JPS5927756A - Production of thin sheet of permanent magnet material - Google Patents

Production of thin sheet of permanent magnet material

Info

Publication number
JPS5927756A
JPS5927756A JP13552182A JP13552182A JPS5927756A JP S5927756 A JPS5927756 A JP S5927756A JP 13552182 A JP13552182 A JP 13552182A JP 13552182 A JP13552182 A JP 13552182A JP S5927756 A JPS5927756 A JP S5927756A
Authority
JP
Japan
Prior art keywords
rare earth
molten metal
permanent magnet
thin sheet
magnet material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13552182A
Other languages
Japanese (ja)
Inventor
Takashi Takahashi
俊 高橋
Hidekuni Sugawara
英州 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP13552182A priority Critical patent/JPS5927756A/en
Publication of JPS5927756A publication Critical patent/JPS5927756A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a thin sheet of permanent magnet material having excellent toughness and mechanical strength by melting rare earth metals and Co or Co and Fe, Cu, Zr, Si, B by high frequency heating in a non-oxidative atmosphere and blowing the melt out onto the surface of a rotating body under high speed rotation. CONSTITUTION:1 or >=2 kinds among La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Y which are rare earth elements, and >=1 kind among Co, Fe, Cu, Zr, Si, B including Co are sealed in a quartz tube 2 by a non-oxidative gaseous P. The materials are then heated to 1,100-1,500 deg.C with a high frequency coil 1 to make homogeneous molten metal 3. The molten metal 3 is blown out onto the surface of a rotating body 7 under high speed rotation through a nozzle 4 by the pressure of the gas P. The molten metal 3 is cooled to solidify to a thin sheet 6. The sheet passes between magnets 5 for magnetization and is thus magnetized.

Description

【発明の詳細な説明】 本発明は、希土類金属を多量に含みCG 、Fe 、C
u 。
DETAILED DESCRIPTION OF THE INVENTION The present invention contains rare earth metals containing a large amount of CG, Fe, C.
u.

Z’r、Bからなる薄板の希土類金属系永久磁石合金の
製造方法に関するものである。
The present invention relates to a method for manufacturing a thin plate rare earth metal permanent magnet alloy consisting of Z'r and B.

希土類元素を多量に含む希土類CO磁石は、これまでR
M5及びR2M17なる化学式〔ただしRはランタンイ
ド系(Yを含む)のいわゆる希土類金属の一種又は二種
以上の組合せで構成され2MはCo+もしくはCo、F
e、Cu、Zrの一種、又は二種以上の組合せで構成さ
れる〕で示される金属間化合物を主体とする結晶磁気異
方性の大きな磁石拐料である。
Rare earth CO magnets containing large amounts of rare earth elements have been
The chemical formula M5 and R2M17 [where R is composed of one or a combination of two or more so-called rare earth metals of the lanthanide series (including Y), and 2M is Co+ or Co, F
This is a magnetic material with large crystal magnetic anisotropy that is mainly composed of an intermetallic compound consisting of one or a combination of two or more of e, Cu, and Zr.

その磁気特性はこれまでのBa−+Sr−フェライト磁
ギー積(BH)maxが著しく高く、その為希土類CO
磁石の工業での需要は近年とみに増加しておシ 、かつ
As for its magnetic properties, the Ba-+Sr-ferrite magnetic product (BH) max is extremely high, so rare earth CO
Industrial demand for magnets has increased in recent years.

その量産技術は完成の域に達している。Its mass production technology has reached the stage of completion.

現在、製造されているSm Co5+Sm2 Co、7
の一般的な製造方法は、主に粉末冶金法である。これは
溶解(又は還元: Sm2O3→Sm+02)l、た後
、鋳造した合金(又は粉末)を粗粉砕粉末にした後酸化
し易い活性な希土類金属を保護する為トルエンなどの有
機溶媒中で細粉砕し、微粉末(2〜571771)とし
た後、非酸化性雰囲気で乾燥し、任意の形状に磁場中で
配向させ、ノ0レス成形する。フ0レス体は非酸化性雰
囲気で焼結、溶体化、特効処理を施こし。
Currently manufactured Sm Co5 + Sm2 Co, 7
The common manufacturing method is mainly powder metallurgy. After melting (or reducing: Sm2O3→Sm+02), the cast alloy (or powder) is coarsely ground and then finely ground in an organic solvent such as toluene to protect active rare earth metals that are easily oxidized. After making it into a fine powder (2 to 571771), it is dried in a non-oxidizing atmosphere, oriented into an arbitrary shape in a magnetic field, and molded without zero. The freeless body is sintered, solution treated, and special treated in a non-oxidizing atmosphere.

希土類Co磁石の磁気特性を得ている。この粉末冶金法
は長所として■非常に量産的であシ■歩留が高く■各種
形状要求に応じやすいが2反面欠点としては■微粉末の
為酸化し易く、粉砕乾燥、熱処理での酸素のコントロー
ルがむずかしい。■同様。
The magnetic properties of rare earth Co magnets have been obtained. The advantages of this powder metallurgy method are: ■ It is very mass-producible. ■ It has a high yield. ■ It is easy to meet various shape requests. On the other hand, it has disadvantages. Difficult to control. ■Similar.

発火し易く、防災への配慮が必要、■粉末をフ0レス焼
結する為、1叫以下の薄物の製造がプレス一時のスリノ
ゾ、焼結時の割れなどの為、技術的にむずかしい。など
が挙げられる。
It is easy to catch fire, and disaster prevention needs to be taken into consideration. ■Since the powder is sintered without flames, it is technically difficult to manufacture thin objects of less than 1 mm because of cracking during pressing and cracking during sintering. Examples include.

本発明は、上記の欠点を改善した製造方法を提供するこ
とを目的とする。
An object of the present invention is to provide a manufacturing method that improves the above-mentioned drawbacks.

すなわち2本発明の製造方法を詳細に説明すると2本発
明は希土類金属であるランタノイド系のLa、 ce 
tPr +Na pPmr SmyEu +Gd +T
b 、Dy 、Ho、、Er 、Tm、Yb 。
That is, to explain in detail the manufacturing method of the present invention, the present invention is a rare earth metal such as lanthanoid La, ce.
tPr +Na pPmr SmyEu +Gd +T
b, Dy, Ho, Er, Tm, Yb.

Lu、Hf 、さらにYを含んだ希土類金属を一種、又
は二種以上の組合せと+CoもしくはCo、Fe、Cu
、Zr。
One or a combination of two or more rare earth metals containing Lu, Hf, and Y + Co or Co, Fe, Cu
, Zr.

Si pBの一種、又は二種以上の組合せを非酸化性雰
囲気(Arが主)中で高周波溶解により1100〜15
00℃の均質な溶湯とし、それをノズルから高速回転・
している回転体(ロールやドラム)の面に吹き出し、液
体急冷することによシ薄板を製造する。
One type of Si pB, or a combination of two or more types, is heated to 1100 to 15 by high frequency melting in a non-oxidizing atmosphere (mainly Ar).
Make a homogeneous molten metal at 00℃, and send it through a nozzle with high speed rotation.
Thin plates are manufactured by blowing liquid onto the surface of a rotating body (roll or drum) and rapidly cooling the liquid.

本発明によれば、均一になっている溶湯を瞬時に急冷す
・るのであるが、その際ノズルの先端から湯が吹き出し
、高速で回転している冷却用ロールに接触した瞬間から
、ロールの面に沿って凝固が開始する。その凝固の際、
ロールのすぐ下面に磁化した磁石を進行方向に配置して
おけば、磁石の上を凝固した薄板が磁力線を垂直に切断
する様に移動するので、該薄板に、磁気的な異方性を生
ぜしめられる。得られた薄板は高周波溶解などで均一に
溶融している溶湯を瞬時に急冷するので2m成の均質な
ものができ、かつ硬くて靭性を有しており1機械的強度
も優れたものとなっている。
According to the present invention, the homogeneous molten metal is instantaneously quenched, but at that time, the hot water blows out from the tip of the nozzle, and from the moment it comes into contact with the cooling roll that is rotating at high speed, the roll Solidification begins along the surface. During its solidification,
If a magnetized magnet is placed directly under the roll in the direction of travel, the solidified thin plate will move on top of the magnet so as to cut the lines of magnetic force perpendicularly, creating magnetic anisotropy in the thin plate. It is closed. The obtained thin plate is a homogeneous 2-meter plate that is made by instantaneously quenching the molten metal that has been uniformly molten using high-frequency melting, etc., and is hard and tough, and also has excellent mechanical strength. ing.

以下2本発明の実施例について詳細に説明する。Two embodiments of the present invention will be described in detail below.

第1図を参照して、1が高周波コイル、2が石英チー−
ブ、3が溶融した金属、4が溶融した液体の吹き出し口
、5が磁化用磁石、6が板厚方向に磁化された薄板、7
が高速回転している回転冷却体すなわちロールである。
Referring to Figure 1, 1 is a high frequency coil, 2 is a quartz steel
3 is a molten metal, 4 is a molten liquid outlet, 5 is a magnetizing magnet, 6 is a thin plate magnetized in the thickness direction, 7
is a rotating cooling body or roll rotating at high speed.

溶融した金属3は1400〜1500℃の温度であるが
、それをPの圧力でロール面に吹き出すと、A地点で吹
き出し口4を通過してロール70面に接触する。その際
The molten metal 3 has a temperature of 1,400 to 1,500°C, and when it is blown onto the roll surface at a pressure of P, it passes through the blow-off port 4 at point A and comes into contact with the roll 70 surface. that time.

冷却されて溶湯は凝固し、さらに残った熱はo −ルア
の面に熱伝導し、B地点でロール7の面から離れるまで
冷却を続け、300〜400℃となる。口、−ルアの面
から離れる時は、薄板は完全に赤みがなくなっており、
その温度が目視により300〜400℃と確認できる。
The molten metal is cooled and solidified, and the remaining heat is conducted to the surface of the o-lure and continues to cool until it separates from the surface of the roll 7 at point B, reaching a temperature of 300 to 400°C. When it leaves the mouth, the surface of the Lua, the lamina has completely lost its redness;
The temperature can be visually confirmed to be 300 to 400°C.

A地点からB地点へ冷却する間に、磁石5の間を通シ磁
化され、薄板が厚み方向に異方性化される。なおロール
7は、第2図の模式図に示す様な中空のドラムであシ、
中空部分に永久磁石6(例、フェライト磁石又は希土類
Co磁石)を配することができる様に加工してあり。
During cooling from point A to point B, magnetization occurs between the magnets 5, and the thin plate becomes anisotropic in the thickness direction. The roll 7 is a hollow drum as shown in the schematic diagram of Fig. 2.
The hollow part is processed so that a permanent magnet 6 (eg, a ferrite magnet or a rare earth Co magnet) can be placed therein.

勿論ドラムは非磁性体の材質を使用している。Of course, the drum is made of non-magnetic material.

本発明によれば、これまでの希土類co磁石に比較して
、板厚が薄い製品が製造できる。
According to the present invention, products with thinner plate thickness can be manufactured compared to conventional rare earth CO magnets.

次に2以上の様な装置を用いて行った薄板永久磁石拐料
の製造方法に関する実施例を掲げて2本発明の説明をす
る。
Next, the present invention will be explained with reference to an example of a method for manufacturing a thin plate permanent magnet powder using two or more types of apparatus.

実施例1 400mmφの中空、非磁性ロールを含む2片ロール式
製造装置全体を密封した室内で真空引きし。
Example 1 The entire two-roll manufacturing apparatus including a 400 mm diameter hollow, non-magnetic roll was evacuated in a sealed room.

10−3mmHg程度とする。その後高純度、 Arガ
スで05〜1.0気圧程度に封入加圧し2石英チューブ
2内で35 w t % Sm + 65 wt%Co
合金を高周波溶解する。溶解後、磁化用磁石5を、ロー
ル7外周部をはさむ様に中空部に挿入する。ロール7を
200Orpmで回転させ、先端寸法0.5mmX4m
mのノズル4からロール7の面に噴出させた。その結果
中(5mm厚さ60μm、長さ5mの薄板6が得られた
。この薄板を各150調に切断し2石英管に真空封入す
る。
It should be about 10-3 mmHg. After that, it was sealed and pressurized with high-purity Ar gas to about 05 to 1.0 atm, and 35 wt% Sm + 65 wt% Co was placed in the 2 quartz tubes 2.
The alloy is melted by high frequency. After melting, the magnetizing magnet 5 is inserted into the hollow part so as to sandwich the outer peripheral part of the roll 7. Rotate roll 7 at 200 rpm, tip size 0.5 mm x 4 m
The liquid was sprayed onto the surface of the roll 7 from the nozzle 4 of the cylinder. As a result, a thin plate 6 with a thickness of 5 mm, a thickness of 60 μm, and a length of 5 m was obtained. This thin plate was cut into 150 pieces each and vacuum-sealed into two quartz tubes.

それを600℃×1時間保持後400℃まで25V1時
間で除冷し400℃×1時間保持後、炉内で水冷ゾーン
に引き出し、急冷した。なお、磁化用磁石5を用いずに
、上記と同様にして等方性磁石を得た。
After holding it at 600°C for 1 hour, it was slowly cooled to 400°C at 25V for 1 hour, and after holding at 400°C for 1 hour, it was pulled out to a water cooling zone in the furnace and rapidly cooled. Note that an isotropic magnet was obtained in the same manner as above without using the magnetizing magnet 5.

磁気特性は従来の等方性磁石に比較して、優れた磁石特
性を得た。すなわち上記成分の場合、磁化用磁石を用い
ないとき、残留磁束密度Br=6000ガウス、保磁力
lHc ” 10,000エルステツド・であシ。
Excellent magnetic properties were obtained compared to conventional isotropic magnets. That is, in the case of the above components, when no magnetizing magnet is used, the residual magnetic flux density Br is 6000 Gauss, and the coercive force lHc is 10,000 Oersted.

さらに磁化用磁石5を用いて異方性を付すことによシ残
留磁束密度Br=8000ガ゛ウス、保磁力IHc= 
15,000エルステツドも可能とした。
Furthermore, by adding anisotropy using the magnetization magnet 5, residual magnetic flux density Br=8000 Gauss, coercive force IHc=
15,000 oersted was also possible.

実施例2 23wt%Sm、17%F e y 5%Cu p 3
%Zr p 1 %B + b ol + Coの成分
元素を実施例1と同様にして溶解し、薄板を作製した。
Example 2 23wt%Sm, 17%Fe y 5%Cup 3
The constituent elements of %Zr p 1 %B + bol + Co were dissolved in the same manner as in Example 1 to produce a thin plate.

この試料の厚さは80μm程度であった。The thickness of this sample was approximately 80 μm.

熱処理条件は700℃×1時間保持後400℃まで20
℃/1時間で炉冷し、400℃×1時間保持後。
The heat treatment conditions are 700℃ x 1 hour and then 20℃ to 400℃.
After cooling in the furnace at ℃/1 hour and holding at 400℃ for 1 hour.

炉内で水冷ゾーンに引き出し、急冷した。It was drawn out to a water cooling zone in the furnace and rapidly cooled.

2.000エルステツドであり、さらに異方性化した軒
           膳 残留磁束密度Br=10,000ガウス、保磁力tHc
−6,000エルステツドが得られた。
2.000 oersted, further anisotropic, residual magnetic flux density Br = 10,000 Gauss, coercive force tHc
-6,000 oersted was obtained.

以上2本発明をSm−Co磁石について述べたが。The two inventions have been described above regarding Sm-Co magnets.

本発明は他の希土類磁石材料にも同様に適用できること
は言う迄もない。
It goes without saying that the present invention can be similarly applied to other rare earth magnet materials.

以上のように2本発明によれば、従来の欠点を克服しな
がら、薄板永久磁石材料を容易に製造することができる
As described above, according to the present invention, a thin plate permanent magnet material can be easily manufactured while overcoming the conventional drawbacks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2本発明の方法の実施に用いる装置の使用状態
を示す正面図、第2図はその縦断面図である。 1・・・高周波コイル、2・・・石英チューブ、3・・
・溶融金属、4・・・吹き出し口(ノズル)、5・・・
磁化用磁石、6・・・薄板、7・・・ロール。 第2図
FIG. 1 is a front view showing the state in which the apparatus used for carrying out the method of the present invention is used, and FIG. 2 is a longitudinal sectional view thereof. 1... High frequency coil, 2... Quartz tube, 3...
・Molten metal, 4...Blowout port (nozzle), 5...
Magnetizing magnet, 6... thin plate, 7... roll. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、希土類金属であるランタノイド系のLa l Ce
 IPr 、Nd +Pm+SmyEu 、Gci 、
Tb +Dy5Ho 、Er 、Tm、Yb 、Lu 
、Hf +さらにYを含んだ希土類金属の少くとも一種
と、C09Fe、Cu、Zr+Si、BのうちCoを含
む少くとも一種とを非酸化性雰囲気中で高周波溶解によ
り 1100〜1500℃の均質な溶湯とし、それをノ
ズルから高速回転している回転体の面に吹き出し、液体
急冷することにより薄板を製造することを特徴とする薄
板永久磁石材料の製造方法。
1. Lanthanide La l Ce, a rare earth metal
IPr, Nd + Pm + SmyEu, Gci,
Tb + Dy5Ho, Er, Tm, Yb, Lu
, Hf + and at least one rare earth metal containing Y, and at least one of C09Fe, Cu, Zr+Si, and B containing Co are made into a homogeneous molten metal at 1100 to 1500°C by high frequency melting in a non-oxidizing atmosphere. A method for producing a thin plate permanent magnet material, comprising: blowing it out from a nozzle onto the surface of a rotating body rotating at high speed, and rapidly cooling the liquid to produce a thin plate.
JP13552182A 1982-08-03 1982-08-03 Production of thin sheet of permanent magnet material Pending JPS5927756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13552182A JPS5927756A (en) 1982-08-03 1982-08-03 Production of thin sheet of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13552182A JPS5927756A (en) 1982-08-03 1982-08-03 Production of thin sheet of permanent magnet material

Publications (1)

Publication Number Publication Date
JPS5927756A true JPS5927756A (en) 1984-02-14

Family

ID=15153706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13552182A Pending JPS5927756A (en) 1982-08-03 1982-08-03 Production of thin sheet of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS5927756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100344U (en) * 1991-02-04 1992-08-31
WO2000026926A1 (en) * 1998-10-30 2000-05-11 Santoku America, Inc. Sm(Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
CN109585107A (en) * 2017-09-29 2019-04-05 丰田自动车株式会社 Rare-earth magnet
CN109773161A (en) * 2019-03-11 2019-05-21 江苏振栋精密材料科技有限公司 A kind of quartz pipe pressure spray band casting sealing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100344U (en) * 1991-02-04 1992-08-31
WO2000026926A1 (en) * 1998-10-30 2000-05-11 Santoku America, Inc. Sm(Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
US6565673B1 (en) 1998-10-30 2003-05-20 Santoku Corporation Sm(Co, Fe, Cu, Zr, C) compositions and methods of producing same
CN109585107A (en) * 2017-09-29 2019-04-05 丰田自动车株式会社 Rare-earth magnet
CN109585107B (en) * 2017-09-29 2021-01-26 丰田自动车株式会社 Rare earth magnet
CN109773161A (en) * 2019-03-11 2019-05-21 江苏振栋精密材料科技有限公司 A kind of quartz pipe pressure spray band casting sealing device

Similar Documents

Publication Publication Date Title
KR102096958B1 (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
JP4596645B2 (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JPS60162750A (en) Rare earth magnet and its production
US4983230A (en) Platinum-cobalt alloy permanent magnets of enhanced coercivity
JPS5927756A (en) Production of thin sheet of permanent magnet material
TWI496174B (en) Ndfeb magnet and method for producing the same
JPS5927757A (en) Method and device for producing thin sheet of anisotropic permanent magnet material
US4900374A (en) Demagnetization of iron-neodymium-boron type permanent magnets without loss of coercivity
JP2735833B2 (en) Method for producing powder for resin-bonded magnet
JPH03260018A (en) Manufacture of anisotropic rare earth metal permanent magnet
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPS6231056B2 (en)
JPS5927758A (en) Thin sheet of ferromagnetic material and its production
JPS58186906A (en) Permanent magnet and preparation thereof
JPH0582319A (en) Permanent magnet
JPH02125402A (en) Magnetic powder and manufacture thereof
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPS6347301A (en) Production of permanent magnet powder
JP4195927B2 (en) Method for producing magnetic anisotropic alloy
Meira et al. PrFeB Based Alloys Obtained by Melt Spinning for the Production of Permanent Magnets
JP2002060806A (en) Method for producing alloy powder for permanent magnet and permanent magnet
JPS61270316A (en) Production of raw material powder for resin bonded permanent alloy
JPS62170454A (en) Permanent magnet alloy and its manufacture
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
CN118507189A (en) Nano composite permanent magnet material and preparation method thereof