JPS58162098A - Method of producing multilayer printed board - Google Patents

Method of producing multilayer printed board

Info

Publication number
JPS58162098A
JPS58162098A JP4446782A JP4446782A JPS58162098A JP S58162098 A JPS58162098 A JP S58162098A JP 4446782 A JP4446782 A JP 4446782A JP 4446782 A JP4446782 A JP 4446782A JP S58162098 A JPS58162098 A JP S58162098A
Authority
JP
Japan
Prior art keywords
board
unit
hole
printed board
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4446782A
Other languages
Japanese (ja)
Inventor
啓順 田中
岩沢 晃
小野瀬 勝秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4446782A priority Critical patent/JPS58162098A/en
Publication of JPS58162098A publication Critical patent/JPS58162098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はスルーホールを有する単位基板を複数枚積層し
た多層プリント板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer printed board in which a plurality of unit boards having through holes are laminated.

電子装置の小形化のだめ、プリント板には高密度化およ
び多層化が要求され、各種多層プリント板が提案されて
いる。一般に現在性なわれている多層プリント板の製造
方法には、銅張り積層板によるグレーテッドスルーホー
ルが用いられているこれは単層板(銅張り積層板)をエ
ツチングして内層面を作り、外層(表面)の間に内層と
ブリプ次に穴をあけスルーホールめっきをしたのち外層
を回路パターン状にエツチングして得られる多層プリン
ト板である。これはスルーボール接続信頼性の点で有利
であるが、重大な欠点として高度に多層化された場合、
穴加工性からスルーボール径が大きくなり、パターンの
高密度化に逆行することである。
In order to miniaturize electronic devices, higher density and multilayer printed boards are required, and various multilayer printed boards have been proposed. Generally speaking, the current manufacturing method for multilayer printed boards uses graded through holes made of copper-clad laminates. This is a multilayer printed board obtained by drilling holes between the outer layer (surface) and the inner layer, then plating through holes, and then etching the outer layer into a circuit pattern. Although this is advantageous in terms of through-ball connection reliability, a significant drawback is that when highly multi-layered,
The diameter of the through ball increases due to hole machinability, which goes against the trend of increasing the density of the pattern.

これに代る方法として、銅張り積層板を使用せず、めっ
きにより回路を形成していくビルドアップ法がある。こ
れは一層ごとに絶縁層形成と回路形成を繰返し積上げて
いく多層プリント板であるこれは任意のところに小さな
スルーボールが形成できる神意があるが、製造工程数が
非常に多くなることが欠点である。
An alternative method is a build-up method in which a circuit is formed by plating without using a copper-clad laminate. This is a multilayer printed board in which insulating layers and circuits are repeatedly formed layer by layer.This has the divine purpose of being able to form small through balls anywhere you want, but the drawback is that it requires a very large number of manufacturing steps. be.

上記2つの多層プリント板の欠点を一挙に解決できるも
のとして、小さなスルーボールが形成されたプリント板
を単位基板として複数枚積層した多層プリント板がある
。これは単位基板を互に重ね合せたとき他の単位基板の
回路と対接する回路上に、後記加圧成形時の加熱によっ
て溶融し、対接する回路を電気的に接続する接着性導電
ペーストを形成しておき、加熱加圧成形して複数枚の単
位基板を接合一体化したもので、層数を高度に増大させ
ても製造性に変化なく、しかも高密度化パターンは単位
基板の段階で得られたものを損なうことがない大きな利
点がある。゛しかじ、この多層プリント板には単位基板
間の回路の接続信頼性が劣るという大きな欠点があった
A multilayer printed board that can solve the above two drawbacks of multilayer printed boards at once is a multilayer printed board in which a plurality of printed boards on which small through balls are formed are laminated as unit boards. When unit boards are stacked on top of each other, an adhesive conductive paste is formed on the circuits that are in contact with the circuits of other unit boards, which is melted by the heating during pressure molding described later and electrically connects the opposing circuits. This is a product in which multiple unit substrates are bonded and integrated by heat and pressure molding, and there is no change in manufacturability even if the number of layers is increased to a high degree, and high-density patterns can be obtained at the unit substrate stage. This has the great advantage of not damaging what was created. However, this multilayer printed board had a major drawback in that the reliability of the circuit connections between the unit boards was poor.

本発明は、電気的に接続された易溶融金属からなるマイ
クロピンを両面に有する板間接続用プリント板を用い、
単位基板間にこれを配置し、°単位基板のスルーホール
にマイクロピンを挿入した構成となるように単位基板を
積重ね、加熱加圧しマイクロピンを溶融させて一体化す
ることにより単位基板間の接続を行ったものであり、そ
の目的は板間接続信頼性に優れた多層プリント板を提供
することにある。
The present invention uses a printed board for board-to-board connection that has electrically connected micro pins made of easily melted metal on both sides,
This is placed between the unit boards, and the unit boards are stacked so that the micro pins are inserted into the through holes of the unit boards, and the unit boards are connected by heating and pressurizing them to melt the micro pins and integrate them. The purpose is to provide a multilayer printed board with excellent connection reliability between boards.

以下本発明を図面を用いて詳細に説明する。The present invention will be explained in detail below using the drawings.

第1図(a)〜(’e)は本発明の多層プリント板の主
要製造工程説明図で、各工程における要部断面構造を示
している。図面の順番と対応させて各工程を説明する。
FIGS. 1(a) to 1('e) are explanatory diagrams of the main manufacturing steps of the multilayer printed board of the present invention, showing the cross-sectional structure of the main parts in each step. Each process will be explained in accordance with the order of the drawings.

(a) : 4ず出発基板として高密度プリント板1を
公知の技術で製造し用意する。2は絶縁基材、5は回路
パターン、4はスルーホールである。なお、図は両面プ
リント板を示したが、内層に回路を有する多層プリント
板も出発基板として利用できる。
(a): 4. A high-density printed board 1 is manufactured and prepared using a known technique as a starting board. 2 is an insulating base material, 5 is a circuit pattern, and 4 is a through hole. Although the figure shows a double-sided printed board, a multilayer printed board having a circuit on the inner layer can also be used as the starting board.

(b)二次に上記出発基板の表面回路間の絶縁性を保持
するため、スルーホール4以外のところに絶縁コーティ
ング5を形成し単位基板1′とする。
(b) Second, in order to maintain insulation between the surface circuits of the starting substrate, an insulating coating 5 is formed on areas other than the through holes 4 to form a unit substrate 1'.

絶縁コーティング5の形成は、厚膜絶縁ペーストをスク
リーン印刷して行なうことも可能であるが高密度パター
ンに対しては光硬化形ソルダフィルムをラミネートした
後、露光・現像によりスルーホール4の部分のフィルム
を除去する方法が好ましい。
The insulating coating 5 can be formed by screen printing a thick insulating paste, but for high-density patterns, the through holes 4 can be formed by laminating a photocurable solder film and then exposing and developing it. A method of removing the film is preferred.

(C):次に易溶融金属がら々るマイクロピン6゜6′
を両面に有する板間接続用プリント板7を後記する製造
法で製造し用意する。ここでマイクロピン6および6′
はプリント板7の穴中の導電ペースト8を介して電気的
に接続されている。マイクロピン6および6′の径は単
位基板1′のスルーホール4の径より小さいことが特徴
である。
(C): Next, micro pins 6゜6' made of easily melted metal.
A printed board 7 for inter-board connection having on both sides is manufactured and prepared by the manufacturing method described later. Here micro pins 6 and 6'
are electrically connected via conductive paste 8 in the hole of printed board 7. The micro pins 6 and 6' are characterized in that their diameters are smaller than the diameters of the through holes 4 of the unit substrate 1'.

(d):絶縁コーティング5が表面に形成された単位基
板1′を板間接続用プリント板7を介して複数枚重ね合
す。このとき単位基板1′のスルーホール4の中に板間
接続用プリント板7の両面にあるマイクロピン6、6′
が挿入された形となる。
(d): A plurality of unit substrates 1' having insulating coatings 5 formed on their surfaces are stacked together via printed boards 7 for inter-board connection. At this time, the micro pins 6, 6' located on both sides of the printed board 7 for connection between boards are placed in the through holes 4 of the unit board 1'.
is inserted.

(e)=マイクロピンの溶融温度以上の温度に加熱し加
圧する。マイクロピンを溶融させたのち室温まで冷却す
ると単位基板1′と板間接続用プリント板7は一体化し
、本発明の板間接続信頼性に優れた多層プリント板が得
られる。このとき、絶縁コーティング5は板間の接着剤
としての役割りを果す。
(e) = Heating and pressurizing to a temperature equal to or higher than the melting temperature of the micropin. When the micro pins are melted and then cooled to room temperature, the unit substrate 1' and the printed board 7 for connecting between boards are integrated, and the multilayer printed board of the present invention having excellent connection reliability between boards is obtained. At this time, the insulating coating 5 acts as an adhesive between the plates.

なお、図の9はマイクロピンが溶融してできだ溶融金属
であるが、この溶融金属9がスルーホール4を完全に満
さない場合があり、室温に冷却したときにボイドが残存
することがある。これは接続信頼性を低下させることが
あるため、単位基板1′と板間接続用プリント板7を積
み重ねる前に、第2図に示すように単位基板1′のスル
ーホール4にあらかじめ導電ペースト8′を埋め込んで
おき、その中へマイクロピンを挿入して、マイクロピン
の溶融時に導電ペーストと一体化することにより、さら
に高信頼性の多層プリント板が得られる。上記導電ペー
スト(厚膜導電ペースト)としてははんだペーストは勿
論のこと有機バインダ中に銅。
Note that 9 in the figure is the molten metal produced by melting the micro pin, but this molten metal 9 may not completely fill the through hole 4, and voids may remain when the through hole 4 is cooled to room temperature. be. This may reduce the connection reliability, so before stacking the unit board 1' and the board-to-board connection printed board 7, as shown in FIG. A more reliable multilayer printed board can be obtained by embedding micropins into the micropins and integrating them with the conductive paste when the micropins are melted. The above conductive paste (thick film conductive paste) includes not only solder paste but also copper in an organic binder.

銀などの金属粉体を分散させたものを用いろことができ
る。
A material in which metal powder such as silver is dispersed can be used.

次に、本発明の骨子となる板間接続プリント板7に関し
、その製造法を説明する。
Next, a method for manufacturing the board-to-board connection printed board 7, which is the gist of the present invention, will be explained.

第6図(A)〜(J)は本発明の板間接続用プリント板
の主要製造工程説明図で、各工程における要部断面構造
を示している。図面の順番と対応させて各工程を説明す
る。
FIGS. 6(A) to 6(J) are explanatory diagrams of the main manufacturing steps of the printed board for connection between boards of the present invention, showing the cross-sectional structure of the main parts in each step. Each process will be explained in accordance with the order of the drawings.

(A)−まず表裏の2枚の銅箔10と絶縁板11とから
なる銅張りフレキシブル板12を用意スる。
(A) - First, a copper-clad flexible board 12 consisting of two copper foils 10 on the front and back sides and an insulating board 11 is prepared.

銅張りフレキシブル板12の板厚は穴加工性と強度との
関係から0.1〜Q,2mmのものが好ましい。
The thickness of the copper-clad flexible board 12 is preferably 0.1 to Q.2 mm in view of the relationship between hole machinability and strength.

(13) ニトリル、パンチ等の機械加工あるいはレー
ザ加工により銅張りフレキシブル板12に穴13をあけ
る。
(13) Holes 13 are made in the copper-clad flexible board 12 by machining using nitrile, punching, etc., or by laser processing.

(C);穴15の中に導電ペースト(厚膜導電ペースト
)14を埋め込み熱処理を行なうことにより、導電ペー
スト14を穴13内に保持させる。
(C); The conductive paste 14 is held in the hole 13 by burying the conductive paste (thick film conductive paste) 14 in the hole 15 and performing heat treatment.

導電ペースト14はスクリーン印刷法などに′より穴1
6の中に選択的に埋め込むことができ、材料としては前
記の如くはんだペーストだけでなく有機バインダに金属
粉を分散させたものが使用できる。熱処理は材料により
異ガろが、150〜180℃で10〜1000秒間行な
えば、穴16内に導電ペースト14が強固に保持される
The conductive paste 14 is printed on holes 1 by screen printing method etc.
6, and as the material, not only solder paste but also an organic binder in which metal powder is dispersed can be used. The heat treatment may vary depending on the material, but if it is performed at 150 to 180°C for 10 to 1000 seconds, the conductive paste 14 will be firmly held within the holes 16.

(D):次に、両面にドライフィルム状ホトレジスト1
5をホットロールラミネータによりラミネートする。
(D): Next, apply dry film photoresist 1 on both sides.
5 is laminated using a hot roll laminator.

(E):穴13の位置に相当するところだけに穴16の
径より大きい黒丸16が形成されたホトマスク17を介
して紫外線18を照射し、黒丸16の下取外の部分のホ
トレジスト19を硬化させ、溶媒不溶性にする。
(E): Ultraviolet rays 18 are irradiated through a photomask 17 in which a black circle 16 larger than the diameter of the hole 16 is formed only in the position corresponding to the hole 13, and the photoresist 19 in the area outside the black circle 16 is hardened. to make it solvent insoluble.

(F)−次に、その上にもう一度ドライフィルム状ホト
レジスト15′をラミネートする。
(F) - Next, a dry film photoresist 15' is laminated thereon again.

(G)一工程(E)と同様にホトマスクを介して紫外線
照射を行ない、穴13に相当するところ以外のホトレジ
スト19′を硬化させ溶媒不溶性とする(II) :次
いで、溶媒による現像を行々い、穴13に相当する部分
に丸窓20を形成し、導電ペースト14および銅箔10
の表面21を露出させる。ホトレジスト19.19’の
2層に形成した理由は丸窓20の径より深さを犬にする
ためでありマイクロピンの必要な高さに応じて6層以上
に増加させることができる。1層のレジストでは解像性
の問題から丸窓20の径より深さを犬にすることができ
ない。
(G) In the same way as in Step 1 (E), ultraviolet rays are irradiated through a photomask to harden the photoresist 19' except for the areas corresponding to the holes 13, making it solvent-insoluble (II): Next, development with a solvent is carried out. A round window 20 is formed in a portion corresponding to the hole 13, and a conductive paste 14 and a copper foil 10 are formed.
The surface 21 of is exposed. The reason why two layers of photoresist 19 and 19' are formed is to make the depth smaller than the diameter of the round window 20, and the number can be increased to six or more layers depending on the required height of the micropin. With a single layer of resist, it is not possible to make the depth deeper than the diameter of the round window 20 due to resolution problems.

(I)二次いで、はんだめっきを行なうことにより、丸
窓20の中および表面21の上にはんだのめつき柱22
を形成する。
(I) Next, by performing solder plating, the solder-plated pillars 22 are formed inside the round window 20 and on the surface 21.
form.

(・I):ホトレジスト19と19′を剥離したのち、
塩化第2鉄水溶液で銅箔10のめつき柱22以外のとこ
ろをエツチングして除去することにより、マイクロピン
6.6′(−1き板間接続用プリント板7が得られろ。
(・I): After peeling off the photoresists 19 and 19',
By etching and removing the portions of the copper foil 10 other than the plating pillars 22 using a ferric chloride aqueous solution, a printed circuit board 7 for connection between micro-pins 6 and 6' (-1) can be obtained.

以下実施例で説明するが、本発明はこれに限定さ)]、
ろものではない。
Examples will be described below, but the present invention is not limited thereto)]
It's not a bastard.

〔実施例1〕:サブトラクティブ法により格子ピッチi
、25mmでスルーホール径[]、22.mmの2尾の
高密度プリント板を作製し、ヌルーホール部以外の回路
パターンを光硬化形ソルダマスク(75μn]厚)で被
覆し、単位基板(全体の厚さ0.4mn1)とし7た。
[Example 1]: The lattice pitch i is determined by the subtractive method.
, 25mm and through hole diameter [], 22. A high-density printed board with 2 mm diameter was prepared, and the circuit pattern other than the null hole portion was covered with a photocurable solder mask (75 μm thick) to form a unit board (total thickness 0.4 mm).

板間接続用プリント板を以下のようにして作製した。A printed board for connection between boards was produced as follows.

0.15mm厚さの銅張〕フレキ/プル板(銅箔188
℃厚)にQ、1+r3mφの穴をあけ、スクリーン印刷
法により穴中にはんだペースト(タムラ製。
0.15mm thick copper clad] flexible/pull board (copper foil 188
Drill a hole of Q, 1+r3 mφ in the (℃ thickness), and use solder paste (manufactured by Tamura) in the hole by screen printing.

88−3222 )を埋め込み、165℃、10秒の条
件で熱処理を行なった。次いで100μm厚のドライフ
ィルム状ホトレジスト(日立化成社製、  SR・−1
O00)をホットロールラミネータを用いて80℃でラ
ミネートした。0.15 mmφの黒丸が形成されたホ
トマスクを位置合せし紫外線照射したのち、再度前記と
同じドライフィルム状ホトレジストをラミネートし、ホ
トマスクを位置合せして紫外線照射を行なった後、トリ
クロルエタンを溶媒として用い、ホトレジストに径が0
.15.mmで深さが0.2mmの丸窓を形成し、フレ
キシブル板の銅箔と穴中のはんだ(導電ペースト)の面
を露出させた。次にそれをフェノールスルフォン酸浴(
はんだめっき浴)に入れ、25℃、2A/90分の条件
で電気めっきを行ない、丸窓の中にはんだのめつき柱(
高さ0.2mm)を形成した。
88-3222) was embedded and heat treated at 165° C. for 10 seconds. Next, a 100 μm thick dry film photoresist (manufactured by Hitachi Chemical Co., Ltd., SR・-1) was applied.
O00) was laminated at 80°C using a hot roll laminator. After aligning a photomask with a black circle of 0.15 mm in diameter and irradiating it with ultraviolet rays, the same dry film photoresist as above was laminated again, and after aligning the photomask and irradiating it with ultraviolet rays, trichloroethane was used as a solvent. The photoresist has a diameter of 0.
.. 15. A round window with a depth of 0.2 mm was formed to expose the copper foil of the flexible board and the surface of the solder (conductive paste) in the hole. Then it was soaked in a phenolsulfonic acid bath (
Electroplating was carried out at 25°C and 2A for 90 minutes, and a solder-plated pillar (
A height of 0.2 mm) was formed.

めっき時電界集中を避けるため・、基板を回転させ均一
な高さのめつき柱とした。塩化メチレンでレジストを剥
離させた後、塩化第2鉄水溶液をスプレーし、めっき柱
以外の部分づ銅箔をエツチングしてマイクロピン付きプ
リント板とした。マイクロピンの径は015.mmで高
さは0.2mmであった。
In order to avoid electric field concentration during plating, the substrate was rotated to form plating columns of uniform height. After removing the resist with methylene chloride, a ferric chloride aqueous solution was sprayed to etch the copper foil in areas other than the plating pillars to obtain a printed board with micro pins. The diameter of the micro pin is 015. The height was 0.2 mm.

上記の工程によって得られた板間接続用プリント板9枚
と単位基板10枚を交互に積み重ねだ。
The nine printed boards for board-to-board connection obtained through the above process and the ten unit boards were stacked alternately.

これをガイドビンを用いて行なうことにより容易に単位
基板のスルーホールVにマイクロピンを挿入できた。上
記19枚積み重ねだものを30kg/cm2,180℃
、 3分の条件で加熱加圧成形した後、加圧状態にて室
温まで水冷した。上記の加熱加圧でマイクロピンは溶融
して、スルーホール回路の銅と一体化し、絶縁コーティ
ングとしての光硬化形ソルダマスク(フィルム)は熱架
橋により硬化すると同時に単位基板と板間接続用ブリッ
ト板とを強固に接着させた。
By doing this using a guide bin, it was possible to easily insert the micropin into the through hole V of the unit board. The above 19 sheets stacked at 30kg/cm2, 180℃
After heating and press molding for 3 minutes, the product was cooled with water to room temperature under pressure. The micro pins are melted by the heat and pressure described above and integrated with the copper of the through-hole circuit, and the photocurable solder mask (film) as an insulating coating is cured by thermal crosslinking, and at the same time it is bonded to the unit board and the bullet plate for connection between the boards. was firmly attached.

このようにして得られた20層の多層板の接続信頼性を
評価するため、熱衝撃試験(−65℃。
In order to evaluate the connection reliability of the 20-layer multilayer board thus obtained, a thermal shock test (-65°C) was conducted.

30分→125℃、30分)を行なった結果、100サ
イクル後でも断線等の障害は生じなかった〔実施例2〕
;前記実施例1の単位基板のスルーホールの中にスクリ
ーン印刷法ではんだペースト(タムラ製、  88−3
2.22 )を埋め込んだ。埋め2み量はマイクロピン
を挿入したときのはみ出しを防ぐため、スルーホールの
内容積の約1/2になるようにした。この単位基板10
枚を板間接続用プリント板9枚と交互に積み重ね、実施
例1の場合と同じ条件で加熱加圧成形することにより一
体化し、20層の多層板を得た。この多層板は熱衝撃試
験500サイクル以上まで安定した板間接続が得られ、
実施例1の多層板よりさらに信頼性が向上した。
30 minutes → 125°C, 30 minutes) As a result, no problems such as wire breakage occurred even after 100 cycles [Example 2]
; Solder paste (manufactured by Tamura, 88-3) was applied by screen printing into the through holes of the unit board of Example 1.
2.22) was embedded. The amount of filling was set to about 1/2 of the internal volume of the through hole to prevent the micro pin from protruding when inserted. This unit board 10
The sheets were stacked alternately with nine printed boards for inter-board connection, and integrated by heating and pressure molding under the same conditions as in Example 1 to obtain a 20-layer multilayer board. This multilayer board can provide stable inter-board connections up to more than 500 cycles of thermal shock testing.
The reliability was further improved compared to the multilayer board of Example 1.

〔実施例6〕:前記実施例1の単位基板のスルーホール
の中にスクリーン印刷法で有機導電ペースト(エポック
社製、エポテノクWE−12)をスルーホールの内容積
の約1/2だけ埋め込んだ。実施例1と同様の方法で単
位基板10枚を板間接続用プリント板9枚と交互に積み
重ねた後、圧力60kg/f:m 、170℃、60分
の条件で加熱加圧成形することにより一体化し、20層
の多層板を得た。この多層板は熱衝撃試験25′0サイ
クルまで安定した板間接続が得られた。
[Example 6]: An organic conductive paste (manufactured by Epoch Co., Ltd., Epotenoku WE-12) was embedded into the through holes of the unit substrate of Example 1 by screen printing to an extent of about 1/2 of the internal volume of the through holes. . After stacking 10 unit boards alternately with 9 printed boards for board-to-board connection in the same manner as in Example 1, heat and pressure molding was carried out under the conditions of a pressure of 60 kg/f:m2, 170°C, and 60 minutes. This was integrated to obtain a 20-layer multilayer board. In this multilayer board, a stable connection between the boards was obtained up to 25'0 cycles of the thermal shock test.

〔実施例4〕:サブトラクティブ法により格子ピノチ1
.25 mmでスルーホール径Q、 ’l mmφの高
密度4層板を作製し、スルーホール部以外の回路、Cタ
ーンを光硬化形ソルダマスク(75μm厚)で被覆し単
位基板(全体の厚さ0.6mm)としだ。
[Example 4]: Lattice pinoch 1 by subtractive method
.. A high-density 4-layer board with a through-hole diameter of 25 mm and a through-hole diameter of Q, 'l mmφ was fabricated, and the circuits and C-turns other than the through-hole portion were covered with a photocurable solder mask (75 μm thick), and a unit board (total thickness of 0 .6mm).

単位基板のスルーホールにはんだペースト(タムラ製、
5S−3222)をスルーホールの内容積の約2/口の
量を埋め込んだ。ペーストを埋め込んだ単位基板10枚
を実施例1の板間接続用プリント板9枚と交互に積み重
ねた後、実施例1と同条件で加熱加圧成形して40層の
多層板を得た。この多層板は熱衝撃試験500サイクル
以上壕で安定した板間接続信頼性を示した。
Solder paste (made by Tamura,
5S-3222) was embedded in an amount equivalent to approximately 2/mouth of the internal volume of the through hole. After 10 unit boards embedded with paste were stacked alternately with 9 printed boards for interboard connection of Example 1, they were heated and pressed under the same conditions as in Example 1 to obtain a 40-layer multilayer board. This multilayer board showed stable inter-board connection reliability over 500 cycles of thermal shock testing.

以上説明したように本発明の多層プリント板は電気的に
接続された高溶融金属からなるマイクロピンを両面に有
する板間接続用プリント板を用い単位基板にこれを配置
し、単位基板のスルーホールにマイクロピンを挿入した
構成となるように単位基板を積み重ね、加熱加圧により
マイクロピンを溶融させて一体化させたものであるから
、単位基板の回路パターンの高密度化を損なうことなく
続信頼性に優れる利点がある。
As explained above, the multilayer printed board of the present invention uses a printed board for board-to-board connection that has electrically connected micro pins made of high-melting metal on both sides, and arranges this on a unit board to form a through-hole in the unit board. The unit boards are stacked so that the micro pins are inserted into the circuit board, and the micro pins are melted and integrated by applying heat and pressure.This ensures long-term reliability without compromising the high density of the circuit pattern on the unit board. It has the advantage of being superior in terms of gender.

L S Iを高密度に実装する電子装置には20層以上
の多層プリント板が必要となるが、本発明の多層プリン
ト板は信頼性・経済性に優れるので、電子装置の経済化
にその威力を発揮する。また多層化は原理的には無限で
あるので、コンピー、−タ等の電子装置の小形化を極端
に押し進めることができる。
Electronic devices with high-density packaging of LSIs require a multilayer printed board with 20 or more layers, but the multilayer printed board of the present invention has excellent reliability and economic efficiency, so it will be useful in making electronic devices more economical. demonstrate. Furthermore, since the number of layers is unlimited in principle, electronic devices such as computers and computers can be miniaturized to an extreme extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の多層プリント板の製造
工程説明図、第2図は単位基板のスルーホールに導電ペ
ーストを埋め込んだ断面図、第6図(A)〜(J)は本
発明の板間接続用プリント板の製造工程説明図である。 1・・・高密度プリント板 1′・・・単位基板2・・
・絶縁基材     6・・・回路パターン4・・・ス
ルーホール   5・・°絶縁コーティング6.6・・
・マイクロピン 7・・・板間接続用プリント板 8.8′・・・導電ペースト 9・・・溶融金属10・
・銅箔      11・・・絶縁板12・・・銅張り
フレキンプル板 16・・欠       14・・・導電ペースト15
.15’・・ドライフィルム状ホトレジスト16・・・
黒丸      17・・・ホトマスク18・・・紫外
線 19.19′:・・ホトレジスト(光硬化レンスト)2
0・・・丸窓 21・・・銅箔と導電ペーストの表面 22・・・めっき柱 特許出願人  日本電信電話公社 代理人弁理士  中村純之助 1−1  図 4 ′1−2図 ′4p3図) ′IF3図
Figures 1 (a) to (e) are explanatory diagrams of the manufacturing process of the multilayer printed board of the present invention, Figure 2 is a cross-sectional view of the through holes of the unit board filled with conductive paste, and Figures 6 (A) to (J ) is an explanatory diagram of the manufacturing process of the printed board for board-to-board connection of the present invention. 1...High-density printed board 1'...Unit board 2...
・Insulating base material 6...Circuit pattern 4...Through hole 5...°Insulating coating 6.6...
・Micro pin 7... Printed board for connection between boards 8.8'... Conductive paste 9... Molten metal 10.
・Copper foil 11... Insulating board 12... Copper-clad flexible board 16... Missing 14... Conductive paste 15
.. 15'...Dry film photoresist 16...
Black circle 17...Photomask 18...Ultraviolet light 19.19':...Photoresist (light curing resist) 2
0...Round window 21...Surface of copper foil and conductive paste 22...Plated pillar Patent applicant Nippon Telegraph and Telephone Corporation Patent attorney Junnosuke Nakamura 1-1 Figure 4 '1-2 Figure '4 p3) 'IF3 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)次の各工程を有する多層プリント板の製造方法。 ■ スルーホールを有する単位基板を複数枚用意する第
1の工程、 ■ 上記単位基板のスルーホールの径より小さい径の易
溶融金属からなるマイクロピンを両面に有しその両面に
存在するマイクロピンが電気的に接続されている板間接
続用プリント板を用意する第2の工程、 ○ 上記単位基板の間に上記板間接続用プリント板を配
置し、単位基板のスルーホール内に板間接続用プリント
板のマイクロピンが挿入された構成となるように積層す
る第6の工程、O上記マイクロピンの金属の融点以上の
温度で加熱加圧処理し、マイクロピンを溶融させて板間
接続を行なう第4の工程。
(1) A method for manufacturing a multilayer printed board including the following steps. ■ A first step of preparing a plurality of unit substrates having through holes; ■ Having micro pins made of easily meltable metal on both sides and having a diameter smaller than the diameter of the through hole of the unit substrate; A second step of preparing a printed board for board-to-board connection that is electrically connected, ○ Arranging the board-to-board connection printed board between the unit boards, and forming a board-to-board connection board in the through hole of the unit board. The sixth step is to stack the printed boards so that the micro pins are inserted, heat and pressure treatment is performed at a temperature higher than the melting point of the metal of the micro pins to melt the micro pins and connect the boards. Fourth step.
(2)上記第1の工程で用意する単位基板のスルーホー
ルはあらかじめ導電ペーストが埋め込まれたものであり
、上記第6の工程で板間接続用プリント板を介して積層
した状態で単位基板のスル、:=−ホールには板間接続
用プリント板のマイクロピンと上記導電ペーストが存在
するようにしたことを特徴とする特許請求の範囲第1項
記載の多層プリント板の製造方法。 (ロ)上記第2の工程で用意する板間接続用プリント板
は、次の各工程を有して作られたものであることを特徴
とする特許請求の範囲第1項記載の多層プリント板の製
造方法。 ■ 銅張りフレキシブル板の所定の位置に穴あけを行な
い、その穴に導電ペーストを埋め込む工程、 ■・上記工程を経た銅張りフレキシグル板の両面に、ド
ライフィルム状ホトレジストを複数回ラミネートし、各
ホトレジストを露光・現像処理して上記銅張りフレキシ
ブル板の穴の部分にその穴径より大きい径で深さがその
径より犬きい丸窓をあけ、上記導電ペーストおよび銅箔
の表面を露出させる工程、 ○ 上記露出面上にはんだめっきを行ない、上記丸窓の
径より大きな厚さのめっき柱であるマイクロピンを形成
し、その後、ドライフィルム状ホトレクストを溶剤で除
去する工程、■ 上記工程で形成されたマイクロピン以
外のフレキシブル板表面の銅箔をエツチング除去する工
程。
(2) The through-holes of the unit board prepared in the first step are filled with conductive paste in advance, and the unit board is laminated with a printed board for board-to-board connection in the sixth step. 2. The method of manufacturing a multilayer printed board according to claim 1, wherein the micro pins of the printed board for board-to-board connection and the conductive paste are present in the holes. (b) The multilayer printed board according to claim 1, characterized in that the printed board for inter-board connection prepared in the second step is made by the following steps: manufacturing method. ■ A process of drilling holes at predetermined positions on a copper-clad flexible board and filling the holes with conductive paste; ■ Laminating dry film-like photoresist multiple times on both sides of the copper-clad flexible board that has gone through the above process, and applying each photoresist. A process of exposing the surface of the conductive paste and copper foil by exposing and developing a hole in the copper-clad flexible board to open a round window with a diameter larger than the diameter of the hole and a depth deeper than the diameter of the hole, ○ Solder plating is performed on the exposed surface to form micro pins, which are plated columns with a thickness larger than the diameter of the round window, and then the dry film-like photorect is removed with a solvent; A process to remove copper foil from the surface of a flexible board other than micro pins by etching.
JP4446782A 1982-03-23 1982-03-23 Method of producing multilayer printed board Pending JPS58162098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4446782A JPS58162098A (en) 1982-03-23 1982-03-23 Method of producing multilayer printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4446782A JPS58162098A (en) 1982-03-23 1982-03-23 Method of producing multilayer printed board

Publications (1)

Publication Number Publication Date
JPS58162098A true JPS58162098A (en) 1983-09-26

Family

ID=12692299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4446782A Pending JPS58162098A (en) 1982-03-23 1982-03-23 Method of producing multilayer printed board

Country Status (1)

Country Link
JP (1) JPS58162098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324696A (en) * 1986-07-17 1988-02-02 日本電気株式会社 High multilayer interconnection board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324696A (en) * 1986-07-17 1988-02-02 日本電気株式会社 High multilayer interconnection board

Similar Documents

Publication Publication Date Title
US20080264684A1 (en) Carrier member for transmitting circuits, coreless printed circuit board using the carrier member, and method of manufacturing the same
JPH0575269A (en) Manufacture of multilayer printed-wiring board
JP2007221125A (en) Method and process for embedding conductive element in dielectric layer
KR100674295B1 (en) Method for manufacturing multilayer printed circuit board
JPH1075069A (en) Manufacture of build-up multi-layer printed circuit board using yag laser
WO2003005788A1 (en) Multilayer flexible wiring circuit board and its manufacturing method
KR100704920B1 (en) Pcb and it's manufacturing method used bump board
JPH08139450A (en) Manufacturing method of printed-wiring board
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
KR20190124616A (en) Method of manufacturing the printed circuit board
JP3474897B2 (en) Printed wiring board and method of manufacturing the same
JP4684454B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JPH1070363A (en) Method for manufacturing printed wiring board
JPS58162098A (en) Method of producing multilayer printed board
JP3474896B2 (en) Printed wiring board and manufacturing method thereof
JP2001257476A (en) Multilayer wiring board and manufacturing method thereof
KR100658437B1 (en) Pcb and it's manufacturing method used bump board
JP4199957B2 (en) Manufacturing method of multilayer wiring board
JP3628313B2 (en) Printed wiring board and manufacturing method thereof
JP3549063B2 (en) Manufacturing method of printed wiring board
JP2002141637A (en) Printed-wiring board and its manufacturing method
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JPH06326466A (en) Manufacture of printed wiring board
JP4736251B2 (en) Film carrier and manufacturing method thereof