JPS58164724A - Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic - Google Patents

Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic

Info

Publication number
JPS58164724A
JPS58164724A JP4551482A JP4551482A JPS58164724A JP S58164724 A JPS58164724 A JP S58164724A JP 4551482 A JP4551482 A JP 4551482A JP 4551482 A JP4551482 A JP 4551482A JP S58164724 A JPS58164724 A JP S58164724A
Authority
JP
Japan
Prior art keywords
weight
hot
rolling
less
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4551482A
Other languages
Japanese (ja)
Inventor
Hiroto Nakamura
中村 広登
Isao Ito
伊藤 庸
Hiroshi Matsumura
松村 洽
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4551482A priority Critical patent/JPS58164724A/en
Publication of JPS58164724A publication Critical patent/JPS58164724A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a nondirectionally oriented electrical steel plate having excellent magnetic characteristics by applying a specific heat treatment to a hot rolled steel plate contg. B prior to cold rolling thereby annihilating the suppressing effect for growth of crystal grains by AlN. CONSTITUTION:The silicon steel contg. <0.050% C, <4.0% Si, 0.1-0.5% Mn, <0.1% Al, <0.1% P, <0.02% S and <0.005% N, and in the case of 0.01-0.02% S, contg. 0.003-0.03% at least 1 kind selected among Ca and rare earth elements, and contg. B so as to contain B/N at 0.2-0.5 according to the contents of N is melted. The ingot thereof is hot-rolled and is then annealed for 2-10min at 700-1,000 deg.C, or is subjected to heat treatment for cooling the same quickly upon lapse of 4-30sec when the temp. at the end of the hot rolling is >=750 deg.C, whereafter the ingot is cold-rolled. Crystal grains are grown under suppressed deposition of AlN by B and with the decreased effect for suppressing the crystallization by AlN, whereby a silicon steel plate having excellent magnetic characteristics is produced.

Description

【発明の詳細な説明】 −この発明は、−気勢性の優れた無方向性璽磁鋼板の製
造方法に関し、とくに鉄損の低いこの―磁性材料の安価
な製造を可能ならしめようとTるものである。
[Detailed Description of the Invention] - This invention relates to - a method for producing a non-oriented magnetic steel sheet with excellent magnetic properties, and particularly aims to enable inexpensive production of this magnetic material with low iron loss. It is something.

電磁鋼板には方向性珪素鋼板と無方向性電磁鋼板の3種
類があり、このうち無方向性電磁鎖板は方向性が問題と
ならない程度のJI!結晶集会組織を有するもので、S
1含有量も零から1重量憾(以下単に弧で示T)!で広
い範囲にわたっている。
There are three types of electrical steel sheets: oriented silicon steel sheets and non-oriented electrical steel sheets. Among these, non-oriented electromagnetic chain plates have a JI! It has a crystalline structure, and S
1 content is also 1 weight from zero (hereinafter simply indicated by an arc T)! covers a wide range.

無方向性電磁鋼板は、その方向比が小さいことと価格が
安いことの故に主として小塵の電動機や継電器、小部ト
ランス、安定−などに利用される。
Non-oriented electrical steel sheets are mainly used for small dust motors, relays, small transformers, stabilizers, etc. because of their small orientation ratio and low price.

2て無方向性電磁鋼板の鉄損を低減Tることは、こうし
た電気機器のエネルギー損失を回避するために必要とさ
れ、こ−綜無方向性1磁−叡の鉄損は渦流損とy/!l
l11損からなり、尤のうち渦流損は主として、板厚と
81含有量で決゛′tF8れるため、低鉄損化への冶金
学的努力は、−無援を低減することに向けられる。丁な
わち冶金学的に鋼板の結晶粒を粗大化させて111!I
I損を低減させようとすることである。
2) It is necessary to reduce the iron loss of non-oriented electrical steel sheets in order to avoid such energy loss in electrical equipment. /! l
The eddy current loss is mainly determined by the plate thickness and the 81 content, so metallurgical efforts to lower the core loss are aimed at reducing the 81 loss. In other words, metallurgically, the crystal grains of the steel plate are coarsened to 111! I
The aim is to reduce I loss.

そこで鋼板の結晶粒の粒成長性を改咎マる必要があると
ころ、IIl板の粒成長を抑制する鋼中析出物としては
ム111と11n8が知られ、このうちMnSはSを0
.01−以下にすることで無害化される一方で五IMに
ついてはム19Mの量を低減することによって、粒成長
の抑制力を消失させることは麹しい◎例えば、ムjの低
減については、0.001%以下に至らせることが必要
であり、甚しい価格の上昇を招き、またNに関しても、
0.001%・以下に抑えることかやはり必要であって
、現在の麹銅技袷では不可能である。
Therefore, it is necessary to modify the grain growth properties of the crystal grains of steel sheets, and Mn111 and 11n8 are known as precipitates in steel that suppress the grain growth of IIl sheets.
.. On the other hand, it is difficult to eliminate the suppressive power of grain growth by reducing the amount of Mu19M for 5IM. For example, for the reduction of Muj, .001% or less, which would lead to a significant increase in price, and also with regard to N.
It is necessary to keep the content below 0.001%, which is impossible with the current kojido technique.

通常のNレベルである40〜60 ppmのN含有量に
対して、ムIMの粒成長抑制力を消失させる手段として
は、逆にム1を001%より多く添加する方法が古くか
ら知られ、現在でも大部分の無方向性珪素llI板は、
と11つしたムlを0.1襲より多く添加する方法で製
造−!れているが、ムlの多量添加は、鎖の価格の上−
になるので、望ましくなく最   1も廉価に得られる
綱のム1含有量は通常0.008〜0.1 %であり、
この範囲ではムtNの粒成長抑制効果はまぬがれ得ない
ところ!ある。
For N content of 40 to 60 ppm, which is the normal N level, a method of adding more than 0.01% Mu 1 has been known for a long time as a means to eliminate the grain growth suppressing power of Mu IM. Even now, most non-oriented silicon III plates are
Manufactured using a method that adds more than 0.1 ml of ml. However, adding a large amount of ml increases the price of the chain.
Therefore, the mu1 content of the undesirable and cheapest steel is usually 0.008 to 0.1%;
In this range, the grain growth suppressing effect of MutN cannot be ignored! be.

かような不利を回避する手段としてBIN中に添加する
方法が、例えば特−1114−1111910号、特開
昭65−47110号各公報に提示されている。こ−に
1をNとの重量嘉比(87Mと記丁)で0.I O−j
l、50の範囲で含有8曾、これにより、Nを固定して
ムtWの粒成長抑制効果を消失δせることは可能であり
、こ\にBの含有量はyの含有量とのバランスで決定さ
れるべきものである◎ もとよりムINの粒成長抑制効果を消失させるにはBの
比率か大きい程、効果的であるところ、Bは高価である
ため、ムlの代替として使用可能な量には限度かありそ
れが上IKB/M−g、sol決定し、また、Bの比率
が少ないほど、BMとして固定されるNの量が少なくな
り、ムIMの析出量か増大して銅板の粒は微細化してし
まい、したかってBの下限としてはB/)f−0,IO
とされ、これ以下では効果を有しない。
As a means to avoid such disadvantages, a method of adding it to BIN is proposed, for example, in Japanese Patent Publication No. 1114-1111910 and Japanese Patent Application Laid-Open No. 65-47110. Here, the weight ratio of 1 to N (written as 87M) is 0. I O-j
The content is 8 in the range of l, 50. This makes it possible to fix N and eliminate the grain growth suppressing effect of MutW, and the B content is balanced with the content of y. It should be determined by There is a limit to the amount, which determines the upper IKB/M-g, sol, and the smaller the ratio of B, the smaller the amount of N fixed as BM, and the greater the amount of IM precipitated, which makes the copper plate The grains become finer, so the lower limit of B is B/)f-0,IO
Below this, it has no effect.

ところがB/NとしてO,SO〜1.fi Oの範囲で
無方向性電磁鋼板をIll造した場合には、Bの無添1
の−よりもamm変度低いという欠点があり、これは蕗
をismすることにより磁化謝■である(111)集会
−纏か増大するからである。
However, the B/N is O, SO ~ 1. When a non-oriented electrical steel sheet is manufactured within the range of fi O, B additive-free 1
It has the disadvantage that the amm variation is lower than that of -ism, and this is because the magnetization rate (111) increases by ism.

すなわち上記のように通常、鋼中の翼は40〜@ o 
ppmであるから、B/)10.50−1.60に相当
するBは0.0010 A−0,0115%ニも上り、
−を廉価に**Tる上からも亥た磁束密度を劣化させな
い意味からも明らかに不利である。そこでo、o o 
g 。
That is, as mentioned above, the blade in steel usually has a thickness of 40~@o
Since it is ppm, B, which corresponds to B/) 10.50-1.60, increases by 0.0010 A-0,0115%,
This is obviously disadvantageous both in terms of making - **T inexpensive and also in terms of not degrading the increased magnetic flux density. So o, o o
g.

憾未満(B/舅0.16未満)においてもム■の抑制力
を消失さ曾ることが開発研究*mとして重要である。
It is important for development research*m to eliminate the suppressive force of MU even at a temperature below 0.16 (B/0.16).

コf) jl明は、B / I O,1−0−5f)低
いB含有量においてム411の粒成長抑制を有利に消失
させることを目的として研究を進めて磁気特性の優れた
無方向性111m板が容易に得られる有利な方法を究明
したものである。
Cof) Jl Akira is conducting research with the aim of advantageously eliminating the grain growth inhibition of Mu411 at low B content and achieving non-directional properties with excellent magnetic properties. An advantageous method for easily obtaining a 111m plate has been discovered.

発明者らは、冷開圧延前の熱処理によって2θppm以
下の低いB含有量にも拘らず、ムANの抑制力消失効系
を得ることを発見し、こ−に適正な熱感場条件を検討す
ることによってこの発明を完成させたものである。すな
わち、 0:0.050重量重量子、8114.0重量襲以下、
Mn ! 0.1−0.!i重量憾およびムJ $ 0
.10重量襲以下をp $ 0.1重量囁以下、@ s
 O,01重重量級下、M 冨0.005重量襲以下重
量−て、ただし8!0.01−0.01重量襲のとき0
および希土−元素よりなる群のうちから選んだ少くとも
1wIをo、oog 〜o、osjll−とともに含有
Tるほか、1含有量に応じてBIB/)Tが0.3〜O
1sとなる量で含有する組成に成るけい素鋼を溶製する
こと、該けい素鋼を常法により熱間圧延したのち熱延鋼
帯に熱間圧延中高温下に優先析出したBMによるムルの
固定のため熱間圧延終了後の熱処理を施すこと、 ついで酸洗を総て常法に従う1FjJの冷間圧延または
中間圧延を含む1回以上φ冷聞圧延によって、。
The inventors discovered that, despite the low B content of 2θppm or less, a heat treatment prior to cold-opening rolling produced a suppressive force-dissipating effect system for MuAN, and investigated appropriate thermal field conditions for this purpose. By doing so, this invention was completed. That is, 0: 0.050 weight factor, 8114.0 weight factor or less,
Mn! 0.1-0. ! i weight regret and muj $ 0
.. 10 weight attack or less, p $ 0.1 weight whisper or less, @ s
O, 01 below the heavy weight class, M 0.005 weight below the weight class - 8!0.01 - 0.01 weight class or below
and rare earth elements together with o, oog ~o, osjll-, and BIB/)T is 0.3~O depending on the content.
1s of silicon steel, and after hot rolling the silicon steel by a conventional method, it is possible to form a hot-rolled steel strip with moulds, which are caused by BM preferentially precipitated at high temperatures during hot rolling. Heat treatment is performed after hot rolling to fix the material, and then pickling is carried out by 1FjJ cold rolling or one or more φ cold rolling including intermediate rolling according to the conventional method.

最終板厚とし、その後仕上焼□・−を施すこ薇の結合に
なる磁気特性の優れた無方向性電磁鋼板の制量方法であ
り、熱間圧延終了後の熱処理がwoo℃〜1G00℃の
濃度l1m1における1分間−10時−にわたる焼鈍で
ありこの焼鈍に引続く1回の冷間圧延で最終板厚とする
こと、または熱間圧延#T俵の1姶■か、6!IO℃以
上のmffで鎖帯をコイル状に響取ったコイル自体の保
有熱による自己焼鈍であること一実施上好ましい。
This is a control method for non-oriented electrical steel sheets with excellent magnetic properties, in which the final plate thickness is determined, and then finish annealing is performed. Annealing for 1 minute - 10 hours at a concentration of 1 ml followed by one cold rolling to achieve the final thickness, or 1 x or 6! of hot rolled #T bales. In practical terms, it is preferred that the chain band be self-annealed by the heat retained in the coil itself, which is generated by coiling the chain band at mff of IO° C. or more.

低いB含有量において、ムAMの抑制力消失効果を発揮
7!Iせる条件を見出すために発明者らは下記の実験を
行った。
At low B content, the inhibitory power of MuAM is eliminated 7! In order to find conditions under which this can be achieved, the inventors conducted the following experiment.

実験I;褒lに示ξれる成分を有する鋼塊を研究室的に
港製し、1100℃で加熱した後2.6園の厚さに熱延
した。
Experiment I: A steel ingot having the components shown in Figure 1 was manufactured in a laboratory, heated at 1100°C, and then hot rolled to a thickness of 2.6 mm.

なお、##laはBを添加しなかったものであるが不純
物として、appm不可纏的に存在している0各熱延板
を酸洗後、冷間圧延し争、I・■の板厚にし、SOO℃
で8分間M、中で仕上焼鈍を行った俵の特性はいずれも
Bsoか1.テ1(T)、Wiiン1llbが4.8!
!−4−JI7W/’9と変りがなかった・これに対し
、鋼@ a −dの熱Wh板を、660℃から1000
℃の温度で8分間から最高60時間焼鈍した後、酸洗し
冷間圧延で0.I O−の板厚にしSOO℃で8分間H
s中で仕上焼鈍を行った後の特性はa−aにおいて大き
な差があった。その1例をaと0の比穀で第1図に示す
か、Bか8pp聰の#11萬に対しBを15 ppH當
有さ含有たものは鉄損が低く、適切な熱処理条件を選ん
T”i’jz’m’oの鉄損にして、0.lW/19以
上の向上が望めることがわかる。熱処理時間は長いl!
勢性向上は著しいの、、で、鋼塊aを用いた場合に較べ
て”1511g&が0、I W/39以上向上するとこ
ろの最小熱処理時間−を各温度、各鋼塊で求め5sii
aに掲げた。
In addition, ##la is one in which B is not added, but appm is inextricably present as an impurity. After pickling each hot-rolled plate, cold rolling was performed, and the plate thickness of I・■ To SOO℃
The properties of the bales that were finish annealed in M for 8 minutes were either Bso or 1. Te1(T), Wiin1llb is 4.8!
! -4-JI7W/'9 There was no difference. On the other hand, the heat wh plate of steel @ a - d was heated from 660℃ to 1000℃.
After annealing for 8 minutes up to 60 hours at a temperature of IO- thickness and heated at SOO℃ for 8 minutes
There was a large difference in the properties between a and a after finishing annealing in S. An example of this is shown in Figure 1 with grains with a ratio of a and 0, or grains containing 15 ppH of B compared to #11000 with 8 pp of B have low iron loss, and appropriate heat treatment conditions must be selected. It can be seen that an improvement of 0.lW/19 or more can be expected in the iron loss of T"i'jz'm'o.The heat treatment time is long l!
The improvement in strength is remarkable, so the minimum heat treatment time at which the 1511g& is improved by 0, IW/39 or more compared to the case of using steel ingot a was determined for each temperature and each steel ingot.
Listed in a.

Hxi図に示されるように、熱延板を700℃〜100
0℃で3分間から10時間熱matを行えは、BtTt
lが5〜畠Opp菖という低い量でも、ムlNの結晶粒
成長抑制効果を十分消失させることか可能である。また
、10時間以上の長時間になることをいとわなければ、
6i0℃の熱処理温度でもムINの結晶粒成長抑制効果
の消失か可能である。
As shown in the Hxi diagram, the hot rolled sheet is
Heat at 0°C for 3 minutes to 10 hours.
Even when l is as low as 5 to Opp irises, it is possible to sufficiently eliminate the crystal grain growth suppressing effect of MulN. Also, if you are willing to spend a long time of 10 hours or more,
Even at a heat treatment temperature of 6i0° C., it is possible that the grain growth suppressing effect of MuIN disappears.

熱延板を直接冷延せずそれに先立って一度熱処理を施す
ことによって、低含有量であるにもかかわらすBのMr
ll定効果(ムIMの結晶粒成長抑制効果の消失)が有
効に現われるII白は次の・ように考えられる。
By heat-treating the hot-rolled sheet once before directly cold-rolling it, the Mr content of B can be reduced even though the content is low.
II white, in which the I constant effect (disappearance of the crystal grain growth suppressing effect of IM) effectively appears, can be considered as follows.

Bはムlよりも高温で窒化物を形成する。したがって、
スラブ加熱で111m状態となったN、B、ムlは本来
ならば、冷却時にBMを中心として析出マるものであり
五INの微細析出は少なく、粒成長抑制効果は生じない
はずのところ、熱間圧延においては、加工歪の導入と回
復再結晶の複雑な繰返しとなるため、Bの電有量が少な
い場合には析出BNでムlHの大部分なりMtl)11
わりに固定マることかできなくなる。この状態の熱延板
を酸洗し、冷間圧延したのでは、仕上焼鈍の際加工歪に
より導入目れた転位によって極めて低温でム1Mか析出
して、粒成長抑制効果を現わ丁ことになる。
B forms a nitride at a higher temperature than mulch. therefore,
Normally, the N, B, and Mulium that reached the 111m state by heating the slab would precipitate mainly in the BM during cooling, and the fine precipitation of 5IN would be small, so there would be no grain growth suppressing effect. In hot rolling, the introduction of working strain and recovery recrystallization are complicated repetitions, so when the amount of B is small, the precipitated BN becomes the majority of the mulH (Mtl)11
Instead, I can no longer move to a fixed position. If the hot-rolled sheet in this state was pickled and cold-rolled, dislocations introduced by processing strain during final annealing would precipitate grains at extremely low temperatures, resulting in a grain growth suppressing effect. become.

これに対し、熱延板な冷間圧延に先立って上記のように
熱処理すると、析出した關の會ねりにムIMか再析出し
、五IM単独で微細析出する量か低くなり、かくしてB
の含有量か抵し1場舎でもムINによる粒成長抑制効果
を消失させることが可能となるわけである。
On the other hand, if heat treatment is performed as described above prior to cold rolling of a hot-rolled sheet, B IM will re-precipitate at the precipitated interface, and the amount of fine precipitated IM alone will be reduced, thus reducing the amount of B IM.
It is possible to eliminate the grain growth inhibiting effect of MuIN even if the content is just one level.

この冷間圧延前の熱延板の1処−につし1て6才熱間圧
延後コイルを巻き取る際、SSO℃以上の温度で巻き取
ることによっても、代替可能つまり陶様な効果をもたら
ずことが確1115れた。つまり、コイルの巻き取り温
度やコイルの重量を調節してコイル巻取後、少なくとも
5OIIISF1以上・ま6IO℃以上の温度を保つよ
うに!、ることにより、上記熱延板の熱処理と同効を呈
、tL’、か−る響板りコイルの保有熱量による自己焼
鈍につし1ても、こ−の明細書で熱延板の熱処理という
こととする。
When winding a coil after hot rolling for 6 years in one place of the hot rolled sheet before cold rolling, it is also possible to obtain a substitute effect by winding at a temperature higher than SSO°C. I was certain that it would not happen. In other words, adjust the coil winding temperature and coil weight to maintain a temperature of at least 5OIIISF1 or 6IO℃ or higher after winding the coil! By doing so, the same effect as the heat treatment of the hot-rolled sheet is obtained, and tL', self-annealing due to the amount of heat retained in the soundboard coil. This is called heat treatment.

次に通常、熱延コイルは酸洗性を良くするために熱延後
直ちに傘冷畜れてコイル状に響き取られ′るか、この急
冷J111mlを省略することにより巻取温度は・80
℃以上にすることが可能である。発明者らは、工場実験
でこれらの工程を検討した力$、S1含有量がり、S襲
以下の低級鋼の場合、上記急冷@II省略による看取温
度を660℃以上にする工程も含めても熱延板熱処理工
程は、予期した工程のコスシダウンとはならなかった。
Next, hot-rolled coils are usually cooled immediately after hot-rolling in order to improve pickling properties, or the coiling temperature is reduced to 80% by omitting this rapid cooling.
It is possible to raise the temperature to ℃ or higher. The inventors investigated these processes in factory experiments, including the process of raising the end-of-life temperature to 660°C or higher by omitting the above-mentioned quenching@II, in the case of low-grade steel with a high S1 content and low S1 content. However, the heat treatment process for hot-rolled sheets did not reduce the cost of the process as expected.

それとし1うのはかかる低級鋼の場合、本来、製造原価
か低し)ため熱処理工程を組み入れることによるコスト
アラ7tたけ、酸洗強化によるコストアップか大きな比
重を占めてくることに起因するものである。そこで進ん
でIi : Ll %以下の低級鋼の場合のさ分を有す
る一縄I’llを研宛室的に溶製し、Igoo℃で加熱
後、3・集票−の厚さの熱延板に仕上げた。
Another reason is that in the case of such low-grade steel, the manufacturing cost is originally low, so incorporating the heat treatment process increases the cost by 7 tons, and the cost increase due to pickling strengthens, which accounts for a large proportion of the cost. be. Therefore, we proceeded to melt a rope I'll with a thickness of less than Ll % in the laboratory, heated it at Igoo C, and then hot-rolled it to a thickness of 3 sheets. Finished on a board.

この際、熱延終了時の温度と熱延終了後冷却  ゝるま
での時間を変えて、660℃以下の温度でコイルを巻一
つた後、この熱延板を酸洗したか、し蔦ずれも、酸洗性
は良好で、水冷の効果か現われていた。讃洗後、冷間圧
延し、OoIIOllmの板厚にし800℃で8分間H
a中で仕上焼鈍を行った・その製品につき特性値を熱延
終了時の温度と、その後冷却家での時間との関係で箇魯
−に盲とめて示T。
At this time, we varied the temperature at the end of hot rolling and the cooling time after finishing hot rolling, and after winding a single coil at a temperature of 660°C or less, we either pickled the hot rolled sheet or removed it. The pickling property was also good, showing the effect of water cooling. After washing, it is cold rolled to a thickness of OoIIOllm and heated at 800℃ for 8 minutes.
The characteristic values of the products that were final annealed in A are blindly shown in relation to the temperature at the end of hot rolling and the time spent in the cooling chamber afterwards.

第8図から熱延終了時の温度が7藝O℃以上、かつ熱延
終了後冷却までの時間が4秒以上で−れば、コイル巻取
温度が6器O℃以下であってもB、の添加効果か現われ
ることを示している。また、S1含有量か1.5%を越
える揚台、こうした効果は現われなかった。
Figure 8 shows that if the temperature at the end of hot rolling is 70°C or higher and the time until cooling after hot rolling is 4 seconds or more, even if the coil winding temperature is 60°C or lower, B , indicating that the effect of adding . Moreover, such an effect did not appear when the S1 content exceeded 1.5%.

この挙動について発明者らは、次のように考えるO 81含有量か1.5 %以下の場合、鋼はα″rr 変→であって、7110℃以上の温度では鋼の一部ない
し全部がr−鉄となっているS關はr鉄中に析出し易い
のに対し、ムINはrS、*中では固溶し易い性質を有
する。したがって、熱延終了時にr−鉄が残存しておれ
ば、その粒内のBMの析出部に、r→α変−に伴ってム
INが析出してくると考えられる。量の析出のための時
間が4秒以上必要である七思われる・BMのまわりに析
出したムINはもはや安定であり、冷開圧延後の焼鈍に
よって転位の個所に析出するようなことはなく無害化さ
れる0したがってこうした処理によってムjNの粒成長
抑制効果を消失S−するためには、変s#I4であるこ
とが必要不可欠の秦件となり従って、81:1.5襲以
下の場合につきこの明細書では上記の熱延終了温度マs
O℃以上でその94秒以上たってから水冷する処理も熱
延板の熱処理に含めることとTるO 次にこの斃明の成分の隈定珈由について述べる。
Regarding this behavior, the inventors believe that when the O 81 content is 1.5% or less, the steel undergoes α″rr change →, and at temperatures above 7110°C, some or all of the steel changes. S-iron, which is r-iron, easily precipitates in r-iron, whereas mu-IN has the property of being easily dissolved in r-iron. Therefore, r-iron remains at the end of hot rolling. If so, it is thought that mu-IN will precipitate in the BM precipitated area within the grains as the r→α change occurs. The MuN precipitated around the BM is now stable and does not precipitate at dislocation sites and becomes harmless by annealing after cold-open rolling. Therefore, this treatment eliminates the grain growth suppressing effect of MuN. In order to achieve S-, it is essential that the temperature is s#I4, and therefore, in this specification, the above-mentioned hot rolling end temperature mass is used for cases where the temperature is 81:1.5 or less.
The heat treatment of the hot-rolled sheet also includes water cooling at 0°C or higher for 94 seconds or more.Next, the reason for this component will be described.

0、は製品中に食型れると悪影響な及ぼすので脱炭処理
をしない特殊な用途のものを除いて、通常は仕上焼鈍で
拳#的に脱炭するがo、oss以上になると脱炭か一部
になるのでo、ois以下とTる。
If 0 or 0 is mixed into the product, it will have an adverse effect, so unless it is for a special purpose where decarburization is not performed, it is usually decarburized in the final annealing process, but if it exceeds 0 or oss, it will be decarburized. Since it becomes a part, it is less than o, ois.

8iは磁愉改譬のためには必要であるが、φ、O憾を越
えると檜−Hkaが劣るので4.〇−以下とTる。
8i is necessary for the modification of porcelain, but if it exceeds φ and O, Hika is inferior, so 4. 〇- or less.

Mnは熱延性重曹のため0.11以上とするが、゛o、
i%な越えると価格が高くな、るりで0.1襲まで□と
Tる◎ ムjは脱酸のために使用されるが0.11以上は、この
ためには必要なくまた0、11以上では−の価格の上昇
を招くので01%以下とする・Pは不可避的に含有され
る元素であるが、0.1襲を越えると粒成長性を書する
ので0.1 %以下とする。
Mn is set to 0.11 or more because it is hot-rollable baking soda, but ゛o,
If it exceeds 0.1%, the price will be high. ◎ Muj is used for deoxidation, but 0.11 or more is not necessary for this purpose and 0,11 The above will result in an increase in the price of -, so it should be kept at 0.1% or less. ・P is an element that is unavoidably contained, but if it exceeds 0.1%, it will affect grain growth, so it should be kept at 0.1% or less. .

Sは銅板の結晶粒成長性を書しないためには、原則とし
て0.01%以下でなければならないので0.011g
以下とするが、しかし、81がり、S襲以下の場合、工
場で出鋼する鋼では0.01〜O,OS%の8含有量の
ものか多い。この場合、希土類元素やOaを添加するこ
とによって8を1定し、Mn8の析出量を減少させるこ
とが可能であることは、特開昭5151−11S1号お
・半び特開WB@ I −1484m1)各公報で提示
!′にでいるとおりであり、したがって8含有量0.0
1−0.(I II外の場合、実質的に8 <0.01
とするための相当量として希土類元素またはOaをo、
o o a〜0.08%添加して°も−等の効果を有す
ることは明白である。
In principle, S must be 0.01% or less in order to not affect the grain growth of the copper plate, so it is 0.011g.
However, if the steel is less than 81 and S, the steel tapped at the factory has a content of 0.01 to 8% O.OS. In this case, it is possible to keep 8 constant and reduce the amount of Mn8 precipitated by adding rare earth elements or Oa, as disclosed in JP-A No. 5151-11S1 O-hanbi WB@I- 1484m1) Presented in each bulletin! ', and therefore the 8 content is 0.0
1-0. (In cases other than I II, substantially 8 <0.01
The rare earth element or Oa is added as an equivalent amount to o,
It is clear that addition of 0.08% to 0.08% has similar effects.

希土類元素とは原子番量暴)〜v1の金属のことで一鎗
には1011Gの0・を當有し、残りはLa 。
A rare earth element is a metal with an atomic number of 0.0~v1, and one spear has 1011G of 0., and the rest is La.

薦dかもなる混合物か安価に市販されている。Recommended mixtures are commercially available at low cost.

丁なわちミツシエメタル(10襲の0・をtVのごとき
を SS中に添加するか、鋳込中に添加Tれ信よく、千
の添加量の確認はOe量を分析しその値を8倍して希土
−の合計量と丁ればよい。
In other words, Mitsushi Metal (such as tV of 10 times 0 is added during SS or added during casting).To confirm the amount of addition, analyze the Oe amount and multiply the value by 8. All you have to do is add up the total amount of rare earth.

夏は量が増すと、必然的に要求されるBの含有量が増し
、BMが介奄物として悪影響を及ぼ重量に達Tるのでs
 e ppm以下とする。
In summer, as the amount increases, the required B content increases, and BM has a negative effect as a carrier and reaches the weight T.
e No more than ppm.

BはNの量によって適正値が貧化するのであるが、この
発明の場□合醗遺なり/Nの範囲は、O,S′: からO6sすなわち1・1述したように、Nの量はほぼ
4 G −I OPPII ?11!にるので、実質的
には約8〜seppmのmsで漬る。
The appropriate value of B deteriorates depending on the amount of N, but in the case of this invention, the range of Is it almost 4G-I OPPII? 11! Therefore, it is practically soaked at about 8 to seppm ms.

この発明は上記の廖分に溶製され、連続鋳造によりスラ
ブにされたもの、或いは鋳型を用いて鋼塊にし、分塊圧
延にてスラブ化されたものを熱間゛圧延する。熱間圧延
後の冷間圧延前に1処■を行うことがこの発明の特徴で
ある・熱延板の熱処理によって、ムINのBによる固定
効果かもたら畜れる熱処理条件は11i11!す=般的
ゝは100〜1000℃の温度で3分〜1011間の熱
感曝秦件の範囲である。
In the present invention, the steel is produced into the above-mentioned portions and made into slabs by continuous casting, or it is made into a steel ingot using a mold and made into a slab by blooming, and then hot-rolled. The feature of this invention is that one step (2) is performed after hot rolling and before cold rolling.The heat treatment conditions that bring about the fixing effect of B in mu IN by heat treating the hot rolled sheet are 11i11! Generally, the heat exposure range is from 3 minutes to 1011 degrees at a temperature of 100 to 1000°C.

こ−に650℃以上ならば、長−一焼鈍によって同様の
効果があるのでコてル寺取前の!冷処■を省略して熱延
コイルを6IO℃以上の温度で響き取り、コイル自身の
熱によう下自己−鈍を行うことで廊当してもよく、この
際、フィルの場数湯度やコイルの重量を調節して・10
℃以上の温度をSO時間以上は保つようにする必要があ
る・さらに、Si含有量がり、S %以下の変態−の場
合は熱延終了時の温度をマis℃以上にして熱延終了時
からjイル急冷処Im重での時間を4秒以上とることに
よっても前記熱処理と同様なりの効果を発揮でき、酸洗
性を良くすることが可能である・なお熱延終了時からコ
イル急冷処1IItでの時間を80秒以上とすると拳化
スケールの量が再び急増゛して酸洗性が曇(なり好まし
くないので80秒までとする・ なお、熱延終了後、コイル急冷処理までの時間を1秒以
上設ける@@I)Iljt場を行った後、再びツOO〜
1000℃の温度で8分〜lO時闇の再熱処理を行うこ
とrt騒済的ではないか、磁気特性上からは更に好盲し
い。何故ならば、後の^熱処理によってム71を確爽、
完全にBNに固定できAJNの粒成長抑制力を完全に無
害化できるからである0以上のような冷間圧延前の熱処
理を施された熱延板は゛酸洗後、1回の令聞圧延あるい
は中間焼鈍を會む、s11以上の令聞圧延によって最終
板厚に、した後仕上焼鈍を施11”ch 遣1且 転炉でl1I11シ、真空脱ガス法により精錬した輝、
11111f)I 、 l 、 I 、 WtJI1分
ニWIIWkシタ(、但シIはBを添加しない錆)溶鋼
を連続鋳造法輪より、各(ム)e(B)e(0)、(D
)4個のスラブとなし、加熱炉で1110℃に加熱した
後、熱間圧延な行い1.0−の板厚の熱延板とした。
However, if the temperature is 650℃ or higher, the same effect can be obtained by long annealing, so it is better than Kotel-dera Torimae! It is also possible to omit the cooling process and heat the hot-rolled coil at a temperature of 6IO℃ or higher, allowing it to cool down to the heat of the coil itself. Adjust the weight of the coil・10
It is necessary to maintain the temperature above ℃ for the SO time or longer.In addition, if the Si content is high and the transformation is below S%, the temperature at the end of hot rolling should be set above 10°C. By applying the coil quenching treatment for 4 seconds or more, the same effect as the above-mentioned heat treatment can be obtained, and it is possible to improve the pickling properties. If the time at 1IIt is 80 seconds or more, the amount of fisted scale increases again and the pickling performance becomes cloudy (which is not preferable), so the time should be up to 80 seconds.The time from the end of hot rolling to the coil quenching treatment After setting @@I) Iljt field for more than 1 second, press tsuOO~ again.
It may not be prudent to carry out a dark reheat treatment at a temperature of 1000° C. for 8 minutes to 10 hours, and it is even more undesirable from the viewpoint of magnetic properties. This is because the later heat treatment ensures that the mu71 is refreshed.
This is because it can be completely fixed to BN and the grain growth suppressing power of AJN can be completely rendered harmless.Hot-rolled sheets that have been heat-treated before cold rolling, such as 0 or more, can be rolled once after pickling. Alternatively, after performing intermediate annealing and rolling to a final thickness of s11 or higher, finish annealing is performed in a converter and refined by vacuum degassing.
11111f) I, l, I, WtJI 1 minute WIIWk (however, I is rust without adding B) molten steel is continuously cast using a continuous casting method, each (mu) e (B) e (0), (D
) Four slabs were prepared, heated to 1110°C in a heating furnace, and then hot-rolled to obtain a hot-rolled plate with a thickness of 1.0.

この時、各#A真の(ム)スラブについては熱間圧延後
、冷却を省略して680℃の温度で巻きとり、残りの(
B)、(0)スラブについては冷却して100℃の温度
で熱延コイルを巻きとった。
At this time, after hot rolling, each #A true slab was rolled at a temperature of 680°C without cooling, and the remaining (
B) and (0) slabs were cooled and hot-rolled coils were wound at a temperature of 100°C.

次に冬m詭の(II)コイルについては800℃で6時
−の熱4611を施した。また、各鋼塊の(D)スラブ
については、熱間圧延を880℃で終了サ−1,1秒後
に冷却して100℃の温度で熱延コイルを響きとった。
Next, for the (II) coil in winter, heat 4611 was applied at 800° C. for 6 o'clock. Further, regarding the (D) slab of each steel ingot, the hot rolling was completed at 880°C for 1 second and then cooled, and the hot rolled coil was heated at a temperature of 100°C.

この1.1.1.Wの鋼珈の各(ム)、(B)、(0)
、(D)のコイルを鹸洗し、1回の冷開圧延で0.I 
O−の板厚とし、770℃の温度で1分間、連続脱炭仕
上焼鈍した1180xsso−の大會畜の試料を採取し
た。試料は磁気測定を行った俵、再びマsO℃で3時間
の歪取焼鈍を行った。そ□れfれの焼鈍後の磁気特性を
第8豪に示す。  、・: □、1 錦   a@ 以上の記職かも明らかなとおり、この発明の方法により
#Ii板、−帯について、優れた磁気特性を49一方肉
性電磁一板を得ることができる0
This 1.1.1. Each of the steel wires of W (mu), (B), (0)
, (D) were washed with soap, and the coils of 0.0. I
A large-scale specimen of 1180xsso- was taken, which had a plate thickness of O- and was subjected to continuous decarburization finish annealing at a temperature of 770°C for 1 minute. The sample was a bale on which magnetic measurements were taken, and strain relief annealing was performed again at mass O ℃ for 3 hours. The magnetic properties of that part after annealing are shown in Figure 8. ,・: □, 1 Nishiki a@ As is clear from the above writings, the method of this invention makes it possible to obtain a fleshy electromagnetic plate with excellent magnetic properties for the #Ii plate and -strip.

【図面の簡単な説明】[Brief explanation of the drawing]

Ill■は熱延板の熱感珈によって最終製品の鉄損か向
上する値をBの量との間係で示したグラsagは鉄−を
向上寄せるのに必要なりの量と最適な熱延板熱蛤瑠条件
を示したグラフ、s8−は−鷺終了時の温度と熱延終了
後冷却までの時間を変えた場合の1の動電を示すグラフ
であるO 第1図 −1:  熱 m&熱@ft*M  tmtn>第2図 cm: 焦x**a\艶an時M(m/nン第3図 A代ヌtノシト丁φにン歇即1taa晴・八Rtsec
)1゜ 口
Ill■ indicates the value of improving the iron loss of the final product due to the heat sensitivity of the hot-rolled plate, as a relationship between the amount of B and the amount of glass sag required to improve the iron loss and the optimum hot-rolling value. A graph showing the sheet hot rolling conditions, s8- is a graph showing the electrodynamics of 1 when the temperature at the end of -sagi and the time until cooling after the end of hot rolling are changed. Figure 1-1: Heat m & heat @ ft * M tmtn > Fig. 2 cm: Ko x ** a \ Glossy M (m/n Fig. 3
)1゜mouth

Claims (1)

【特許請求の範囲】 1 030.050重量重量子、8回雪番、O重量襲以
下、Mn ! 0.1−0.1重量憾およびム1富0.
10重量外以下をP t O,1重愈修以下、8S0.
01重量襲以下、M s O,00111(jk#s以
下において、ただし8t0.01〜O,OS重量゛悸の
ときOaおよび希土類元素よりなる評の・うちから違ん
だ少くとも1種をo、o o s〜O,OS重量憾とと
もに含有するはか、夏含有量に応じてB I B/Hが
o、s −o二gとなる量で含有する組成に成るけい素
鋼をWIIIIすること、該けい素−を常法により熱動
圧延したのち熱間圧延中高温下に優先析出したBHによ
るム1Mの固定のため熱間圧延終了後の熱処理を施す□
こと、                 一ついで酸
洗を経て常法に従う1回の冷−圧  1延または中間圧
延を含むsra以上の冷間圧延によって、最終板厚とし
、その後仕上焼鈍を施すことの結合になる磁気特性の優
れた無方向性tastasis方法◎ i 熱間圧延終了後の熱処理が700℃〜10@@℃の
温度範囲、における1分間〜10−陶にわたる焼鈍であ
り、この焼鈍に引続く1回の冷間圧延で最終板厚とする
1記験の方法6 龜 熱間圧延終了後の熱処理が、660℃以上の温度で
銅帯をコイル状に巻取ったコイル自体の保有熱による自
己焼鈍であるl記載の方法0 4 81食有量か1.111111%以下であるl記載
の方法・ 瓢 熱間圧延終了後の熱処理が、750℃以上での熱間
圧延終了から4秒〜80秒を経過した後急冷処理し、コ
イルを巻取る処理である鳴記職の方法。
[Claims] 1 030.050 weight weight, 8 snowballs, O weight attack or less, Mn! 0.1-0.1 weight and weight 0.
10 weight or less P t O, 1 weight or less, 8S0.
01 weight attack or less, M s O, 00111 (jk#s or less, however, 8t0.01~O, OS weight) Oa and rare earth elements. , o o s ~ O, OS weight, and depending on the summer content, B I B / H is o, s - o 2 g. In particular, after hot rolling the silicon by a conventional method, a heat treatment is performed after the hot rolling to fix the mu 1M due to BH preferentially precipitated at high temperatures during hot rolling.
First, after pickling, one cold rolling or cold rolling of SRA or higher including intermediate rolling according to the conventional method is performed to obtain the final plate thickness, and then final annealing is performed to improve the magnetic properties. Excellent non-directional tastasi method Method 6 of 1 test to achieve the final plate thickness by rolling 1 Description that the heat treatment after hot rolling is self-annealing using the heat retained in the coil itself, which is obtained by winding a copper strip into a coil at a temperature of 660°C or higher. Method 0 4 81 The method described in l, which has a dietary content of 1.111111% or less, is performed after the heat treatment after hot rolling is performed at 750° C. or higher after 4 seconds to 80 seconds have elapsed from the end of hot rolling. Meiji-shoku's method involves rapid cooling and winding the coil.
JP4551482A 1982-03-24 1982-03-24 Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic Pending JPS58164724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4551482A JPS58164724A (en) 1982-03-24 1982-03-24 Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4551482A JPS58164724A (en) 1982-03-24 1982-03-24 Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic

Publications (1)

Publication Number Publication Date
JPS58164724A true JPS58164724A (en) 1983-09-29

Family

ID=12721520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4551482A Pending JPS58164724A (en) 1982-03-24 1982-03-24 Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic

Country Status (1)

Country Link
JP (1) JPS58164724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530047B1 (en) * 2001-03-05 2005-11-22 주식회사 포스코 A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
CN113166869A (en) * 2018-12-27 2021-07-23 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
WO2022113264A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530047B1 (en) * 2001-03-05 2005-11-22 주식회사 포스코 A non-oriented electrical steel sheet having improved core loss after stress relief annealing and a method for manufacturing it
CN113166869A (en) * 2018-12-27 2021-07-23 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
WO2022113264A1 (en) * 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet

Similar Documents

Publication Publication Date Title
US3632456A (en) Method for producing an electromagnetic steel sheet of a thin sheet thickness having a high-magnetic induction
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
JPS6256225B2 (en)
US3163564A (en) Method for producing silicon steel strips having cube-on-face orientation
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0583612B2 (en)
JP3531996B2 (en) Method of manufacturing unidirectional electromagnetic steel strip
JPS58164724A (en) Production of nondirectionally grain oriented electrical steel plate having excellent mangnetic characteristic
JP2002206114A (en) Method for manufacturing nonoriented silicon steel sheet
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
US4371405A (en) Process for producing grain-oriented silicon steel strip
US4416707A (en) Secondary recrystallized oriented low-alloy iron
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH083699A (en) Nonoriented silicon steel sheet excellent in iron loss after stress relief annealing and its production
JPH0757888B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
CA1141631A (en) Electro magnetic steels
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JP2599529B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH06240358A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet