JPS58167441A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPS58167441A
JPS58167441A JP4730082A JP4730082A JPS58167441A JP S58167441 A JPS58167441 A JP S58167441A JP 4730082 A JP4730082 A JP 4730082A JP 4730082 A JP4730082 A JP 4730082A JP S58167441 A JPS58167441 A JP S58167441A
Authority
JP
Japan
Prior art keywords
optical fiber
base material
sio2
glass
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4730082A
Other languages
Japanese (ja)
Inventor
Fumiaki Hanawa
文明 塙
Shigeki Sakaguchi
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4730082A priority Critical patent/JPS58167441A/en
Publication of JPS58167441A publication Critical patent/JPS58167441A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Abstract

PURPOSE:The parent material is heated with an oxyhydrogen flame on its surface and simultaneously a SiO2-TiO2, SiO2-ZrO2 glass layer is formed on its surface and the resultant material is made into filaments to produce optical fiber with increased long-term reiliability and improved minimum strength. CONSTITUTION:A quartz parent material for optical fiber 1 is heated with an oxyhydrogen flame 4 from the burner 3 on its surface and simultaneously the material is coated with a glass layer of SiO2-TiO2 or SiO2-ZrO2 on its surface using a SiCl4-TiCl4 or SiCl4-ZrCl4 gas. Then, the resultant parent material is made into the objective optical fiber. This process facilitates the cable formation of fiber connection in optical fiber production.

Description

【発明の詳細な説明】 本発明は長期信頼性に優れた光ファイバの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber with excellent long-term reliability.

従来、一般に光ファイバは材質的に非常に脆いので、表
面傷が発生し易く、これが応力集中源となり容易に破断
する欠点があった。これを解決するため、光ファイバの
紡糸直後にグラスチック液種を施してファイバの表面を
保護することにより、初期強度の大きい光ファイバを製
造する方法が提案されている。通常、このプラスチック
横積は、1次被覆、バッファ層および2次被覆の8層構
造から成り、1次II覆は光ファイバの表面保瞳および
クラッドモードの除去、2法被機はケーブル化時の作業
性、バッファ層は2法被佃およびケーブル化時の伝送損
失の増加防止を、それぞれ目的としている。
Conventionally, since optical fibers are generally made of extremely brittle materials, they tend to have surface scratches, which become a stress concentration source and easily break. To solve this problem, a method has been proposed in which an optical fiber with high initial strength is manufactured by applying a glassy liquid immediately after spinning the optical fiber to protect the surface of the fiber. Normally, this plastic lateral structure consists of an eight-layer structure consisting of a primary coating, a buffer layer, and a secondary coating. The purpose of the buffer layer is to improve the workability of the cable, and to prevent an increase in transmission loss when cabled.

応力集中源が存在しない光ファイバに1次被覆を施した
場合の引張り強度は、5ookl?/露1IES程度の
非NK大きな強度が櫓られるが、一般に光ファイバのク
ラッドガラスには市販品が使用されているので、銀小気
泡や表面傷が多く存在し、従って現状において応力集中
源が存在しない光ファイバラ得るkは不可能に近い。こ
のため1法被惰された光ファイバの初期li!Jfは、
100 kfI/ff1−がら50 Ok&/m−の範
囲で変動する。また1次曽覆材料のうち、ある種のプラ
スチックを微積した光ファイバでは、水中または高温度
雰囲気中に放置しておくだけで、強度低下が生じること
が知られている。このように初期強度の1バラツキ“や
強度低下を生じる光ファイバを光伝送媒体に使用する場
合、長期間の実用に耐えない危険性がある。
The tensile strength when a primary coating is applied to an optical fiber without a stress concentration source is 5ookl? Non-NK has a high strength of about 1 IES / dew, but since commercially available products are generally used for the cladding glass of optical fibers, there are many small silver bubbles and surface scratches, and therefore there is a stress concentration source at present. It is almost impossible to obtain k without an optical fiber. Therefore, the initial li! of the optical fiber subjected to one modulus! Jf is
It varies in the range of 100 kfI/ff1- to 50 Ok&/m-. Furthermore, it is known that optical fibers made of a small amount of certain types of plastic among primary covering materials suffer a decrease in strength simply by being left in water or in a high-temperature atmosphere. When using an optical fiber that causes such a one-dimensional variation in initial strength or a decrease in strength as an optical transmission medium, there is a risk that it will not be able to withstand long-term practical use.

また光ファイバの接続時においては、プラスチック被覆
を取り除いてから接続を行うが、1法微積を取り除く作
業が容易でない欠点がある。
Furthermore, when connecting optical fibers, the plastic coating is removed before connection, but there is a drawback that it is not easy to remove the 1-module component.

本発明は、石英系光フアイバ用母材の表面を酸水素炎で
加熱すると同時に、母材表面に8i0−Tie畠   
  邸 または810.− ZrO,ガラス層を形成することを
特徴とし、その目的は前記問題点を解決し、光ファイバ
の最低9M度の向上、長期信幀性の向上、さらにケーブ
ル化や接続における作条性を簡易化するととKある。
The present invention heats the surface of a base material for a silica-based optical fiber with an oxyhydrogen flame, and at the same time, heats the surface of the base material with 8i0-Tie.
House or 810. - It is characterized by forming a ZrO and glass layer, and its purpose is to solve the above-mentioned problems, improve the optical fiber's minimum 9M degree, improve long-term reliability, and simplify the fabrication of cables and connections. There is a K when it becomes .

本発明者らはまず石英ファイバとコアおよびクラッドを
有する石英糸ファイバの強度を調べた結果、強度はファ
イバ中の応力に関係し、さらに峠しくけファイバ表面に
おける圧縮応力に依存し、強度を増加させるには圧縮応
力を大きくすればよいことを見い出した。ファイバ中の
応力は、コアおよびクラッドガラスの熱膨張係数の差に
よって生じるものであり、その唾が太線ければ応力は増
加し、ファイバ表面の為圧縮応力は、コアガラスの熱膨
張係数をクラッドガラスのそれより大きくし、さらにク
ラッド層を薄くすることKより得ることができる、 しかし、通常の石英系元ファイバでは、コアとクラッド
の屈折率差(熱III脹係数)、クラッドガラスの組成
(通常は810.1成分)および厚さが星められている
ので、ファイバ表面での圧縮応力はFkfl一定の応力
しか祷られない。
The present inventors first investigated the strength of a quartz fiber and a quartz fiber having a core and cladding, and found that the strength is related to the stress in the fiber, and further depends on the compressive stress on the surface of the tougeshike fiber, increasing the strength. It was discovered that the compressive stress can be increased to achieve this effect. Stress in the fiber is caused by the difference in the thermal expansion coefficients of the core and cladding glass.The thicker the line, the greater the stress, and the compressive stress on the fiber surface means that the thermal expansion coefficient of the core glass is greater than that of the cladding glass. However, in normal silica-based original fibers, the refractive index difference between the core and the cladding (thermal III expansion coefficient), the composition of the cladding glass (usually (810.1 component) and thickness, the compressive stress on the fiber surface can only be expected to be constant Fkfl.

本発明は、石英系光フアイバ用母材の表面(クラッド層
の表面)にクラッド層より熱膨張係数が小さく、さらに
屈折率が^いガラス層、すなわち810、− Tie、
または810.− ZrO,ガラス層を形成する方法を
提供するものであり、これによってファイバの表thl
Kより大きな圧縮応力を働かせるものである。
The present invention provides a glass layer having a lower coefficient of thermal expansion and a higher refractive index than the cladding layer, that is, 810, -Tie, on the surface of the base material for a silica optical fiber (the surface of the cladding layer).
or 810. - Provides a method for forming a ZrO, glass layer, thereby improving the fiber surface thl
This applies a compressive stress greater than K.

第1図は既存する光フアイバ用母材の表面KTie、ま
たはZrO,を添加した81o、糸ガラスの層を形成す
る方法、すなわち本発明の一実施例を示したものであり
、第1図において、lは既存する石英系光フアイバ用母
材、3はガラス施錠、8は酸水素バーナ、4は酸水素炎
である。
FIG. 1 shows a method of forming a layer of 81O glass yarn added with KTie or ZrO on the surface of an existing optical fiber base material, that is, an embodiment of the present invention. , l is an existing quartz-based optical fiber base material, 3 is a glass lock, 8 is an oxyhydrogen burner, and 4 is an oxyhydrogen flame.

石英系光フアイバ用母材1は、光ファイバの代表的な製
造方法であるVAD法、MCVD法およびロンドインチ
ューブ法勢により製造されたものであり、コアとクラッ
ドの寸法はすでに定められたものである。従来の石英系
光ファイバは、1g1図に示すように、光フアイバ用母
材lの表面を酸水素炎4で火炎研摩して表面傷や微小気
泡を極力除去した後に、紡糸して得られていた。
The base material 1 for silica-based optical fiber is manufactured by VAD method, MCVD method, and Rond-in-tube method, which are typical manufacturing methods of optical fiber, and the dimensions of the core and cladding are already determined. It is. Conventional silica-based optical fibers are obtained by flame-polishing the surface of an optical fiber base material 1 with an oxyhydrogen flame 4 to remove surface scratches and microbubbles as much as possible, as shown in Figure 1g1, and then spinning the fiber. Ta.

本発明は前記工程において、火炎研摩と同時にガラス原
料を気相状態で酸水素バーナ8に導入し、酸水素炎4で
酸化反応せしめたものを光フアイバ用母材lの表面に付
着させる方法であり、本発明によれば、表面傷を除去す
ると同時に、本発明によるガラス層を形成するので、高
圧縮応力による強度向上に火炎研摩の効果が加味される
The present invention provides a method in which, in the above step, the glass raw material is introduced in a vapor phase into the oxyhydrogen burner 8 at the same time as the flame polishing, and the resulting oxidation reaction is caused to adhere to the surface of the optical fiber base material l. According to the present invention, the glass layer according to the present invention is formed at the same time as removing surface scratches, so that the effect of flame polishing is added to the strength improvement due to high compressive stress.

一本発明によるガラス層の厚さは、光フアイバ用母材1
の軸方向に移動する酸水素バーナ8の等動速度と気相状
ガラス原料の供給量によって制御できるので、所望の厚
さのガラス層を形成することができ、またT10.およ
びZrO,のドープ量も任意に変えることができる。
The thickness of the glass layer according to the present invention is as follows:
Since it can be controlled by the uniform speed of the oxyhydrogen burner 8 that moves in the axial direction of the T10. The doping amount of ZrO and ZrO can also be changed arbitrarily.

第1図は本発明によって作製されたガラス層を有する光
フアイバ用母材の斜視図であり、lは石英系光フアイバ
用母材、81は本発明によるガラス層である。
FIG. 1 is a perspective view of an optical fiber base material having a glass layer produced according to the present invention, where 1 is a quartz-based optical fiber base material, and 81 is a glass layer according to the present invention.

次に本発明を具体例によって説明する。Next, the present invention will be explained using specific examples.

具体例−1 酸水素バーナにHガスをg Oj/min 、−0,ガ
ス農 な10 j/mln 、ガラス原料として81Cj、と
TiCJ。
Specific example-1 H gas is supplied to an oxyhydrogen burner at g Oj/min, -0, gas is 10 J/mln, 81 Cj is used as a glass raw material, and TiCJ.

を気相状態でそれぞれ導き、l 5 rpmで回転する
石英系光フアイバ用母材(コア系1−0111mφ、外
径11611票φ)の表面に気相状ガラス原料を含む酸
水素炎を吹き付けるとともに、酸水素バーナを石英系光
フアイバ用母材の軸方向に毎分g miaの速度で移動
させた。この工程中、母材の表面温度を測定したところ
、加熱部分の温度は約2100℃でシリ、810.− 
Tie、ガラスの透明化に充分な温度であった。長さf
iO(mにわたり酸水素バーナを移動させた後の母材表
面には第8図に示したよ5K。
were guided in a gaseous state, and an oxyhydrogen flame containing a gaseous glass raw material was sprayed onto the surface of a quartz-based optical fiber base material (core system: 1-0111 mφ, outer diameter: 11,611 mmφ) rotating at l 5 rpm. The oxyhydrogen burner was moved in the axial direction of the silica-based optical fiber base material at a speed of g mia per minute. During this process, the surface temperature of the base material was measured and found that the temperature of the heated part was approximately 2100°C and 810°C. −
Tie, the temperature was sufficient to make the glass transparent. length f
After moving the oxyhydrogen burner over iO(m), the surface of the base material has a temperature of 5K as shown in Figure 8.

810、− Tie、ガラスが形成され、その厚みは0
.4rILmであった。これを紡糸装置で外径129μ
mK設定して紡糸し、これと連続する工程でシリコーン
樹脂をバッファ層として被覆した。
810, - Tie, glass is formed and its thickness is 0
.. It was 4rILm. The outer diameter of this is 129μ using a spinning machine.
Spinning was carried out at mK setting, and in a subsequent step a silicone resin was coated as a buffer layer.

得られた光ファイバの引張り強度を10.0長さで60
本測定した結果、それらの強度はすぺ【450〜500
ゆ/IKm”の範囲内であり、最低強度が向上され、高
強度で1バラツキ”が非常に少ない結果が得られた。ま
たこのファイバを接続して作業性を−ぺた結果、バッフ
ァ層であるシリコーンゴムを容易に取り除くことができ
、しがも徴ファイバの強度が増加しているので、作業が
非常に容易となり、作業時間も短縮された。
The tensile strength of the obtained optical fiber was 10.0 at a length of 60
As a result of this measurement, their strength was [450 to 500]
The minimum strength was improved, and the result was that the strength was high and the 1 variation was very small. In addition, by connecting these fibers, workability is improved. As a result, the silicone rubber buffer layer can be easily removed, and the strength of the fibers has increased, making the work much easier. Time has also been shortened.

皇」Ii二」− ガラス原料として5ICj4とZ r CI 4を気相
状態で酸水素炎に導き、具体例−1と同様の方法により
、光フアイバ用母材の表面に810.− ZrO,ガラ
ス層を形成し、得られた母材を紡糸して引張り強度を測
定した結果、具体例−1と一様に良好な結果が得られた
5ICj4 and ZrCI4 as glass raw materials were introduced into an oxyhydrogen flame in a gaseous state, and 810. - A ZrO and glass layer was formed, the obtained base material was spun, and the tensile strength was measured. As a result, uniformly good results were obtained as in Specific Example-1.

またBiO−ZrO,ガラスは耐アルカリに優れている
ので、本発明で得られたファイバと従来のファイバを)
Js OH中にIAO時間浸漬したところ、本発明で得
られたファイバの溶解速度は、従来ファイバに比べて遅
い結果が得られた。
In addition, BiO-ZrO and glass have excellent alkali resistance, so the fiber obtained by the present invention and the conventional fiber)
When immersed in Js OH for an IAO time, the dissolution rate of the fiber obtained according to the present invention was slower than that of the conventional fiber.

なお具体例=1および具体例−8とも、コアとクラッド
が一体化された母材を出発材とした例であるが、クラッ
ド層となるべき石英管の表面に本発vIsKよってガラ
ス層を形成し、その後、コア部を挿入して光7アイパ用
母材としても同じ結果が得られた。
Note that in both Specific Example 1 and Specific Example 8, a base material in which a core and a cladding are integrated is used as a starting material, but a glass layer is formed by the present vIsK on the surface of a quartz tube that is to become a cladding layer. However, the same result was obtained when the core part was then inserted and used as a base material for Hikari 7 Eyepa.

以上説明したように、本発明の光ファイバの製造方法は
、酸水素炎で加熱して火炎研摩と同時に810−TiO
または810−ZrO,ガラス層を、光フss 皇 アイパ用母材の表面に形成するので、非常に簡単にガラ
ス層を形成することができ、この母材を紡糸するととに
より、光ファイバの最低強度を向上させることができる
。この結果、光ファイバの長期信輛性の向上を図ること
ができる。また810.−ZrO,ガラス層を有する光
ファイバにおいては、耐アルカリ効果が大きい利点があ
る。
As explained above, the method for manufacturing an optical fiber of the present invention involves heating with an oxyhydrogen flame and simultaneously flame polishing the 810-TiO
Alternatively, a glass layer of 810-ZrO is formed on the surface of the base material for optical fiber SS, so the glass layer can be formed very easily, and by spinning this base material, the minimum Strength can be improved. As a result, it is possible to improve the long-term reliability of the optical fiber. Also 810. -An optical fiber having a ZrO and glass layer has the advantage of high alkali resistance.

さらに本発明によるガラス層は、従来実施されている1
次プラスチック被覆層と同じ役割を果たすので、本発明
が実施された母材を紡糸する工程においては、1次被覆
が不必要であり、紡糸装置の簡略化や紡糸作業の単純化
や、接続時における作業時間の短縮化を図ることができ
る利点がある。
Furthermore, the glass layer according to the present invention
Since the primary coating plays the same role as the secondary plastic coating layer, the primary coating is unnecessary in the process of spinning the base material in which the present invention is carried out, and it is possible to simplify the spinning equipment, simplify the spinning operation, and This has the advantage that the working time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図は本発明に
より得られた母材の斜視図である。 1・・・石英系光フアイバ用母材、2・・・ガラス施錠
、8・・・酸水素バーナ、4・・・酸水素炎、21・・
・本発明によるガラス層。 第1図 第2図
FIG. 1 is a schematic diagram of an embodiment of the present invention, and FIG. 2 is a perspective view of a base material obtained by the present invention. 1... Base material for quartz-based optical fiber, 2... Glass lock, 8... Oxygen hydrogen burner, 4... Oxygen hydrogen flame, 21...
- Glass layer according to the invention. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 石英系光フアイバ用母材の表面を酸水素炎で加熱す
ると同時に、 81Cj4− TiCj、または8iC
j4− ZrCj、を気相状態で付着させて前記石英系
光ファイ;々用母材の表面K Sin、 −Tie。 または810.− ZrO,ガラス層を形成した猿、紡
糸して光ファイバを製造することを特徴とする光ファイ
バの製造方法。
[Claims] 1. At the same time as heating the surface of the base material for quartz-based optical fiber with an oxyhydrogen flame, 81Cj4-TiCj or 8iC
J4-ZrCj is deposited in a gaseous state to the surface of the base material for the quartz-based optical fiber. or 810. - A method for manufacturing an optical fiber, which comprises manufacturing an optical fiber by spinning a ZrO and glass layer.
JP4730082A 1982-03-26 1982-03-26 Production of optical fiber Pending JPS58167441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4730082A JPS58167441A (en) 1982-03-26 1982-03-26 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4730082A JPS58167441A (en) 1982-03-26 1982-03-26 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPS58167441A true JPS58167441A (en) 1983-10-03

Family

ID=12771427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4730082A Pending JPS58167441A (en) 1982-03-26 1982-03-26 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPS58167441A (en)

Similar Documents

Publication Publication Date Title
US4082420A (en) An optical transmission fiber containing fluorine
JPS5852935B2 (en) Manufacturing method for optical transmission materials
JPS61155225A (en) Manufacture of optical wave guide tube
US4161505A (en) Process for producing optical transmission fiber
US4295869A (en) Process for producing optical transmission fiber
JP3941910B2 (en) Method for producing hydrogen-resistant optical waveguide fiber and soot preform as precursor thereof
US4165152A (en) Process for producing optical transmission fiber
US4504297A (en) Optical fiber preform manufacturing method
US4327965A (en) Single mode fibre and method of manufacture
JP2006030655A (en) Optical fiber, method for evaluating and manufacturing the same
JPS6240301B2 (en)
JPH051221B2 (en)
JPS58167441A (en) Production of optical fiber
KR100892373B1 (en) Optical fibre and method of manufacturing an optical fibre
JPS627130B2 (en)
JPS62283845A (en) Doped quartz-base optical fiber
JPS5879835A (en) Surface-treating method for optical fiber preform
JPS5816161B2 (en) Optical transmission line and its manufacturing method
JPS5930659B2 (en) Optical fiber manufacturing method
JPS6183639A (en) Production of quartz pipe of high purity
JPS5924743B2 (en) Manufacturing method of optical fiber base material
JPS6240302B2 (en)
JP2898705B2 (en) Manufacturing method of optical fiber preform
JPH0723228B2 (en) Method of manufacturing constant polarization optical fiber
JPH01257149A (en) Production of stress imparted constant polarization optical fiber