JPS58162088A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS58162088A
JPS58162088A JP4542082A JP4542082A JPS58162088A JP S58162088 A JPS58162088 A JP S58162088A JP 4542082 A JP4542082 A JP 4542082A JP 4542082 A JP4542082 A JP 4542082A JP S58162088 A JPS58162088 A JP S58162088A
Authority
JP
Japan
Prior art keywords
groove
layer
cladding layer
thickness
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4542082A
Other languages
Japanese (ja)
Inventor
Keiichi Yoshitoshi
慶一 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4542082A priority Critical patent/JPS58162088A/en
Publication of JPS58162088A publication Critical patent/JPS58162088A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser which can be simply controlled for the thickness of a grown layer by forming a side groove which extends in parallel with the groove at both side of the groove and has the same depth as the groove and a width larger than that of the groove. CONSTITUTION:The first clad layer 3 made of P type Ga9.5Al9.5As is grown at growth start temperature of 780 deg.C and at gradually cooling speed of 0.5 deg.C/min on a substrate 1 formed with a groove 2 and side grooves 10 in such a manner that the thickness of the layer at the flat part is approx. 0.1mum and a recess is formed and bent on the surface on the groove 2. Since growing component is dispersed and concentrated in each groove, the growing speed at the groove is decelerated. Then, when an active layer 4 made of Ga0.7Al0.3As is epitaxially grown continued to the layer 3, the thickness of the layer on the groove 2 becomes 0.1mum in approx. 30 sec. This is because the surface of the layer 3 is bent in recess shape on each groove so that growing component is dispersed and concentrated at the bent part with the result that the growing speed is decelerated on the groove 2. With this structure, the growing speeds of the layers 3, 4 are delayed as compared with the conventional one, thereby simplifying the control of the thickness of the layer.

Description

【発明の詳細な説明】 nner)型半導体レーfK関する。[Detailed description of the invention] (nner) type semiconductor ray fK.

第1図は従来のこの楡し−ft示し、(1)はn型Ga
Asからなる半導体基板でる抄、該基板の一生面には紙
面垂直方向に延在する溝(2)が形成されている。(3
)は上記J[(1)の−主面上に積t―されたn型Ga
<−xA/xAs (0<x<1 )からなる第1クラ
ッド層であに、該第1クラッド層の上記溝(2)上表面
は凹状に湾曲している。(4Jは上記第1りラッド層(
3)上に積層されたGB hyム/yA(1<(g≦Y
<1.Y<X)からなる活性1であり、該活性1は上記
溝(2)上部で湾曲しかつ断る部分の層ツが最も厚くな
るよう形成されている。(5)は上記活性層(4)上v
C@FaされたP3Ga+−x人/xAs2>bらする
第2クラッド層、(6)は該第2クラッド層上に積層さ
れたn型GaAsからなるキャップ層であり、該キャッ
プ層は後VC形成される電極とのオーミック接触をとる
九めのものである。C7)は上記溝(2)に沿りてキャ
ップ層(5)表面より第2クラッド層(5J K連する
深さまでZn(亜鉛)を拡散してなる拡散S坂である・
181(97は夫々上記拡散鵡域171表面及び基#1
(1)裏面VC形成されたオー電ツク性の@1.第2電
櫃であるafjlls上記各成艮t−は液相エビタキシ
ヤル法により形成される。
Figure 1 shows this conventional elm-ft, and (1) is an n-type Ga
A semiconductor substrate made of As is formed, and a groove (2) extending perpendicular to the plane of the paper is formed on the entire surface of the substrate. (3
) is the n-type Ga deposited on the main surface of J[(1)
<-xA/xAs (0<x<1) In the first cladding layer, the upper surface of the groove (2) of the first cladding layer is curved in a concave shape. (4J is the first layer mentioned above (
3) GB hym/yA (1<(g≦Y
<1. The active layer 1 is formed such that Y<X), and the active layer 1 is formed so that the layer is thickest at the curved and cut-off portion above the groove (2). (5) is above the active layer (4)
A second cladding layer made of C@Fa P3Ga+-xAs2>b, (6) is a cap layer made of n-type GaAs laminated on the second cladding layer, and the cap layer is This is the ninth one that makes ohmic contact with the electrode being formed. C7) is a diffusion S slope formed by diffusing Zn (zinc) from the surface of the cap layer (5) to a depth extending from the second cladding layer (5JK) along the groove (2).
181 (97 is the surface of the diffusion area 171 and group #1, respectively)
(1) Automatic electrical conductivity with VC formed on the back side @1. The second electrical box, afjlls, is formed by a liquid phase epitaxy method.

駈るレーfにおいて第1電極(8)を正極とし、第ヒ 2電櫃197を負極、して電流を印加すると、電流は路
溝(2)直上部を流れ、溝(2)直上の活性層(4)内
において発光再結合が生じる。また、上記溝(2)直上
の活性1(4jは他の部分より厚く、かつ湾曲している
ので、実質的には断る活性11143は光屈折率が低く
かつ禁止帯幅が大なる第1、第2クラツド’1l13J
(5)rCより四方から囲続されている。
When a current is applied by using the first electrode (8) as the positive electrode and the second electrode 197 as the negative electrode in the running race f, the current flows directly above the groove (2), and the current flows directly above the groove (2). Luminescent recombination occurs within layer (4). In addition, since the active layer 1 (4j) directly above the groove (2) is thicker and curved than the other parts, the active layer 11143, which is essentially rejected, has a low optical refractive index and a large forbidden band width. 2nd Clad '1l13J
(5) Surrounded by rC from all sides.

従2て、断る活性−(4jで生じた再結合光及び電流は
この溝(2)上部の活性層(4)内に良好に閉じ込めら
れ、低しきい値電流で単−横モードのレーず光を得るこ
とができる。向、を記印加電流は、fi(2)上部以外
の活性層(4)内にも拡がるが、断る溝上部り 以外の活性層14)で生じ九再結合光は図の卯く一層直
下の第1クラッド層(3)の層厚が非常に薄い(通常α
1声篇以下)九め断る第1クラッド層を通過して、バン
ドギャップの小なる基板に吸収される。
Therefore, the recombined light and current generated in the active layer (4j) are well confined within the active layer (4) above this groove (2), resulting in a single-transverse mode laser beam with a low threshold current. The applied current spreads into the active layer (4) other than the upper part of fi (2), but the recombination light generated in the active layer (14) other than the upper part of the groove is rejected. In the figure, the layer thickness of the first cladding layer (3) directly below the layer is very thin (usually α
(one voice or less) passes through the first cladding layer and is absorbed by the substrate with a small band gap.

ところが所るレーfにおいては製造時の小袖りが低いと
いう間融が4りた。
However, in the case of Ray f, there was a problem that the kosode length at the time of manufacture was low.

祈る間層の原因は、液相成長にお−で、成長用ノルド中
の成長成分、例えばGaAs成員用ノル)にかけるム8
(砒素)成分が溝内に集中し、平坦部にはほとんど存在
しなくなり、単結晶の成長速度が平坦部より溝部での方
が5〜10倍と速くなるためである。
The cause of the interstitial layer is the growth components in the growth layer, such as the layer for GaAs members, during liquid phase growth.
This is because the (arsenic) component is concentrated in the grooves and is almost absent in the flat areas, and the growth rate of the single crystal is 5 to 10 times faster in the grooves than in the flat areas.

例えば、上記溝(2Jを、幅5声清、探さts声屑とす
ると共に第1クラッド層(3)をP型Gao、sAl・
、IAIとし、j!に新る第1クラッド層【3ノの溝1
21 k &湾曲させると共に溝上部以外の第1クラッ
ド層(3)の層厚をα1声Iw程度にする場合、成長開
始温度780℃、徐冷j1度α5℃/ min とする
と50秒程度で第1クラッド層(3)が形成される。
For example, the above-mentioned groove (2J) has a width of 5 mm and a width of 5 mm, and the first cladding layer (3) is P-type Gao, sAl.
, IAI and j! New first cladding layer [3 grooves 1
21 k & When bending and setting the layer thickness of the first cladding layer (3) other than the upper part of the groove to about α1 Iw, the growth start temperature is 780°C and the slow cooling is 1° α5°C/min, then the first cladding layer (3) will reach the first cladding layer in about 50 seconds. 1 cladding layer (3) is formed.

このように成長速度が速−と現在の成長装置では11声
腐単位の層厚制御が困難であり、従りて第か゛ 1クラッド層(37w#r望の形状に形成できなく上述
した間−が生じる。
As the growth rate is fast, it is difficult to control the layer thickness of 11 cladding units with the current growth equipment, and therefore the first cladding layer (37w#r) cannot be formed into the desired shape, and the above-mentioned period of time cannot be formed. occurs.

ま九活性層(4)の層厚もレー蓼光発振の友めに、最大
江1μ箇厚に抑えることが必要である0例えば活性層(
4)としてG * o、y A / a、sAB 1に
成Jjすせる場合、平坦な第1クラッド層(3)上では
第1クラッド層(3jに連続して成長を行なうと約15
秒でI11声調厚の1が成員する。また湾曲し九第1ク
ラッド層(3)上での活性@(4)の成長速度は平坦部
のしなければならず、このような短時間の制御は困難で
あり、ゆえに歩餉υの低下という問題が生じるO 本発明は上記の間MKmみてなされたもので、成長層の
層厚制御が簡単に行える構造を有した半導体レーψを提
供せんとするものである。
For example, the thickness of the active layer (4) must be kept to a maximum thickness of 1μ to facilitate laser light oscillation.
4) When growing G * o, y A / a, sAB 1 Jj, on the flat first cladding layer (3), if the growth is continued from the first cladding layer (3j), about 15
1 of I11 tone thickness is a member in seconds. In addition, the growth rate of the active @ (4) on the curved first cladding layer (3) must be the same as that of the flat part, and it is difficult to control such a short period of time, so the growth rate of υ decreases. The present invention was developed in consideration of the above-mentioned MKm, and is intended to provide a semiconductor layer ψ having a structure in which the thickness of the grown layer can be easily controlled.

既述し九如く、液相成長において溝内での成長速度が平
坦部での成長速度の5〜10倍と非常に速くなるが、向
−基板上に線数の溝を設けると成長成分の集中が6溝に
分散されることと々り、各に 溝での成長速度は溝が一つの場合、比べて迩くなる。
As mentioned above, in liquid phase growth, the growth rate in the groove is extremely fast, 5 to 10 times the growth rate in the flat area, but when grooves with the same number of lines are provided on the opposite substrate, the growth rate of the growth component increases. Since the concentration is distributed over six grooves, the growth rate in each groove is faster than when there is only one groove.

本発明は断る現畝を巧みに利用してなされたもので、以
下実施例につき本発明を説明する。
The present invention has been made by skillfully utilizing the existing ridges, and the present invention will be explained below with reference to Examples.

第2図は本発明の一実施例半導体レーずを示す0本実施
居−蓼の特徴は第1図に示したレーずにおいて溝(2)
の絢肯vc祈る溝と平行に延在し、かり新る溝と深さが
同じでかつ幅が大なるlll1m11a叫を形成したこ
とでるる、#i1第1図と岡−箇所には同一番号が付さ
れている。
FIG. 2 shows a semiconductor laser according to an embodiment of the present invention.
#i1 Fig. 1 and Oka - part have the same number, because it extends parallel to the prayer groove, has the same depth as the new groove, and has a larger width. is attached.

本実1に例で+1、上e溝[2J及びva*aaant
ogrさを共に15声調に、幅を大々5声清及び10声
屑とゾ した、崗駈る溝の形成は一知&0ネかリスグラフィ技術
な市いた。
For example, +1, upper e groove [2J and va*aaant
The formation of the grooves, which have a pitch of 15 tones and a width of 5 tones and 10 tones, was created using Ichichi &0neka's lithographic techniques.

上記溝+23及び91741111鎚が形成された基板
(1)上に平坦部での1厚が約11声Iw程度とな〉、
溝(2)よで表面が凹状に湾曲するように成長開始温度
780℃、徐冷適度a5℃/minでpHGam、sA
l・、s Asからなる第1クラッド層(3膚成長な行
な)たところ、成員ICR分子@要し友、これは既述し
た如く、緩機の溝が存在する場合、各溝rc成長成分が
分散集中するため、従来の溝が一つの場合に較べて6溝
での成i通度が遅くなる友めである。
On the substrate (1) on which the groove +23 and the 91741111 hammer are formed, the thickness at the flat part is about 11 tones Iw.
pHGam, sA was grown at a growth starting temperature of 780°C and a slow cooling rate of a5°C/min so that the surface curved concavely at the grooves (2).
When the first cladding layer (conducted with three-layer growth) consisting of As, the member ICR molecule @Kasutomo is formed, as mentioned above, if there is a groove in the groove, each groove rc grows. Because the components are dispersed and concentrated, the success rate with six grooves is slower than in the conventional case with one groove.

また、このとき側溝IMiIIa上に成員した第1クラ
ッド−(3)表面も凹状に湾曲している。
Further, at this time, the surface of the first cladding (3) formed on the side groove IMiIIa is also curved in a concave shape.

次いで、従来と同様に第1クラッド層(3)に連続して
Gas、7A10.sムsカラナル活性層+4)tzビ
タキシヤル成長させ九ところ、溝(27上部での層厚が
α1声SW程度と々るのVC50秒程度程度りた・これ
は第1クラッド層(3J表面が各溝上部で凹状に湾曲し
ている友め、断る湾曲部にu22成分が分散集中し、溝
(2)上での成長速度が遅くなるためである・ 上述し±如く、本実施例の半導体レーザでは第1クラツ
ド!1l(3)及び活性層(4)の成長速度が従来に較
べて遅くな抄、従りて層軍制引が簡単になる。
Next, as in the conventional case, gas, 7A10. The layer thickness at the top of the groove (27) was about VC50 seconds, which is about α1 SW.This is because the first cladding layer (3J surface is This is because the U22 component is dispersed and concentrated in the concave curved part at the top of the groove, slowing down the growth rate on the groove (2).As described above, the semiconductor laser of this example In this case, the growth rate of the first cladding 1l (3) and the active layer (4) is slower than that of the conventional method, and therefore, layer control becomes easier.

陶、上記側溝IMinGは溝(21より深さ及び幅にお
いて小とすると溝12)上に第1クラッド層(3)が所
望形状Kb5C長し九時点では圓溝鴫明は完全に埋りて
、表面に湾曲が形成されない、このように湾曲が形成さ
れないと第1図のレーダと同様に溝(2)上部の活性@
(4)の成長速度が達(なり、層厚制御が困難となる。
In the gutter IMinG, the first cladding layer (3) has a desired shape Kb5C on the groove (groove 12, assuming that it is smaller in depth and width than 21). No curvature is formed on the surface. If no curvature is formed in this way, the activation of the upper part of the groove (2) is similar to the radar in Fig. 1.
The growth rate of (4) is reached, and layer thickness control becomes difficult.

また側溝Go鴫の深さが小となる時も同様に湾曲が形成
されない、更K1llllll1M1凹の幅が溝部(2
)と等しいかもしくは大きく、かつ深さが溝(2Jよ参
大となると*(23上KFfr望形状に第1クラツド鳩
(3)が成員した時点で4Jlil板10表面の他の部
分に第1クラッド層(3)が成員しないことがるる。
Similarly, when the depth of the side groove becomes small, no curve is formed, and the width of the concave groove (2
), and the depth is equal to or larger than the groove (2J to Sanshi-dai), and when the first cladding pigeon (3) has formed the desired shape on 23 KFfr, the first cladding pigeon (3) is formed in other parts of the surface of the 4Jlil plate 10. The cladding layer (3) may not be a member.

従りて、上記■溝−一の大きさは深さが溝(2)と−等
でかつ幅がa(2)と同等かもしくは大であることが好
壕しく、断る場合所望形状の第1クラッド層(3+ k
 liE艮できる。
Therefore, it is preferable that the size of the above groove (1) is as deep as the groove (2) and that the width is equal to or larger than the groove (2). 1 cladding layer (3+k
I can do liE costumes.

また、第2図のレーザに′にいて第1電極(8)−第7
0 2電[1(9JFlK順方向II流を印fる際に冑溝口
111上に成員した活性層(4)にお−てレーず発振が
生じないようにするために溝(2)と−溝−−との間隔
な20声tm−sopwam度とすることが好ましい、
このようにすると印加電流の一部が側溝叫上部にま1′
Also, in the laser shown in FIG.
In order to prevent laser oscillation from occurring in the active layer (4) formed on the groove opening 111 when applying the forward direction II flow, the groove (2) and - It is preferable that the interval between the groove and the groove is 20 tones tm-sopwam,
In this way, part of the applied current will be directed to the upper part of the gutter.
.

で拡がりたとしても、断る鴫流ノ家発振しないことがt
11鑓されて−る0本実施例装置では25声病としえ・ 本艶明者が第1図のレーψと本実施例し−ずとKsPけ
るクエへ面槓に対して発振しき一値電流が50M1ム以
下となる成長層の歩留な―べたところ、第1図レーダで
は40噛極度であうたのに対して本実施例レーデでは8
0路程度となりた。
Even if it spreads, it is important not to oscillate in order to refuse.
11 The device of this embodiment has a 25 voice disease.The one-value current that oscillates for the ray ψ of Fig. 1 and the KsP of this embodiment. When looking at the yield of a grown layer with a grain size of 50 M1 or less, the radar in Figure 1 achieved a yield of 40 bites, while the radar of this embodiment achieved a yield of 8.
It became about 0 road.

陶本実施例ではGap/As系材料の半導材料−fにつ
いて説明し九が、これに@るものではなく、本発明は他
の半導体材料を用いた半導体レーfrc適用できる。
In this embodiment, the semiconductor material -f, which is a Gap/As-based material, will be described. However, the present invention is not limited to this, and the present invention can be applied to a semiconductor laser FRC using other semiconductor materials.

以上の説明から明らかな如く、本発明の半導体レーダで
は第1クラッド層及び活性層の層厚制御が簡単に行オる
ので歩留シ1〈製造することができる。
As is clear from the above description, in the semiconductor radar of the present invention, since the layer thicknesses of the first cladding layer and the active layer can be easily controlled, the semiconductor radar can be manufactured with a yield of 1.

【図面の簡単な説明】[Brief explanation of the drawing]

2図は本発明の実施例を示す断面、ff14る。 (υ・・・半導体J&板、(2)・−溝、(3)・・・
第1クラッド層、+4J−・・活性層、+5J・・・第
2クラッド層、−・・・側溝。 3
Figure 2 is a cross section showing an embodiment of the present invention, ff14. (υ... Semiconductor J & board, (2) - groove, (3)...
First cladding layer, +4J-... active layer, +5J... second cladding layer, -... side groove. 3

Claims (1)

【特許請求の範囲】[Claims] (1)  −土面の略中央に溝が形成され、−導電型を
示す半導体基板、該1板上に積層され祈る&板と間部電
型を示す第1クラッド層、該gs1クラッド層上に積層
され駈る第1クラッド層よシ光屈折率が高くかつ禁止帯
幅が小なる活性層、該活性層上に積層され、断る活性層
よ〉光屈折率が低くかつ禁止帯幅が大であると共に上記
第1クラッド層と逆導電型を示す第2クラッド層からな
る半導体レーデにおいて、上記基板の一生面上には上記
溝と略平行に延在し、かつ断る溝と深さが同じでかつ幅
が等しいかもしくは大となる側溝が形成されていること
を特徴とする半導体レーず。
(1) - A groove is formed approximately in the center of the soil surface, - A semiconductor substrate exhibiting a conductivity type, a first cladding layer laminated on the one board and exhibiting a conductivity type between the pray & plate, and a top of the gs1 cladding layer; The first cladding layer laminated on top of the first cladding layer has a high optical refractive index and a small forbidden band width, and the active layer laminated on top of the active layer has a low optical refractive index and a large forbidden band width. and a second cladding layer having a conductivity type opposite to that of the first cladding layer, which extends substantially parallel to the groove on the whole surface of the substrate and has the same depth as the groove. A semiconductor laser characterized in that a side groove is formed which is large and has equal or large width.
JP4542082A 1982-03-19 1982-03-19 Semiconductor laser Pending JPS58162088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4542082A JPS58162088A (en) 1982-03-19 1982-03-19 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4542082A JPS58162088A (en) 1982-03-19 1982-03-19 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58162088A true JPS58162088A (en) 1983-09-26

Family

ID=12718770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4542082A Pending JPS58162088A (en) 1982-03-19 1982-03-19 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58162088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717535A1 (en) * 1986-05-30 1987-12-03 Sharp Kk SEMICONDUCTOR LASER ARRANGEMENT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124292A (en) * 1979-03-19 1980-09-25 Matsushita Electric Ind Co Ltd Semiconductor laser device and method of fabricating the same
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124292A (en) * 1979-03-19 1980-09-25 Matsushita Electric Ind Co Ltd Semiconductor laser device and method of fabricating the same
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717535A1 (en) * 1986-05-30 1987-12-03 Sharp Kk SEMICONDUCTOR LASER ARRANGEMENT
US4791651A (en) * 1986-05-30 1988-12-13 Sharp Kabushiki Kaisha Semiconductor laser array device
DE3717535C2 (en) * 1986-05-30 1994-09-22 Sharp Kk Semiconductor laser device

Similar Documents

Publication Publication Date Title
US3981023A (en) Integral lens light emitting diode
US4251298A (en) Heterostructure laser
US5565694A (en) Light emitting diode with current blocking layer
JPS6050983A (en) Manufacture of semiconductor laser element
JPS60789A (en) Semiconductor laser device
JPS58162088A (en) Semiconductor laser
US5518954A (en) Method for fabricating a semiconductor laser
JPS5834988A (en) Manufacture of semiconductor laser
JPH01304793A (en) Manufacture of semiconductor laser device
JPS59115582A (en) Semiconductor laser
JPS59222984A (en) Semiconductor laser device
JPS6318874B2 (en)
JPH0410705Y2 (en)
JP2780307B2 (en) Semiconductor laser
JPH07235725A (en) Semiconductor laser element and its manufacture
JP2569087B2 (en) Semiconductor laser device
JPH085575Y2 (en) Semiconductor laser
JP2736382B2 (en) Embedded semiconductor laser and method of manufacturing the same
JPS63307793A (en) Semiconductor laser element
JPS60257583A (en) Semiconductor laser device
JPS5956785A (en) Semiconductor laser
JPS5949718B2 (en) Semiconductor laser device and its manufacturing method
JPS59165418A (en) Manufacture of semiconductor light emitting element
JPH02254781A (en) Manufacture of semiconductor light emitting device
JPS61245592A (en) Semiconductor laser element