JPS58162906A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS58162906A
JPS58162906A JP57045542A JP4554282A JPS58162906A JP S58162906 A JPS58162906 A JP S58162906A JP 57045542 A JP57045542 A JP 57045542A JP 4554282 A JP4554282 A JP 4554282A JP S58162906 A JPS58162906 A JP S58162906A
Authority
JP
Japan
Prior art keywords
refractive index
type
base material
optical fiber
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57045542A
Other languages
Japanese (ja)
Inventor
Kazuhiko Soeda
一彦 副田
Masayoshi Shigihara
正義 鴫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57045542A priority Critical patent/JPS58162906A/en
Publication of JPS58162906A publication Critical patent/JPS58162906A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a dummy fiber which uses no splice connection nor connector connection, by controlling a refractive index distribution in the radial direction and the lengthwise direction at the stage of preforming of a base material, elongating it, and optionally concatenating a step type and a graded type. CONSTITUTION:As for a base material, in a process for generating piled glass 4, a quartz pipe 3 is divided into pural areas (a), (b), (c)... in the lengthwise direction, and in each section, density of an addition oxide, for instance, that which raises a refractive index such as P2O5 or GeO2, or that which lowers a refractive index such as B2O3 is controlled, by which a refractive index distribution is controlled. In this case, the piled glass 4 is generated so that for instance, the area (a), the area (b), the area (c) and the area (d) become a step type, a graded type, a step type and a graded type, respectively. In this way, when a preformed base material is spun, that which concatenates the step type and the graded type is obtained.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明は光通信等に用いられる光ファイバの伝送特性測
定用励振器として使用される光ファイバに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an optical fiber used as an exciter for measuring transmission characteristics of an optical fiber used in optical communications and the like.

(2)従来技術と問題点 従来よシ光ファイバの伝送特性を測定する方法としては
種々あるが、その一つに8−G@8(ステップ−ダレ−
テッド−ステップを意味する)励振法がある。
(2) Prior art and problems There are various methods to measure the transmission characteristics of optical fibers, one of which is 8-G@8 (step-dare).
There is an excitation method (meaning ted-step).

第1図は従来の8・G・8励振法に用いられる励振用ダ
ギーファイ/譬を示す図であシ、1は全体図、bはa図
におけるイ1ロ、へ部分の断面の屈折率分布をそれぞれ
示している。
Figure 1 is a diagram showing the excitation Dougie phi/excitation used in the conventional 8-G-8 excitation method, where 1 is the overall view, and b is the refractive index distribution in the cross section of parts A, B, and B in figure a. are shown respectively.

同図において光ファイノ41のイ部分及びハ部分はステ
ップ形の屈折率分布であり、口部分はグレーテッド形で
ある。
In the figure, the A and C portions of the optical fin 41 have a step-shaped refractive index distribution, and the mouth portion has a graded shape.

そしてイ部分のステップ形は軸ずれ勢の入射条件の差異
を軽減し、口部分のグレーテッド形はステップ部から来
る余分な光を取除き、へ部分のステップ形は次にくる被
測定ファイバとの接続条件依存性を小さくする作用をす
る。
The stepped shape in the A part reduces the difference in the incidence conditions of the off-axis force, the grated shape in the mouth part removes excess light coming from the step part, and the step shape in the bottom part reduces the difference in the incidence conditions of the off-axis force. This has the effect of reducing the dependence on connection conditions.

このようなダンーファイノ譬は従来ステップ形の光ファ
イバとグレーテラP形光ファイバを接続するのにスプラ
イス法を用いている。このため光7アイパ保−用のシー
スが接続部分で分断されるため、接続部分の強度がなく
折損し易く、取扱が困難であるといり九欠点があった。
Such a Dan-Fino example uses a splice method to connect a conventional step-type optical fiber and a Greterra P-type optical fiber. For this reason, the sheath for protecting the optical 7 eyelids is separated at the connecting portion, which has nine drawbacks: the connecting portion lacks strength and is easily broken, making it difficult to handle.

(3)  発明の目的 本発明は上記従来の欠点に僑み、スプライス接続あるい
はコネクタ接続を用いない単一な光ファイパ伝送特性測
定用の/ミー7アイdを提供すゐことを目的とする4の
である。
(3) Purpose of the Invention The present invention overcomes the above-mentioned drawbacks of the prior art, and aims to provide a single optical fiber transmission characteristic measurement method that does not use splice connections or connector connections. It is.

(4)  発明の構成 そして仁の目的は本発明によれば母材のプリフォームの
段階で半径方向及び長手方向の屈折率分布を制御し、該
母材を鷺伸して長手方向にステップ形とグレーテッド形
の光フテイΔを任意に連接して形成し九ことを特徴とす
る光ファイバを提供することによって達成される・ (5)  発明の奥施例 以下本発明を図面によって詳述する。
(4) According to the present invention, the structure and object of the invention is to control the refractive index distribution in the radial direction and longitudinal direction at the stage of preforming the base material, and to elongate the base material to form a stepped shape in the longitudinal direction. This is achieved by providing an optical fiber characterized by arbitrarily connecting and forming graded optical fibers Δ. .

第[1は光ファイΔを作成する一方法(内q法)を説明
する丸めの図である。同図において、2はガス流量制御
部、3は母材のクラv#pとなる石英/4イ/、4は母
材のコアとなる部分の堆積ガラス、5は駿水嵩バーナー
をそれぞれ示している。
[1] is a rounding diagram illustrating one method (inner q method) for creating an optical fiber Δ. In the figure, 2 is a gas flow rate control unit, 3 is quartz/4i/ which becomes the core of the base material, 4 is a deposited glass that is the core of the base material, and 5 is a shunsui bulk burner. There is.

図においてがス流量制御郁2は酸素などをキャリヤガス
として主原料の四塩化硅素(lliCt4)KM折率な
制御する丸めの原料(1lrBtPOcj、、G@Cj
4など)をItたは2種類加え、その組成−流量を制御
して石英t4イグ3に供給する。そして石英/ダイブ3
を回転させると同時に外部よ〉酸水素バーナ−5で加熱
する。しかるときは石英パイプ3の内面には煤状の石英
と添加酸化物が生成し堆積する。続いてこの堆積物を加
熱熔融して透明ガラス化する。このあと石英・譬イブ3
内を減圧し、1750℃程度に加熱すると石英/lイブ
は大気圧でつぶされて中空部がなくなる。この工程をコ
ラップスと呼ぶ。このようKして作られた母材を端部か
ら高周波加熱炉、電気炉、酸水素炎愈どで2000℃程
度に加熱しながら紡糸して光ファイバを得るのである。
In the figure, gas flow rate control Iku 2 is the main raw material silicon tetrachloride (lliCt4), which controls the KM refractive index, using oxygen as a carrier gas (1lrBtPOcj,,G@Cj
4 etc.) is added, and the composition and flow rate are controlled and supplied to the quartz t4 Ig 3. And quartz/dive 3
At the same time as it is rotated, it is heated with an external oxyhydrogen burner 5. When this happens, soot-like quartz and additive oxides are generated and deposited on the inner surface of the quartz pipe 3. Subsequently, this deposit is heated and melted to form transparent glass. After this, Quartz/Parable Eve 3
When the inside is reduced in pressure and heated to about 1750°C, the quartz/l tube is crushed by atmospheric pressure and the hollow part disappears. This process is called collapse. The base material thus prepared is heated from the end to about 2000° C. in a high-frequency heating furnace, electric furnace, oxyhydrogen flame, etc., and then spun to obtain an optical fiber.

との場合屈折率は添加酸化物の濃度で容易に制御できる
0例えばP2O,やG・0.を含むと純粋石英よ如屈折
率が上シ、B20.を含むと逆に下る。また堆積厚さに
従って添加酸化物濃度を変えて行けば屈折率分布も変え
ることができる・第3図は本発明による光ファイバを作
成する母材を説明するための図である。同図において3
/fiクラ、ドとなる石英ノダイグ、4はコアとなる堆
積ガラスをそれぞれ示している。そして本母材は堆積ガ
ラス4を生成する工程で、石英Δイf3を長手方向に複
数の領域a、bl@−に区分し、各区分毎に添加酸化物
の濃度を制御し、例えばa領域はステ、!形、b領域は
グレーテッド形、・C領域は再びステップ形で4領域は
ダレ−テッド形となるように堆積ガラス4を生成せしめ
るのである。
In the case of 0.0, the refractive index can be easily controlled by the concentration of the added oxide, such as P2O, G.0. If it contains B20, the refractive index will be higher than that of pure quartz. If it is included, it will go down. Furthermore, the refractive index distribution can also be changed by changing the concentration of the added oxide according to the deposition thickness. FIG. 3 is a diagram for explaining the base material for producing the optical fiber according to the present invention. In the same figure, 3
/fi, quartz, and 4 indicate deposited glass, respectively. Then, in the step of producing the deposited glass 4, the main material is divided into a plurality of regions a and bl@- in the longitudinal direction of the quartz ΔI f3, and the concentration of the added oxide is controlled for each region, for example, in the region a. Ha, Ste! The deposited glass 4 is produced in such a manner that the b region is a grated shape, the C region is again a step shape, and the fourth region is a daleted shape.

このようにプリフォームされた母材を紡糸すればステッ
プ形及びグレーテッド形の異種モードが連接された光フ
ァイバが得られる。
By spinning the preformed base material in this manner, an optical fiber in which different modes of step type and graded type are connected can be obtained.

本発明によゐ光ファイバはこのようKしてステ、プ形と
グレーテッド形の異種モードが任意に連接iれて形成さ
れたものでhゐ・ (6)発明の効果 以上、詳細に説明したように1本発明の光ファイバは、
ステシフ形とグレーテッド形を任意に連接して単一ファ
イバとしているため、スプライス接続もコネタタ接続も
全豪なく、従うてケーブル化が可能とな抄、伝送特性調
定用の励振用メ電−ファイバ勢に用いて電機が極めて容
易となるとiった効果大なるものである・
The optical fiber according to the present invention is formed by arbitrarily connecting different modes of step, tap, and graded modes in this way. As described above, the optical fiber of the present invention is
Since the Stiff type and Grated type are arbitrarily connected to form a single fiber, there are no splice connections or connector connections, and therefore it is possible to create a cable, and an excitation power source for adjusting transmission characteristics. It would be a great effect if it could be used in fiber optics to make electrical equipment extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光ファイバの伝送特性測定に用いる励振用ダミ
ーファイバを説明する丸めの図、第2図は光ファイバの
母材のプリフォー今を説明するための図、第3図は本発
明による光ファイΔを作成するための母材の作成を説明
する図である。 図面に於いて、3は石英/4イブ、4はコアとなる堆積
ガラスをそれぞれ示す。 特許出願人 富士通株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 酉 舘 和 之 弁理士 内 1)幸 男 、弁理士 山 口 昭 之 第1閃 (G) (イ)            (ロ)       
    (ハ)¥1)2図 第31!1
Fig. 1 is a rounded diagram to explain the excitation dummy fiber used for measuring the transmission characteristics of optical fiber, Fig. 2 is a diagram to explain the preforming of the base material of the optical fiber, and Fig. 3 is a diagram of the optical fiber according to the present invention. FIG. 3 is a diagram illustrating the creation of a base material for creating PhiΔ. In the drawings, 3 indicates quartz/4-beam, and 4 indicates deposited glass serving as the core. Patent Applicant: Fujitsu Limited Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Tori Tate (Patent Attorney) 1) Yukio, Patent Attorney Akira Yamaguchi (G) (A) (B)
(c) ¥1) 2 Figure 31!1

Claims (1)

【特許請求の範囲】[Claims] 1、母材のプリフォームの段階で半径方向及び長手方向
の屈折率分布を制御し、該母材を延伸して長手方向にス
テ、デ形どダレ−テッド形の光ファイバを任意に連接し
て形成したことを特徴とする光ファイバ。
1. The refractive index distribution in the radial and longitudinal directions is controlled at the stage of preforming the base material, and the base material is stretched to arbitrarily connect the optical fibers in the stub, de, etc. shapes in the longitudinal direction. An optical fiber characterized in that it is formed by
JP57045542A 1982-03-24 1982-03-24 Optical fiber Pending JPS58162906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045542A JPS58162906A (en) 1982-03-24 1982-03-24 Optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045542A JPS58162906A (en) 1982-03-24 1982-03-24 Optical fiber

Publications (1)

Publication Number Publication Date
JPS58162906A true JPS58162906A (en) 1983-09-27

Family

ID=12722252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045542A Pending JPS58162906A (en) 1982-03-24 1982-03-24 Optical fiber

Country Status (1)

Country Link
JP (1) JPS58162906A (en)

Similar Documents

Publication Publication Date Title
JPH06235841A (en) Manufacture of 1xn achromatic coupler, fiber optic coupler and 1xn fiber optic coupler
JP3534192B2 (en) Optical fiber manufacturing method
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6022658B2 (en) Fiber for optical communication
JPS58162906A (en) Optical fiber
JPH0236535B2 (en)
US4713105A (en) Method for glass fiber splicing by flame fusion
JPS6246931A (en) Production of base material for optical fiber
JPS5767037A (en) Manufacture of base material for single-mode optical fiber
JPS60122744A (en) Manufacture of simple-mode fiber
EP0150095B1 (en) Glass fiber splicing by flame fusion
JPS5773703A (en) Manufacture of optical fiber bundle
JPH0791081B2 (en) Method for manufacturing glass base material for single mode fiber
JPS60176938A (en) Production of preform for optical fiber
JPS60166244A (en) Manufacture of optical fiber preform
JPH0324420B2 (en)
JPS632900B2 (en)
JPS61168549A (en) Production of optical fiber keeping plane of polarization
JPH02267132A (en) Parent material for image fibers and their production
JP2677640B2 (en) Optical fiber coupler manufacturing method
JPH02233529A (en) Base material for optical fiber
JPH01242432A (en) Production of base material for optical fiber
JPS6344692B2 (en)
JPS61132532A (en) Production of optical fiber preform
JPS593944B2 (en) Optical fiber manufacturing method