JPS58167760A - Preparation of manganese-aluminum alloy magnet - Google Patents
Preparation of manganese-aluminum alloy magnetInfo
- Publication number
- JPS58167760A JPS58167760A JP57050061A JP5006182A JPS58167760A JP S58167760 A JPS58167760 A JP S58167760A JP 57050061 A JP57050061 A JP 57050061A JP 5006182 A JP5006182 A JP 5006182A JP S58167760 A JPS58167760 A JP S58167760A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- magnet
- alloy magnet
- manganese
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は永久磁石材料、より詳細罠述べるならはマンガ
ンーアルンニウム(MnAt)合金磁石の製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing permanent magnet materials, and more particularly to manganese-alunium (MnAt) alloy magnets.
MnAt化合物は磁気異方性定数が高いことから永久磁
石材料として期待されておシ、研究開発がなされている
。 MnAt合金に適切な熱処理(焼入焼戻)をしたM
nAt合金磁石はその磁性特性がBHmix中0.5M
G・0・、BT中2200G。Since MnAt compounds have a high magnetic anisotropy constant, they are expected to be used as permanent magnet materials and are being researched and developed. MnAt alloy subjected to appropriate heat treatment (quenching and tempering)
The magnetic property of nAt alloy magnet is 0.5M in BHmix.
G・0・, 2200G during BT.
H・キロ 000@程度であった。そこで、棒状のMm
Aj合金磁石を金属パイf(非磁性ステンレス鋼)母イ
グ)などに封入し、この・ヤイグのままスエージンダ加
工を施こして鼾−1X中3.5 MG@O@程度の異方
性永久磁石とすることが知られている。It was about H.Kilo 000@. Therefore, the rod-shaped Mm
Enclose an Aj alloy magnet in a metal magnet (non-magnetic stainless steel), etc., and apply swaging as it is to create an anisotropic permanent magnet of about 3.5 MG@O@ It is known that
しかしながら、スエージンダ加工のために、金属/譬イ
l内部でMnAt合金は粉砕された粉末状となって製品
形状が・母イブ被覆の細い棒に限定され、かつ製造コス
トが非常に高価てありた。磁気%性および加工性を向上
させる走めKM11ムを合金に辰素(C)を添加したM
m−ムt−C系合金磁石が提案されている(例えば、特
公昭54−31448号公報参照)、このMn−ムt−
C系合金磁石ては、その組成が68.0〜73.Ovt
嘔のMnと1
(to MB −6−6) 〜 (s Mm
2 2.2 ) wtlG のCと残部のA
tとからなり、530〜830m?、で温間塑性加工を
hして面心正方晶の(001)軸が特定方向に優先的に
配列された組織となっている。そして、BHm□が4.
8 MG@O・以上の異方性Mm−ムt−C系合金磁石
が得られる。しかしながら、温間押出し法成形の丸めに
製品形状が限定されている。However, due to the swaging process, the MnAt alloy is pulverized into a powder inside the metal mold, and the product shape is limited to a thin rod coated with a mother plate, and the manufacturing cost is extremely high. . M is made by adding cinnabar (C) to the alloy to improve magnetic properties and workability.
An m-mu t-C alloy magnet has been proposed (see, for example, Japanese Patent Publication No. 31448/1983), and this Mn-mu t-
The C-based alloy magnet has a composition of 68.0 to 73. Ovt.
Mn and 1 (to MB -6-6) ~ (s Mm
2 2.2) C of wtlG and remaining A
It consists of 530-830m? The material is subjected to warm plastic working at , and has a structure in which the (001) axis of the face-centered tetragonal crystal is preferentially aligned in a specific direction. And BHm□ is 4.
An anisotropic Mm-mt-C alloy magnet of 8 MG@O. or more can be obtained. However, the product shape is limited to rounding by warm extrusion molding.
本発明の目的は、BHmhxが0.8 MG・0・以上
のR4At @全磁石を合金添加することなく製造工程
を変えることによって得ることである。The object of the present invention is to obtain an R4At @full magnet with a BHmhx of 0.8 MG·0· or more by changing the manufacturing process without adding alloys.
本発明の目的は、リメン状のMnA1合金磁石を作製す
ることである。The purpose of the present invention is to produce a remen-shaped MnA1 alloy magnet.
上述の目的が65.3〜67.3 wt優のMtおよび
34.7〜32.7 vtlのAtの合金溶融体を超急
冷してりがン状に成形し、そして540〜680℃の磁
場中焼鈍を施こすことからなるMnAj 4!r金磁石
の製造方法によって達成される。The above purpose was to ultra-quench an alloy melt of 65.3 to 67.3 wt of Mt and 34.7 to 32.7 vtl of At, form it into a ring shape, and then heat it in a magnetic field at 540 to 680°C. MnAj consisting of medium annealing 4! This is achieved by a method for manufacturing r gold magnets.
超急冷は合金溶融体を高速回転しているロールに吹付け
ることによって行なわれるのが好ましい。Preferably, super-quenching is carried out by spraying the alloy melt onto rolls rotating at high speed.
MA1合金中のM!1量が65.3〜67.3wt1の
範囲外では最大エネルギー積”maxか一般的なゴム磁
石横腹の永久磁石としてのα8MG・Oeよりも小さく
なって■う。M in MA1 alloy! If the amount is outside the range of 65.3 to 67.3 wt1, the maximum energy product "max" will be smaller than α8MG.Oe as a permanent magnet on the flank of a general rubber magnet.
ざらに、焼鈍温度を540〜680℃のflQ′8外と
すると、MnAt合金磁石のB%aKが0.8 MG+
10*よりも小さくなってしまう。Roughly speaking, if the annealing temperature is outside flQ'8 of 540 to 680°C, B%aK of the MnAt alloy magnet is 0.8 MG+
It becomes smaller than 10*.
以下、本発明方法の実施態様例によって本発明を説明す
る。The present invention will be explained below with reference to embodiment examples of the method of the present invention.
Mn量を65 wt嘔から75 vtlの間で変えた種
種のWhat合金について、MIA4合金#合金管融体
炉(例えば、高周波炉)にて用意した。この溶融体(1
100℃)′ftノズルCロ径:1m)から回転してい
る鋼鉄製ロール(直径:220■、ロール回転数:40
00rpm)K吹付けて(噴射圧カニ0.5k)/♂
)、超急冷したり一ン状試料を形成した。?4?られた
りIン状試料は−が約2■で厚さが20〜40−であっ
た、このりがン状試料を加熱炉にて種々の温度で1時間
の磁場中焼鈍処理した。この焼鈍において、加熱および
冷却速度を100℃/hとしかつ1〇四・の磁界をりl
ン軸方向に印加した。焼鈍処Ill室温にてす7ン状試
料の磁気特性を−1足した。得られた観定麹からMnA
1合金磁石のM論量と保持力He 、残留磁束密g B
r 、 15 kO*での磁束密度1.、ko*およ
び最大エネルギー積”IIaKとの関係を籐1図および
第2図に示す、飢2図のBH,、xグラフから明らかな
ように66嘔Mmおよび70憾Muをピークとする2つ
の山がToシ、図面上で右愼の山は特公昭54−314
48号公報で提案されたMn−At−C系合金磁石での
Mn Jilと対応している。Various What alloys with varying Mn content between 65 wt and 75 vtl were prepared in an MIA4 alloy #alloy tube melting furnace (eg, high frequency furnace). This melt (1
Steel roll (diameter: 220cm, roll rotation speed: 40cm) rotating from a 100°C)'ft nozzle diameter: 1m)
00rpm) K spray (injection pressure crab 0.5k)/♂
), ultra-quenched or formed into a linear sample. ? 4? The resin-shaped sample had a diameter of about 2 cm and a thickness of 20 to 40 mm, and was annealed in a magnetic field at various temperatures in a heating furnace for 1 hour. In this annealing, the heating and cooling rate was 100°C/h, and the magnetic field was 104°C/h.
was applied in the axial direction. -1 was added to the magnetic properties of the seven-dimensional sample during annealing at room temperature. MnA from the obtained observation koji
1 alloy magnet M stoichiometry and coercive force He, residual magnetic flux density g B
r, magnetic flux density at 15 kO*1. , ko* and the maximum energy product "IIaK" are shown in Figures 1 and 2.As is clear from the BH,,x graph in Figure 2, there are two The mountain is Toshi, and the mountain on the right on the drawing is the special public official court of 1977-314.
This corresponds to Mn Jil in the Mn-At-C alloy magnet proposed in Publication No. 48.
本発明は左側の山に相当するMnj11節囲でのMnA
t合金磁石であって、第1図のH@グラフにあるように
物゛持方が際立って大きい特色がある。The present invention deals with MnA at the Mnj11 node, which corresponds to the mountain on the left.
It is a t-alloy magnet, and as shown in the H@ graph in FIG.
0、8 MG・O・のBHmaxから判断すると、Mn
A4合金磁石のMn量は65.3 vtlないし67.
3vNlの範囲である。また、第2図の”HT、aXの
グラフから、不発#JK係るMn量での左側の山とそう
でない右11i+の山とを示す曲線の焼鈍温度が逆にな
っていることがわかる。すなわち、本発明での66wt
係MnでのBHピークは600℃の焼鈍温度で得られ、
一方、70 wt4 MnでのBHピークは400℃の
焼鈍温度で得られている。0.8 Judging from the BHmax of MG・O・, Mn
The Mn content of the A4 alloy magnet is 65.3 vtl to 67.
It is in the range of 3vNl. Furthermore, from the graph of "HT, aX" in FIG. 2, it can be seen that the annealing temperatures of the curves showing the peak on the left for the Mn amount related to unexploded #JK and the peak for right 11i+, which is not, are reversed. That is, the annealing temperature is reversed. , 66wt in the present invention
The BH peak for Mn was obtained at an annealing temperature of 600 °C,
On the other hand, the BH peak for 70 wt4 Mn was obtained at an annealing temperature of 400°C.
@3図に、本発明に係る6 6 wt4 Mn 34
vt鳴Atト石についての焼鈍温度と保持力Ha%残留
磁束密度Br、15に・0・での磁束密度B1.kO・
および最大エネルギー積BH,□8との関係を示す。@3 Figure shows 6 6 wt4 Mn 34 according to the present invention.
Annealing temperature and coercive force Ha% residual magnetic flux density Br, magnetic flux density B1. kO・
and the relationship with the maximum energy product BH, □8.
第3図のBHグラフにて0.8 MG・0・のBHr、
、xを達成する焼鈍温度範囲が540℃ないし、680
℃であることがわかる。In the BH graph of Figure 3, BHr of 0.8 MG・0・
, the annealing temperature range to achieve x is 540°C to 680°C.
It can be seen that the temperature is ℃.
したがって、MnAt合金溶融体を超急冷法でりIン状
に形成し、適切な焼鈍処理によって永久磁石りIンが製
造てきる。Therefore, a permanent magnet can be manufactured by forming a molten MnAt alloy into an in-line shape using an ultra-quenching method, and then performing an appropriate annealing treatment.
第1図はMvskL合金磁石OM重量とI(eおよびB
yとの関係を示す図であ)、
第2図けMnA1合金磁石のMn量とB 、 、ko・
およびl1flrnaxとの関係を示す図であり、第3
図は66 wt9G Mm 34 vt優Al @全磁
石の焼鈍温度とH・、 Br a B、sko・および
BHヤ、□との関係を示す図である。
特許出願人
富士通株式会社
特許出願代理人
弁理士 實 木 朗
弁理士 西 舘 和 之
弁理士 内 1) 幸 男
弁理士 山 口 昭 之
第1図 Mn(at’10)
第2図
Mn(ai@10)Figure 1 shows the MvskL alloy magnet OM weight and I (e and B
Figure 2 shows the relationship between the Mn content of the MnA1 alloy magnet and B, , ko・
and l1flrnax, and is a diagram showing the relationship between the third
The figure shows the relationship between the annealing temperature of a 66 wt9G Mm 34 vt excellent Al @all magnet and H., Bra B, sko., and BH Ya, □. Patent Applicant: Fujitsu Limited Patent Attorney: Akira Minori, Patent Attorney: Kazuyuki Nishidate, Patent Attorney: 1) Yukio, Patent Attorney: Akira Yamaguchi Figure 1 Mn (at'10) Figure 2 Mn (ai@ 10)
Claims (1)
よびアルミニウム34.7 vt%〜32.7vt−の
合金溶融体を超急冷してりがン状に成形し、そして54
0℃〜680℃の磁場中焼鈍を施こすことからなるマン
がンーアルミニウム合金磁石の製造方法・An alloy melt of 1-r gun 65.3 vtl ~ 67.3 wtl and aluminum 34.7 vt % ~ 32.7 vt- is ultra-quenched and formed into a 54-r gun shape.
A method for producing an aluminum alloy magnet comprising annealing in a magnetic field at 0°C to 680°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57050061A JPS58167760A (en) | 1982-03-30 | 1982-03-30 | Preparation of manganese-aluminum alloy magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57050061A JPS58167760A (en) | 1982-03-30 | 1982-03-30 | Preparation of manganese-aluminum alloy magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58167760A true JPS58167760A (en) | 1983-10-04 |
Family
ID=12848479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57050061A Pending JPS58167760A (en) | 1982-03-30 | 1982-03-30 | Preparation of manganese-aluminum alloy magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58167760A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017157738A (en) * | 2016-03-03 | 2017-09-07 | 国立大学法人 鹿児島大学 | MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET |
CN113881910A (en) * | 2021-10-28 | 2022-01-04 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
-
1982
- 1982-03-30 JP JP57050061A patent/JPS58167760A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017157738A (en) * | 2016-03-03 | 2017-09-07 | 国立大学法人 鹿児島大学 | MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET |
CN113881910A (en) * | 2021-10-28 | 2022-01-04 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
CN113881910B (en) * | 2021-10-28 | 2022-07-29 | 西北工业大学 | Method for regulating immiscible alloy structure by using strong magnetic field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101256859B (en) | Rare-earth alloy casting slice and method of producing the same | |
JP2018157197A (en) | Highly thermally stable rare earth permanent magnet material, method for manufacturing the same, and magnet including the same | |
JP6405261B2 (en) | Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium | |
CN101717888A (en) | Nano-crystalline composite NdFeB permanent magnetic alloy and method for producing same | |
JPS58167760A (en) | Preparation of manganese-aluminum alloy magnet | |
JP7234382B2 (en) | Amorphous strip master alloy and method of making same | |
CN1325535A (en) | Sm(Co, Fe, Cu, Zr, C) compositions and methods of producing same | |
JPH03261104A (en) | Manufacture of anisotropic rare earth permanent magnet | |
US3983916A (en) | Process for producing semi-hard co-nb-fl magnetic materials | |
US4396441A (en) | Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same | |
JPH03260018A (en) | Manufacture of anisotropic rare earth metal permanent magnet | |
JPS5947017B2 (en) | Magnetic alloy for magnetic recording and playback heads and its manufacturing method | |
CN104593670B (en) | A kind of preparation method of the Ni-based soft magnetic materials of iron | |
JPS5849007B2 (en) | Permanent magnet that is easy to process and has large coercive force and maximum energy product, and its manufacturing method | |
CN106957948A (en) | A kind of boron-containing high-silicon steel strip and preparation method thereof | |
JP2001254159A (en) | Iron-based permanent magnet alloy having high glass forming capacity | |
JPS6052557A (en) | Low-loss amorphous magnetic alloy | |
JPS5927756A (en) | Production of thin sheet of permanent magnet material | |
JPS61119005A (en) | Manufacture of iron-rareearth-boron permanent magnet | |
JPH01255620A (en) | Production of permanent magnet material and bonded magnet | |
JPS6372824A (en) | Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel | |
JPS619520A (en) | Manufacture of rapidly cooled thin strip having high tensile strength and non-orientation | |
JPS58147007A (en) | Preparation of permanent magnet | |
JPH03295204A (en) | Permanent magnet and manufacture thereof | |
JPS6111444B2 (en) |