JPS58166770A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58166770A
JPS58166770A JP57049766A JP4976682A JPS58166770A JP S58166770 A JPS58166770 A JP S58166770A JP 57049766 A JP57049766 A JP 57049766A JP 4976682 A JP4976682 A JP 4976682A JP S58166770 A JPS58166770 A JP S58166770A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
doped
silicide film
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57049766A
Other languages
Japanese (ja)
Inventor
Shinichi Inoue
井上 信市
Masaru Shiraki
白木 勝
Nobuo Toyokura
豊蔵 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57049766A priority Critical patent/JPS58166770A/en
Publication of JPS58166770A publication Critical patent/JPS58166770A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2

Abstract

PURPOSE:To prevent the dissipation and scatter of P atoms in a metal silicide film when a heat treatment is to be performed to attain diffusion of As atoms implanted by ion implantation by a method wherein the upper part of the doped silicide film is covered with a nitrogen compound film. CONSTITUTION:At the semiconductor device, the surfaces of the gate electrodes 21, 22 of the MOS type semiconductor device formed of the doped silicide film doped with the P atoms are covered with the nitrogen (N2) compound films 23, 24 of the silicide of a high melting point metal of molybdenum (Mo), etc. By covering the doped silicide film with the nitrogen compound of the silicide of the high melting point metal like this, the dissipation and scatter of the P atoms contained in said doped silicide film to be generated when the substrate is heated for formation of a PSG film at the formation process of the semiconductor device to be performed thereafter are prevented, and moreover the dissipation and scatter of said P atoms from the upper part of the substrate when the substrate is thermally treated after As ion implantation is performed for formation of source regions 25, 26 and a drain region 27 are also prevented.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は半導体装置、特に回路素子間を接続する配線膜
やゲート電極にドープトシリサイド膜を用いた半導体装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to improvements in semiconductor devices, particularly in semiconductor devices using doped silicide films for wiring films and gate electrodes connecting circuit elements.

(b)  技術の背景 最近MO3型半導体装置において81と例えばモリブデ
ン(Mo)等との化合物のメタルシリサイドよりなるゲ
ート電極やあるいは該MO8型半導体装置の回路素子間
を接続するメタルシリサイド膜よりなる配線膜に該メタ
ルシリサイドの比抵抗を低下させ、導電性を高めるため
に該メタルシリサイド膜にりん(P)、砒素(As)、
ボロン(B)等の不純物を導入したドープトメタルシリ
サイド膜が用いられつつある。
(b) Background of the technology Recently, in MO3 type semiconductor devices, a gate electrode made of metal silicide of a compound of 81 and molybdenum (Mo) or the like, or a wiring made of a metal silicide film connecting circuit elements of the MO8 type semiconductor device. Phosphorus (P), arsenic (As),
Doped metal silicide films into which impurities such as boron (B) are introduced are being used.

(C)従来技術と問題点 このようなドープトメタルシリサイド膜を用い構造の半
導体装置の回路図を示す図で第2図はその断面図である
。第1.第2図はエンハンスメント型のMOS )ヲン
ジスタ1をドライバーとして用い、デプレッション型の
MOS)フンジスタ2をロードとして用いたM OS型
のインバーター回路を示すもので、第2図に示すように
P型の91基板3に素子間分離用の510g1ll14
が形成され、一 更に該8102膜で画定された領域内にはゲート用81
02膜5が形成されている。そしてロード側のトランジ
スタ2のゲート電極とドライバー側のトフンt)y、1
1のドレイン領域とを接続するための接続孔6が開孔さ
れている。そして該基板上にはりんCP>をドーグした
モリプデ゛ンシリサイド膜よりなるドライバー側のトラ
ンジスタのゲート電極7とロード側のトランジスタのゲ
ート電極8とが所定のパターンで形成され、該ゲートv
l極7および8をマスクとしてセルファラインで砒素f
As)原子がイオン注入されてソース領域9.10.お
よびドレイン領[11が形成されている。そしてこのよ
うにメタルシリサイド膜中にPをドープすることでゲー
ト電極7.8の比抵抗を低下させ、空気中のナトリウム
イオン(Na+)かグー)Km’)通過して基板内に入
り込むのを防止し、更にドレイン領域11とゲート電極
8との接続を良好にならしめている。
(C) Prior Art and Problems FIG. 2 is a diagram showing a circuit diagram of a semiconductor device having a structure using such a doped metal silicide film, and FIG. 2 is a cross-sectional view thereof. 1st. Figure 2 shows an MOS type inverter circuit using an enhancement type MOS transistor 1 as a driver and a depletion type MOS transistor 2 as a load. 510g1ll14 for isolation between elements on substrate 3
is formed, and furthermore, a gate 81 is formed in the area defined by the 8102 film.
02 film 5 is formed. And the gate electrode of transistor 2 on the load side and the gate electrode of transistor 2 on the driver side
A connection hole 6 for connecting the first drain region to the second drain region is formed. Then, on the substrate, a gate electrode 7 of a driver side transistor and a gate electrode 8 of a load side transistor, which are made of a molybdenum silicide film doped with phosphorus CP>, are formed in a predetermined pattern.
Arsenic f is applied to the self-line using poles 7 and 8 as masks.
As) atoms are ion-implanted into the source region 9.10. and a drain region [11] are formed. By doping P into the metal silicide film in this way, the resistivity of the gate electrode 7.8 is lowered, and sodium ions (Na+) in the air (Km') pass through and enter the substrate. In addition, the connection between the drain region 11 and the gate electrode 8 is made good.

しかし上述した従来の構造の半導体装置におりては、該
半導体装置のゲート電極に添化されているP原子がその
後の半導体装置の表面保護をするためのPSG膜の形成
工程や、あるいはAs原子をイオン注入した後、所定の
深さまでAs原子を導入するための熱処理工程において
外部へ逃散してしまうような不都合を生じる。このよう
にドープトメタルシリサイド膜よシドーグされたAs原
子が逃散すると該ゲート電極の比抵抗が向上して形成さ
れる半導体装置が正常に動作しなかったシ、あるいはゲ
ート電極8とドレイン領域11との接続が不充分になっ
たシする欠点を生じる。
However, in the semiconductor device having the conventional structure described above, the P atoms added to the gate electrode of the semiconductor device are removed during the subsequent process of forming a PSG film to protect the surface of the semiconductor device, or the As atoms are added to the gate electrode of the semiconductor device. After ion implantation, As atoms escape to the outside during the heat treatment step for introducing As atoms to a predetermined depth. If the As atoms doped into the doped metal silicide film escape in this way, the resistivity of the gate electrode increases and the formed semiconductor device does not function properly, or the gate electrode 8 and drain region 11 The disadvantage is that the connection is insufficient.

((1)  発明の目的 本発明は上述した欠点を除去し、前述した半導体装置の
表面保護を行うためのPSG膜の形成時や、あるいはソ
ース・ドレイン領域の形成のため、イオン注入されたA
s原子の拡散を図る目的で実施する熱処理時に金属シリ
サイド膜中のPIl[子が逃散しないような構造の半導
体装置の提供を目的とするものである。
((1) Purpose of the Invention The present invention eliminates the above-mentioned drawbacks and uses ion-implanted A to form a PSG film for protecting the surface of a semiconductor device, or for forming a source/drain region.
The object of the present invention is to provide a semiconductor device having a structure in which PIl molecules in a metal silicide film do not escape during heat treatment performed for the purpose of diffusing s atoms.

(e)  発明の構成 かかる目的を達成するための本発明の半導体装置はシリ
コン基板よに半導体素子が形成され、該半導体素子を構
成するゲート電極、あるいは該半導体素子間を接続する
配線膜がドープトシリサイド膜にて形成されてなる半導
体装置において、前記ドープトシリサイド膜の上部が窒
素化合物膜にて被覆されていることを特徴とするもので
ある。
(e) Structure of the Invention In order to achieve the above object, the semiconductor device of the present invention has a semiconductor element formed on a silicon substrate, and a gate electrode constituting the semiconductor element or a wiring film connecting the semiconductor elements is doped. A semiconductor device formed of a doped silicide film is characterized in that an upper part of the doped silicide film is covered with a nitrogen compound film.

更には前記窒素化合物膜の代りに窒化シリサイド膜が用
いられていることを特徴とするものである。
Furthermore, the present invention is characterized in that a nitride silicide film is used in place of the nitrogen compound film.

また窒化シリサイド膜の代わヤに窒化金属膜が用いられ
ていることを特徴とするものである。
Further, the present invention is characterized in that a metal nitride film is used in place of the nitride silicide film.

(f′)発明の91!施例 以下図面を用いて本発明の半導体装置の一実施例につき
詳細に説明する。
(f') 91 of inventions! EXAMPLE An example of the semiconductor device of the present invention will be described in detail below with reference to the drawings.

第8図は本発明の半導体装置の構造を示す断面図、第4
図より第6図までは本発明の半導体装置の製造の工程を
示す断面図、第7図は本発明の半導体装置の形成の際に
用いる製造装置の概略図、第8図は本発明の半導体装置
の製造に際し不純物が導入される場合の不純物原子の濃
度分布状態を示す図、第9図は本発明の半導体装置の製
造に際し不純物が導入される状態を示す図である。
FIG. 8 is a cross-sectional view showing the structure of the semiconductor device of the present invention;
6 to 6 are cross-sectional views showing the steps of manufacturing the semiconductor device of the present invention, FIG. 7 is a schematic diagram of a manufacturing apparatus used in forming the semiconductor device of the present invention, and FIG. 8 is a semiconductor device of the present invention. FIG. 9 is a diagram showing the concentration distribution state of impurity atoms when impurities are introduced during the manufacturing of the device. FIG. 9 is a diagram showing the state where impurities are introduced during the manufacturing of the semiconductor device of the present invention.

まず第8図に示すように本発明の半導体装置が従来の装
置と異なる点はP原子がドープされてドープトシリサイ
ド膜で形成されているMo5s半導体装置のゲート電W
i21および22の表面がモリブデン(MO)等の高融
点金属のシリサイドの窒31i(Ng)化合物膜28.
24によって被覆されている点にある。このように高融
点の金属のシリサイドの窒素化合物でドープトシリサイ
ド膜を被覆することで、該ドープトシリサイド膜中に含
有されているPの原子が、その後の半導体装置の形成工
程におけるPSG膜の形成時の基板の加熱時においても
逃散することがなくなシ、またソース領域25.26ド
レイン領埴27を形成するためAsのイオン注入後、基
板を熱処理する際においても基板上よシ逃散することが
なくなる。
First, as shown in FIG. 8, the difference between the semiconductor device of the present invention and the conventional device is that the gate voltage W of the Mo5s semiconductor device is doped with P atoms and is formed of a doped silicide film.
The surface of i21 and 22 is a nitrogen 31i (Ng) compound film 28, which is a silicide of a high melting point metal such as molybdenum (MO).
24. By coating the doped silicide film with a high-melting-point metal silicide nitrogen compound, the P atoms contained in the doped silicide film can be absorbed into the PSG film in the subsequent semiconductor device formation process. They do not escape even when the substrate is heated during formation, and they also escape on the substrate when the substrate is heat treated after As ion implantation to form the source regions 25, 26 and drain regions 27. Things will disappear.

このような半導体装置の製造工程を順を追って説明する
とまず第4図に示すようにP型のSi基板81に該基板
の熱酸化によって素子量分#l用の5102膜82を形
成する。その後核晶板上にゲート用のSing膜33を
化学蒸着(CVD)法によって形成する。そしてホトリ
ソグラフィ法およびプラズマエツチング法を用いて該基
板上に形成すべきエンハンスメントMOS型トフンジヌ
タのドレイン領域とデプレッションMOS型トランジス
タのゲート電極とを接続するための接続用孔101を窓
開きする。その後該基板81を第7図に示すスパッタ装
置の反応室84内の試料設置台85に設置する。一方基
板と対向する該室内のターゲット設置台86上にはMO
よシなるターゲット37と81よシなるターゲット88
を設置し該反応室内をパルプ102を開いて真空に排気
したのち、バルジ102ヲ閉1;アルゴン(Ar)ガス
とホスフィン(、PHa)ガスの混合ガスをパルプ10
8を開いて該室内に導入してターゲットと基板間に高電
圧を印加して電界を形成してPがドープされたMOシリ
サイドに膜を形成すべきMO8)フンジスタのゲート*
極として形成する。その後前述したArガスとPH3ガ
スの混合ガスの導入用パルプ103を閉じ、N2ガスを
Arガスに対し容量比で5%混入したArとN2の混合
ガスをパルプ104を開いてM。
To explain the manufacturing process of such a semiconductor device step by step, first, as shown in FIG. 4, a 5102 film 82 for the number of elements #1 is formed on a P-type Si substrate 81 by thermal oxidation of the substrate. Thereafter, a Sing film 33 for a gate is formed on the nucleus plate by chemical vapor deposition (CVD). A connection hole 101 for connecting the drain region of the enhancement MOS transistor to be formed on the substrate and the gate electrode of the depletion MOS transistor is then opened using photolithography and plasma etching. Thereafter, the substrate 81 is placed on a sample mounting table 85 in a reaction chamber 84 of a sputtering apparatus shown in FIG. On the other hand, on the target installation stand 86 in the room facing the substrate, there is an MO
Good targets 37 and 81 Good targets 88
After the reaction chamber is evacuated by opening the pulp 102, the bulge 102 is closed 1; a mixed gas of argon (Ar) gas and phosphine (PHa) gas
8) Gate of Fungistar *
Form as a pole. Thereafter, the pulp 103 for introducing the mixed gas of Ar gas and PH3 gas mentioned above is closed, and the pulp 104 is opened to introduce a mixed gas of Ar and N2 in which N2 gas is mixed in a volume ratio of 5% to Ar gas.

導入する。すると前述し九PドープのM2シリサイド膜
上にMOシリサイドの窒素化合物膜が連続的に形成され
る。その後基板を反応室よシ取り出し該基板上にホトレ
ジスト膜を塗布後、該ホトレジス)fi11所定パター
ンにプラズマエツチング法で成形後、該パターニングさ
れたホトレジスト膜をマスクとして用いて四弗化炭素(
CF4)と酸素(02)とを反応ガスとして用いてプラ
ズマエツチング法によりMOシリサイドの窒素化合物膜
およびPドープのMOシリサイド膜を所定のパターンに
エツチングして成形する。第5図において21゜22は
このようにして形成されたMOS )ヲンジスタのPド
ープのMOシリサイド膜よりなるゲート電極で23.2
4はMOシリサイドの窒素化合物よりなる保護膜である
Introduce. Then, a nitrogen compound film of MO silicide is continuously formed on the above-mentioned 9P-doped M2 silicide film. Thereafter, the substrate was taken out of the reaction chamber, and a photoresist film was coated on the substrate, and the photoresist film was formed into a predetermined pattern using a plasma etching method. Using the patterned photoresist film as a mask, carbon tetrafluoride (
The MO silicide nitrogen compound film and the P-doped MO silicide film are etched into a predetermined pattern by plasma etching using CF4) and oxygen (02) as reaction gases. In FIG. 5, 21° and 22 are gate electrodes made of a P-doped MO silicide film of the MOS transistor formed in this way, and 23.2
4 is a protective film made of a nitrogen compound of MO silicide.

その後第6図に示すように前述したゲート電極21およ
び22をマスクとして基板上にAs原子を矢印のように
イオン注入してから加熱処理し7てMO8)ランジスタ
のソース領域25,26おjよびドレイン領域27を形
成する。
Thereafter, as shown in FIG. 6, using the aforementioned gate electrodes 21 and 22 as a mask, As atoms are ion-implanted onto the substrate in the direction of the arrow, and then heat-treated. A drain region 27 is formed.

その後回には示さないが該基板上にPSG膜を形成後、
Si晶板に形成した回路素子を接続するための接続用孔
を窓開きしたのちAl金属を蒸着して所定のパターンに
該Al金属を成形して半導体装置とする。
Although not shown in the subsequent part, after forming the PSG film on the substrate,
After connecting holes for connecting circuit elements formed in the Si crystal plate are opened, Al metal is vapor deposited and the Al metal is formed into a predetermined pattern to form a semiconductor device.

ここで第8図に81基板上にPドープしたM。Here, FIG. 8 shows a P-doped M on a 81 substrate.

シリサイド膜を形成し、その上にMOシリサイドの窒素
化合物膜を形成した本発明の半導体装置形成法を用いた
試料AiS:i基板上にPドープしたMOシリサイド膜
を有する従来の半導体装置形成法を用いた試料Bとを熱
処理した状態を示す。図で実線41は試料Aの熱処理後
のPドープしたMOシリサイド腹中のPの濃度の分布の
状態を示し、点線42は試料Bの熱処理後のPのドープ
したん10シリサイド膜中のPの濃度の分布状釣を示す
。図示するように本発明の半導体装置においてはゲート
’+kn内のPの濃度は殆んど一定であるが従来の半導
体装置においては900℃以上でPが逃散して11の1
M度が減少しているのが解る。また第9図に試料Aを9
00℃の温度で20分間熱処理した際の1ψ○シリサイ
ド膜中のPの濃度のプロフィ/L’43を示すが殆んど
便化は見られない。
Sample AiS using the semiconductor device formation method of the present invention in which a silicide film is formed and a MO silicide nitrogen compound film is formed on it: A sample AiS using the semiconductor device formation method of the present invention in which a silicide film is formed and a MO silicide nitrogen compound film is formed on it: The state after heat treatment of sample B used is shown. In the figure, a solid line 41 shows the state of the P concentration distribution in the P-doped MO silicide film after the heat treatment of sample A, and a dotted line 42 shows the state of the P concentration distribution in the P-doped MO silicide film after the heat treatment of sample B. Shows the distribution of concentration. As shown in the figure, in the semiconductor device of the present invention, the concentration of P in the gate '+kn is almost constant, but in the conventional semiconductor device, P escapes at temperatures above 900°C, and the concentration of P in the gate '+kn is almost constant.
It can be seen that the M degree is decreasing. In addition, sample A is shown in Figure 9.
The figure shows the P concentration profile/L'43 in a 1ψ○ silicide film when heat treated at a temperature of 00°C for 20 minutes, but almost no facilitation is observed.

このようにPがドープされたMOシリサイド膜の上部を
MOシリサイドの窒素化合物膜で被膜することで、該ド
ープされ九P原子の逃散が防止さJ1前記Pがドープさ
れたM○シリサイド膜をゲート電極あるいは、インバー
ターを形成する2種のMOS l−ランジスタのゲート
電極とドレイン領域とを接続するための配線膜として使
用した場合、該ゲー)’l[極と配線膜の比抵抗が変動
しないので高信頼度の半導体装置が得られる。
By coating the upper part of the P-doped MO silicide film with a nitrogen compound film of MO silicide, escape of the doped 9P atoms is prevented. When used as an electrode or a wiring film to connect the gate electrode and drain region of two types of MOS transistors forming an inverter, the specific resistance of the gate electrode and the wiring film does not change. A highly reliable semiconductor device can be obtained.

また以上の実施例ではPをドープしたMOシリサイド膜
上にM○シリサイドの窒素化合物を用いて被覆したが、
この他MOの代わりにタング7テン(W )やチタニウ
ム(Tj−)や、pyり!v(’ra)等の高融点金属
を用いてもよい。またPの代わシにAB、B等の不純物
が導入されたMOシリサイド膜でもよい。
Furthermore, in the above embodiments, the P-doped MO silicide film was coated with a nitrogen compound of M○ silicide.
In addition, instead of MO, tung 7 ten (W), titanium (Tj-), and pyri! A high melting point metal such as v('ra) may also be used. Alternatively, an MO silicide film may be used in which impurities such as AB and B are introduced instead of P.

またMOシリサイド膜と窒素の化合物膜の代わりに窒素
とMO,窒素とW、窒素とTaのような高融点メp/L
/と窒素との化合物膜を用いて不純物がドープされたシ
リサイド膜を被覆してもよい。また以上の実施例ではゲ
ート電極に例を用いて述べたが、その他ドープトシリサ
イド膜を用いて半導体素子間を接続する配線膜上に窒化
シリサイド膜または窒化金属膜を用いて被覆しても同様
の効果がある。
Also, instead of MO silicide film and nitrogen compound film, high melting point mep/L such as nitrogen and MO, nitrogen and W, nitrogen and Ta
A silicide film doped with impurities may be covered with a compound film of / and nitrogen. In addition, although the above embodiments have been described using the gate electrode as an example, it is also possible to cover a wiring film connecting semiconductor elements using a doped silicide film with a nitride silicide film or a metal nitride film. There is an effect.

(ロ)発明の効果 以上述べたように本発明の半導体装置のw4造によれば
半導体装置のゲート電極、および回路集子間を接続する
メタルシリサイド膜中に該シリサイド膜の導電性を向上
さすためドープされている不純物が逃散しなくなる・の
で、高信頼度の半導体装置が得られる利点を生じる。
(B) Effects of the invention As described above, according to the W4 structure of the semiconductor device of the present invention, the conductivity of the silicide film in the metal silicide film connecting between the gate electrode and the circuit assembly of the semiconductor device is improved. This prevents the doped impurities from escaping, resulting in the advantage that a highly reliable semiconductor device can be obtained.

また本発明の半導体装置はMO8型半導体装置に例を用
いて述べたがパイボーフ型の半導体装置會上述したメタ
ルシリサイド膜で配線する場合においても適用ρJ能で
ある。
Further, although the semiconductor device of the present invention has been described using an MO8 type semiconductor device as an example, the ρJ function can also be applied to a Paibov type semiconductor device in which wiring is formed using the metal silicide film described above.

【図面の簡単な説明】 第1図は従来の半導体装置の回路図、第2図は従来の半
導体装置の構造を示す断面図、第8図は本発明の半導体
装置の一実施例を示す断面図、第4図より第6図までは
本発明の半導体装置の製造工程を示す断面図、第7図は
本発明の半導体装置の製造に用いる装置図、第8図、第
9図は本発明の半導体装置に用いたシリサイド膜の不純
物分布を示す図である。図においてlはエンハンスメン
ト型トランジスタ、2はデプレション型トフンジスタ、
3,31は81基板、4,82は5102膜、5.33
uゲ−1sio、膜、6.101ハ接続用孔、?、8,
21.22はゲート電極、9.10゜25.26はソー
ス領域、11.27はドレイン領域、34は反応室、3
5は試料設置台、86はターゲット設置台、87はMO
メタ−ット、88はSi、ターゲット、102.103
.104はパルプ、41゜42.43はPをドープした
シリサイド膜の不純物プロフィルを示す線図である。 第1図 第2110 第3図 1b            iJ        2
6第4rj!J 第6図 第7図 03 −    第81項 挾ニー髭−−中  ごC) ?     第9図 ′「 0    0.2   0,4   0.6Pの僚に掠
獣;撃7(戸m)
[Brief Description of the Drawings] Fig. 1 is a circuit diagram of a conventional semiconductor device, Fig. 2 is a sectional view showing the structure of a conventional semiconductor device, and Fig. 8 is a sectional view showing an embodiment of the semiconductor device of the present invention. 4 to 6 are cross-sectional views showing the manufacturing process of the semiconductor device of the present invention, FIG. 7 is a diagram of an apparatus used for manufacturing the semiconductor device of the present invention, and FIGS. 8 and 9 are cross-sectional views showing the manufacturing process of the semiconductor device of the present invention. FIG. 3 is a diagram showing the impurity distribution of a silicide film used in the semiconductor device of FIG. In the figure, l is an enhancement type transistor, 2 is a depletion type transistor,
3, 31 is 81 substrate, 4, 82 is 5102 film, 5.33
uge-1sio, membrane, 6.101c connection hole,? ,8,
21.22 is a gate electrode, 9.10° 25.26 is a source region, 11.27 is a drain region, 34 is a reaction chamber, 3
5 is a sample installation stand, 86 is a target installation stand, 87 is MO
Metal, 88 is Si, target, 102.103
.. 104 is a diagram showing the impurity profile of pulp and 41°42.43 is a P-doped silicide film. Figure 1 2110 Figure 3 1b iJ 2
6th 4th rj! J Figure 6 Figure 7 03 - Section 81 Knee Beard - Medium C)? Figure 9' 0 0.2 0.4 0.6P's team is attacked by a beast; attack 7 (door m)

Claims (1)

【特許請求の範囲】 α)  Vリコン晟板上に半導体素子が形成され、該半
導体素子を構成するゲート電極、あるいは誼半導体素子
間を接続する配線膜がドープトシリサイド膜にて形成さ
れて表る半導体装置において、前記ドープトシリサイド
膜の上部がi1素化合物膜にて被覆されていることを特
徴とする半導体装置。 (2)前記窒素化合物膜が窒化シリサイド膜であること
を特徴とする特許請求の範囲第(1)項に記載の半導体
装置。 (8)前記窒素化合物が窒化金属膜であることを特徴と
する特許請求の範囲第0)項に記載の半導体装置。
[Claims] α) A semiconductor element is formed on a V-reconverter plate, and a gate electrode constituting the semiconductor element or a wiring film connecting between the semiconductor elements is formed of a doped silicide film. 1. A semiconductor device characterized in that an upper part of the doped silicide film is covered with an i1 compound film. (2) The semiconductor device according to claim (1), wherein the nitrogen compound film is a nitride silicide film. (8) The semiconductor device according to claim 0, wherein the nitrogen compound is a metal nitride film.
JP57049766A 1982-03-26 1982-03-26 Semiconductor device Pending JPS58166770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57049766A JPS58166770A (en) 1982-03-26 1982-03-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57049766A JPS58166770A (en) 1982-03-26 1982-03-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58166770A true JPS58166770A (en) 1983-10-01

Family

ID=12840291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57049766A Pending JPS58166770A (en) 1982-03-26 1982-03-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58166770A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123769A (en) * 1985-11-22 1987-06-05 Sony Corp Semiconductor device
JPS62203370A (en) * 1986-03-03 1987-09-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS6437012A (en) * 1987-07-31 1989-02-07 Nec Corp Manufacture of semiconductor integrated circuit
US5621232A (en) * 1993-10-05 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a local interconnection between an interconnection layer and an adjoining impurity region
US5719410A (en) * 1993-12-28 1998-02-17 Kabushiki Kaisha Toshiba Semiconductor device wiring or electrode
US5903053A (en) * 1994-02-21 1999-05-11 Kabushiki Kaisha Toshiba Semiconductor device
US5907188A (en) * 1995-08-25 1999-05-25 Kabushiki Kaisha Toshiba Semiconductor device with conductive oxidation preventing film and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123769A (en) * 1985-11-22 1987-06-05 Sony Corp Semiconductor device
JPS62203370A (en) * 1986-03-03 1987-09-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
JPS6437012A (en) * 1987-07-31 1989-02-07 Nec Corp Manufacture of semiconductor integrated circuit
US5621232A (en) * 1993-10-05 1997-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a local interconnection between an interconnection layer and an adjoining impurity region
US5719410A (en) * 1993-12-28 1998-02-17 Kabushiki Kaisha Toshiba Semiconductor device wiring or electrode
US5903053A (en) * 1994-02-21 1999-05-11 Kabushiki Kaisha Toshiba Semiconductor device
US5907188A (en) * 1995-08-25 1999-05-25 Kabushiki Kaisha Toshiba Semiconductor device with conductive oxidation preventing film and method for manufacturing the same
US6133150A (en) * 1995-08-25 2000-10-17 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4528744A (en) Method of manufacturing a semiconductor device
JP2921889B2 (en) Method for manufacturing semiconductor device
EP0139467B1 (en) Method of manufacturing an insulated-gate field-effect transistor
US5967794A (en) Method for fabricating a field effect transistor having elevated source/drain regions
KR20030044800A (en) Semiconductor device having a low-resistance gate electrode
US5940725A (en) Semiconductor device with non-deposited barrier layer
US5015593A (en) Method of manufacturing semiconductor device
JPS58166770A (en) Semiconductor device
KR960005801A (en) Semiconductor device manufacturing method
JPH08330255A (en) Manufacture of semiconductor device
JPS63181422A (en) Formation of titanium nitride film
JPS6360549B2 (en)
JPS6226573B2 (en)
US7037858B2 (en) Method for manufacturing semiconductor device including an ozone process
JP3182833B2 (en) Thin film transistor and method of manufacturing the same
US20020068446A1 (en) Method of forming self-aligned silicide layer
JP2983611B2 (en) Method for manufacturing semiconductor device
JPS61258447A (en) Manufacture of semiconductor device
JP3076243B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JPH01160009A (en) Manufacture of semiconductor device
JP3058956B2 (en) Semiconductor device and manufacturing method thereof
JPH0227769A (en) Semiconductor device
JPH05102074A (en) Mos transistor
JP2839909B2 (en) Method for manufacturing semiconductor device
KR100272609B1 (en) Metal wiring method of semiconductor device