を示す。この例では、焦点距離がf1 ,f2
の2つのレンズL1 ,L2 の2枚の構成になっており、
焦点距離f2 のレンズL2 が光軸11方向に移動可能と
なっている。二枚のレンズL1 ,L2 の間隔をDaとす
ると、焦点距離f1 のレンズL1 から、二光束が集光交
差するまでの距離ft および全系の焦点距離fは、近軸
理論を用いて、 ft ={−Da2 +f1 Da+f12 }/(f1 +f
2 −Da) f=f12 /(f1 +f2 −Da) となる。
FIG. 3 shows a paraxial refractive power arrangement of a condenser lens having a variable focal length. In this example, the focal lengths are f 1 and f 2
Has two lenses L 1 and L 2 ,
Lens L 2 of the focal length f 2 is movable in the optical axis 11 direction. Assuming that the distance between the two lenses L 1 and L 2 is Da, the distance f t from the lens L 1 having the focal length f 1 to the intersection of the two light beams and the focal length f of the entire system are paraxial theory. Ft = {− Da 2 + f 1 Da + f 1 f 2 } / (f 1 + f
2− Da) f = f 1 f 2 / (f 1 + f 2 −Da)

【0020】即ち、二つのレンズL1 ,L2 の間隔Da
を変えることで、二光束の集光位置ft および全系の焦
点距離fを連続可変とすることができる。これは1種類
の集光レンズで、曲率の異なる多種の測定物を測定する
ことができることとなる。
That is, the distance Da between the two lenses L 1 and L 2
, The focal position f t of the two light beams and the focal length f of the entire system can be made continuously variable. This means that one kind of condenser lens can measure various kinds of objects having different curvatures.

【0021】図3では集光レンズ5は正の屈折力の2つ
のレンズL1 ,L2 の構成になっているが、正,負レン
ズの構成や、負,正の構成も可能である。レンズ枚数も
二枚以上ならば、何枚の構成でも可能である。
In FIG. 3, the condenser lens 5 has a configuration of two lenses L 1 and L 2 having a positive refractive power. However, a configuration of positive and negative lenses, and a configuration of negative and positive lenses are also possible. Any number of lenses can be used as long as the number of lenses is two or more.

【0022】また図4(A),(B)に示すように、集
光レンズ5の焦点距離fを変えて、かつ、集光レンズ5
全体を光軸11方向に動かすことで、被測定面8′の任
意の測定径を測定することができる。
As shown in FIGS. 4A and 4B, the focal length f of the condenser lens 5 is changed, and
By moving the whole in the direction of the optical axis 11, an arbitrary measurement diameter of the measured surface 8 'can be measured.

【0023】図4(A)のように凸面を測定するとき
は、集光レンズ5の焦点距離ft を小さくしてかつ、被
測定面8′と集光レンズ5との間隔を小さくすること
で、測定径が大きくなり、逆に、図4’(B)のように
焦点距離ft を大きくしてかつ、集光レンズ5と被測定
面8′間の距離も大きくすることで、測定径を小さくす
ることもできるので、集光レンズ5の焦点位置ft を変
えながら、集光レンズ5と被測定面8′間の距離も変え
ることで、任意の径の測定ができる。
[0023] Figure 4 when measuring the convex surface as in (A) is and to reduce the focal length f t of the condenser lens 5, to reduce the distance between the condenser lens 5 and the measured surface 8 ' The measurement diameter is increased, and conversely, as shown in FIG. 4 '(B), the focal length ft is increased and the distance between the condenser lens 5 and the surface to be measured 8' is increased. since it is also possible to reduce the diameter, while changing the focal position f t the condenser lens 5, the distance between the condenser lens 5 to be measured surface 8 'also by changing, it can be measured in any size.

【0024】尚、本実施形態における集光レンズ5は2
つの焦点距離を有するバックフォーカスレンズであって
も良い。又、集光レンズ5の焦点距離を変化させると共
に集光位置(13)を変化させても良い。又、本実施形
態においては集光レンズ5の焦点距離を変化させずに集
光位置のみ変化するように集光レンズ5の位置を変えて
も良い。
Incidentally, the condenser lens 5 in the present embodiment has two lenses.
A back focus lens having two focal lengths may be used. Further, the focal point (13) may be changed while changing the focal length of the condenser lens 5. Further, in the present embodiment, the position of the condenser lens 5 may be changed so that only the focal position changes without changing the focal length of the condenser lens 5.

【0025】[0025]

【発明の効果】本発明は以上のように、集光レンズを焦
点距離可変のレンズ系より構成することで、測定面の曲
率半径が種々と変わったときでも集光レンズの数を少な
くして測定することができ、又、レンズ交換の負荷を軽
減でき、装置全体の簡素化が図られ、作業効率性の高い
高精度の測定ができる偏心測定装置及び偏心測定方法を
達成することができる。
As described above, according to the present invention, the number of condenser lenses can be reduced even when the radius of curvature of the measurement surface changes variously by forming the condenser lens from a lens system having a variable focal length. An eccentricity measuring device and an eccentricity measuring method capable of performing measurement, reducing the load of lens replacement, simplifying the entire device, and performing highly accurate measurement with high work efficiency can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の偏心測定装置の要部概略図FIG. 1 is a schematic view of a main part of an eccentricity measuring device of the present invention.

【図2】従来の偏心測定装置の概略図FIG. 2 is a schematic diagram of a conventional eccentricity measuring device.

【図3】本発明に係る集光レンズの構成を示す説明図FIG. 3 is an explanatory diagram showing a configuration of a condenser lens according to the present invention.

【図4】本発明における偏心測定径可変を説明する説明
FIG. 4 is an explanatory diagram for explaining variable eccentricity measurement diameter in the present invention.

【符号の説明】[Explanation of symbols]

1 レーザー 2 光束 2a,2b 光束 3 光束分割素子 5 焦点距離集光レンズ 6 回転台 7 回転方位検出手段 8 被測定光学系 8′ 被測定面 9 光検出手段 10 演算装置 11 集光レンズ光軸 12 回転台回転軸 13 被測定面の見かけの曲率中心位置 DESCRIPTION OF SYMBOLS 1 Laser 2 Light beam 2a, 2b Light beam 3 Light beam splitting element 5 Focal length condensing lens 6 Turntable 7 Rotation azimuth detecting means 8 Optical system to be measured 8 'Measurement surface 9 Light detecting means 10 Arithmetic unit 11 Optical axis of condensing lens 12 Rotary table rotation axis 13 Apparent center of curvature of measured surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 回転対称面より成る測定面を回転軸に該
回転対称軸がそれと一致するように装着し、2つの可干
渉性光束を該回転軸に光軸を一致させた焦点距離可変の
集光レンズの互いに異なった領域を通過させて該測定面
の見かけの曲率中心に集光し、交差させ、該曲率中心か
ら発散した2つの光束を該測定面の互いに異なった領域
に入射させ、該測定面で反射した2つの光束を重ね合わ
せて干渉縞を形成し、該測定面を該回転軸を中心に回転
させたときに生じる該干渉縞情報の変動を光検出手段で
検出することによって、該測定面の該回転軸に対する偏
心量を求める際、該集光レンズは該測定面の曲率半径の
大きさに基づいて焦点距離又は焦点位置の少なくとも一
方を変化させていることを特徴とする偏心測定方法。
1. A variable focal length variable measuring apparatus comprising: a measuring surface comprising a rotationally symmetric surface mounted on a rotational axis such that the rotational symmetric axis coincides therewith; and two coherent light beams having an optical axis coincident with the rotational axis. Passing through different areas of the condenser lens to converge and intersect at the apparent center of curvature of the measurement surface, causing two light beams diverging from the center of curvature to enter different areas of the measurement surface, An interference fringe is formed by superimposing two light beams reflected by the measurement surface, and a change in the interference fringe information generated when the measurement surface is rotated about the rotation axis is detected by a light detection unit. When obtaining the amount of eccentricity of the measurement surface with respect to the rotation axis, the condensing lens changes at least one of a focal length and a focal position based on a radius of curvature of the measurement surface. Eccentricity measurement method.
【請求項2】 前記集光レンズは前記2つの光束の集光
位置を変化させていることを特徴とする請求項1の偏心
測定方法。
2. The eccentricity measuring method according to claim 1, wherein said condensing lens changes a condensing position of said two light beams.
【請求項3】 前記集光レンズはそれを構成する複数の
レンズのうちの所定のレンズ間隔を変化させて焦点距離
を変化させていることを特徴とする偏心測定方法。
3. The eccentricity measuring method according to claim 1, wherein the condensing lens changes a focal length by changing a predetermined lens interval among a plurality of lenses constituting the condensing lens.
【請求項4】 前記集光レンズはズームレンズであるこ
とを特徴とする請求項1の偏心測定方法。
4. The eccentricity measuring method according to claim 1, wherein said condenser lens is a zoom lens.
【請求項5】 請求項1から4のいずれか1項記載の偏
心測定方法を利用していることを特徴とする偏心測定装
置。
5. An eccentricity measuring apparatus using the eccentricity measuring method according to claim 1. Description:
JP34859197A 1997-12-03 1997-12-03 Eccentricity measuring method and device Pending JPH11166881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34859197A JPH11166881A (en) 1997-12-03 1997-12-03 Eccentricity measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34859197A JPH11166881A (en) 1997-12-03 1997-12-03 Eccentricity measuring method and device

Publications (1)

Publication Number Publication Date
JPH11166881A true JPH11166881A (en) 1999-06-22

Family

ID=18398046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34859197A Pending JPH11166881A (en) 1997-12-03 1997-12-03 Eccentricity measuring method and device

Country Status (1)

Country Link
JP (1) JPH11166881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379677B1 (en) * 2007-10-04 2014-04-01 삼성전자주식회사 Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
CN117168310A (en) * 2023-11-02 2023-12-05 南京英田光学工程股份有限公司 Eccentric measuring method for aspheric reflecting mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379677B1 (en) * 2007-10-04 2014-04-01 삼성전자주식회사 Eccentricity measurement for aspheric lens using the interferometer producing spherical wave
CN117168310A (en) * 2023-11-02 2023-12-05 南京英田光学工程股份有限公司 Eccentric measuring method for aspheric reflecting mirror
CN117168310B (en) * 2023-11-02 2024-02-09 南京英田光学工程股份有限公司 Eccentric measuring method for aspheric reflecting mirror

Similar Documents

Publication Publication Date Title
US4743117A (en) Device for optically measuring aspheric surface
JPS59166805A (en) Optical projector and use thereof
US4125778A (en) Apparatus for laser anemometry
US4395123A (en) Interferometric angle monitor
JPH11166881A (en) Eccentricity measuring method and device
JP4204803B2 (en) Laser measuring instrument
JP3748479B2 (en) Eccentricity measuring apparatus, eccentricity measuring method, and processing apparatus
JPS60130711A (en) Focusing method of interferometer
US6721056B1 (en) Surface shape measuring apparatus and method
US3832063A (en) Lens axis detection using an interferometer
JPS58173416A (en) Measuring method of face shape
JPH0211084B2 (en)
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JP2000018915A (en) Method and device for measuring eccentricity of optical components
JP3470729B2 (en) Method and apparatus for measuring refractive index distribution
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JPH10318909A (en) Particle measuring device and laser doppler current meter
JP3618995B2 (en) Eccentricity measuring method and eccentricity measuring device
JPH09280819A (en) System for measuring accuracy of rotation
JP3618996B2 (en) Eccentricity measuring method and eccentricity measuring device
JPH0447242B2 (en)
SU1578462A1 (en) Method of measuring angular rotations of object
JP3720648B2 (en) Aspherical eccentricity measurement method
JP2000193441A (en) Method and device for decentering
JP3410800B2 (en) Vibration resistant interferometer