JPS61245592A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS61245592A
JPS61245592A JP8788185A JP8788185A JPS61245592A JP S61245592 A JPS61245592 A JP S61245592A JP 8788185 A JP8788185 A JP 8788185A JP 8788185 A JP8788185 A JP 8788185A JP S61245592 A JPS61245592 A JP S61245592A
Authority
JP
Japan
Prior art keywords
active layer
grooves
layer
striped
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8788185A
Other languages
Japanese (ja)
Other versions
JPH0315829B2 (en
Inventor
Taiji Morimoto
泰司 森本
Mototaka Tanetani
元隆 種谷
Hiroshi Hayashi
寛 林
Saburo Yamamoto
三郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8788185A priority Critical patent/JPS61245592A/en
Priority to DE86303044T priority patent/DE3688943T2/en
Priority to EP86303044A priority patent/EP0199588B1/en
Priority to US06/854,627 priority patent/US4819245A/en
Publication of JPS61245592A publication Critical patent/JPS61245592A/en
Publication of JPH0315829B2 publication Critical patent/JPH0315829B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable high-output operation by forming sub-striped grooves while being adjoined on both sides of a main striped groove shaped to an active layer, curving and growing active layers in the grooves and thinly shaping an active layer on the main striped groove. CONSTITUTION:Striped grooves 22', 23' having a shape the same as or slightly larger than a main striped groove shaped in a post-process are formed to the growth surface of a P-type GaAs substrate 10, and an N-type GaAs current stopping layer 11 is grown on the substrate 10 so that a growth surface is flattened through a liquid-phase epitaxial growth method. A resist film 30 is formed onto the layer 11, and sub-striped grooves 22, 23 in a shape that they are overlapped to the mesa type striped grooves 22', 23' and a main striped groove 21 at the center of the grooves 22, 23 are shaped. The layer 30 is removed, and a P-GaAlAs clad layer 12, a GaAlAs active layer 13, an N-GaAlAs clad layer 14 and an N<+>-GaAs cap layer 15 are formed. The active layer 13 is curved in the sections of the grooves 22, 23, and the active layer 13 is thinned just above the main striped groove 21, thus acquiring a high output.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体レーザの高出力化を図るため液相エピ
タキシャル成長過程で薄いレーザ発振用活性層を制御良
く成長させる技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a technique for growing a thin active layer for laser oscillation in a well-controlled manner in a liquid phase epitaxial growth process in order to increase the output of a semiconductor laser.

〈従来の技術とその問題点〉 半導体レーザの高出力化を実現する手段の1つとして、
レーザ発振用活性層をクラッド層で限定し、活性層の層
厚を薄くしてクラッド層に光をしみ出させることにより
、活性層内の光密度を減少させる構造が知られている。
<Conventional technology and its problems> As one of the means to achieve high output of semiconductor lasers,
A structure is known in which the active layer for laser oscillation is limited by a cladding layer, and the thickness of the active layer is made thin to allow light to seep into the cladding layer, thereby reducing the optical density within the active layer.

しかし、液相エピタキシャル成長法を用いて半導体レー
ザ素子の結晶成長を行なう場合、0.1pmU下のエピ
タキシャル成長層を制御性良く成長させることは相当に
困難であった。レーザ光の出力強度は活性層の厚さに強
く依存し、活性層が薄くなると活性層内に閉じ込められ
るキャリア密度が増大して低電流で高出力のレーザ発振
状態が形成される。この場合に活性層の光をクラッド層
にしみ出させることにより、光パワーによる共振器端面
の破壊が防止され長期間安定な高出力のレーザ発振が可
能となる。
However, when crystal growth of a semiconductor laser device is performed using a liquid phase epitaxial growth method, it is considerably difficult to grow an epitaxial growth layer of 0.1 pmU or less with good controllability. The output intensity of the laser beam strongly depends on the thickness of the active layer, and as the active layer becomes thinner, the density of carriers confined within the active layer increases, creating a low current, high output laser oscillation state. In this case, by allowing the light from the active layer to seep into the cladding layer, destruction of the resonator end face due to optical power is prevented and stable high-output laser oscillation can be achieved for a long period of time.

近年、半導体レーザを光通信や情報処理等の分野で有効
に利用するためにはレーザ光の高出力化は不可欠の要素
となっており、従って活性層を薄くかつ再現性良く制御
することのできる技術の確立が切望されている。
In recent years, increasing the output power of laser light has become an essential element in order to effectively utilize semiconductor lasers in fields such as optical communication and information processing, and therefore it is possible to control the active layer to be thin and reproducible. Establishment of this technology is desperately needed.

く問題点を解決するための手段〉 本発明は上述の問題点に鑑み、活性層に対する電流狭窄
のために設けられたレーザ発振に関与する主ストライプ
溝の両側に隣設して、主ストライプ溝のストライプ幅よ
りも広いストライプ幅を有する副ストライプ溝を形成し
、液晶エピタキシャル成長法で活性層を成長する際に副
ストライプ溝内で活性層を湾曲成長させることにより、
この湾曲部で挾まれた主ストライプ溝直上における活性
層の成長速度制御効果を利用してこの部分の活性層厚を
薄く設定したことを特徴とする高出力動作の可能な半導
体レーザ素子を確立したものである。
Means for Solving the Problems> In view of the above problems, the present invention provides main stripe grooves adjacent to both sides of the main stripe grooves involved in laser oscillation, which are provided for current confinement in the active layer. By forming a sub-stripe groove having a stripe width wider than the stripe width of
We have established a semiconductor laser device capable of high output operation, which is characterized by setting the active layer thickness in this part thin by utilizing the effect of controlling the growth rate of the active layer directly above the main stripe groove sandwiched by this curved part. It is something.

〈実施例〉 第1図へ)乃至(El[本発明の一実施例を示す半導体
レーザ素子の製造工程図である。
<Example> Refer to FIG. 1) to (El [FIG. 1] A manufacturing process diagram of a semiconductor laser device showing an example of the present invention.

第1図(Alに示す様に、P型GaAs基板(Znドー
プ:キャリア濃度lXl019fl  ”)10の成長
面に後工程にて形成する主ストライプ溝と同じ形状或い
にそれよりも幾分太きbストライプ溝22’、23’を
形成する。本実施例では幅8μm深さ1μmのメサ型ス
トライプ溝22’、23’とし、エツチングにより40
μm間隔で2木形成しく3) た。続いて、このGaAs基板l基板l液上エピタキシ
ャル成長法により第1図の)に示す如くN型GaAs電
流阻止層(Teドープ: 6X ] O”cyn−3)
11をメサ型ストライプ溝22’、23’が完全に埋捷
り成長面が平坦となる様にhつメサ型ストライプ溝22
’、23’以外の位置での層厚が0.8μmとなる様に
エピタキシャル成長させる。この電流阻止層11は注入
電流に対して逆導電型に設定される。この後、電流阻止
層11表面にレジスト膜30を形成し、メサ型ストライ
プ溝22’、23’に重畳して8μm幅の副ストライプ
溝22.23及び副ストライプ溝22.23間の中央位
置に3μm幅の主ストライプ溝21を形成するために第
1図C1に示す様にレジスト膜30をエツチング加工し
てストライプ状の孔31,32.33を形成する。次い
で、エツチングにより第1図[D+に示す様に3μm幅
の主ストライプ溝21及び8μm幅の副ストライプ溝2
2.23を深さ1μmとなる様に形成する。この様に成
長用基板を構成する層11が厚く成長しているため、こ
の部分では電流が流れない。一方、主ストライプ溝21
は深さ1μmのエツチングにより断面V字状の溝として
成形され、溝底部がP−GaAs基板lOに到達してい
るため、溝底部で電流明止層11が除去された結果とな
り、この部分に電流経路が開通される。電流経路は発光
に関与する主ストライプ溝21にのみ形成され5発光?
こ関与しない電流のロス分を低減する効果を奏する。こ
の後、レジスト膜30を除去し、再び液相エピタキシャ
ル成長法により第1図(E)に示す如く活性層とへテロ
接合を形成するP −G a Aji+ Asクラッド
層12.レーザ発振用共振器となるGaAaAs活性層
13.同じ〈ヘテロ接合形成用n−GaAfflAsク
ラッド層14、電極とオーミックコンタクトをとるため
のn”−GaAsキャップ層15を順次成長させ、ダブ
ルへテロ接合構造のレーザ動作用多層結晶を構成する。
As shown in Figure 1 (Al), the grooves have the same shape as the main stripe grooves to be formed in the later process on the growth surface of the P-type GaAs substrate (Zn doped: carrier concentration lXl019fl'') 10, or are slightly thicker than the main stripe grooves. b Stripe grooves 22' and 23' are formed.In this example, the mesa-shaped stripe grooves 22' and 23' are 8 μm wide and 1 μm deep, and 40 mm are formed by etching.
Two trees were formed at μm intervals3). Subsequently, an N-type GaAs current blocking layer (Te doped: 6X] O"cyn-3) was formed on the GaAs substrate by epitaxial growth on the liquid, as shown in Fig. 1).
Mesa type stripe grooves 22 are formed so that 11 is completely buried in mesa type stripe grooves 22' and 23' and the growth surface is flat.
Epitaxial growth is performed so that the layer thickness at positions other than ', 23' becomes 0.8 μm. This current blocking layer 11 is set to have a conductivity type opposite to the injected current. Thereafter, a resist film 30 is formed on the surface of the current blocking layer 11, overlapping the mesa-shaped stripe grooves 22' and 23' and at the center position between the 8 μm wide sub-stripe grooves 22.23 and the sub-stripe grooves 22.23. In order to form the main stripe grooves 21 with a width of 3 μm, the resist film 30 is etched to form striped holes 31, 32, and 33 as shown in FIG. 1C1. Next, by etching, as shown in FIG.
2.23 is formed to have a depth of 1 μm. Since the layer 11 constituting the growth substrate has grown thick in this manner, no current flows in this portion. On the other hand, the main stripe groove 21
is formed as a groove with a V-shaped cross section by etching to a depth of 1 μm, and since the bottom of the groove reaches the P-GaAs substrate 1O, the current blocking layer 11 is removed at the bottom of the groove, and this part A current path is opened. The current path is formed only in the main stripe groove 21 that is involved in light emission.
This has the effect of reducing the amount of current loss that is not involved. Thereafter, the resist film 30 is removed and a P-G a Aji+ As cladding layer 12 is grown again by liquid phase epitaxial growth to form a heterojunction with the active layer as shown in FIG. 1(E). GaAaAs active layer 13 which becomes a resonator for laser oscillation. An n-GaAfflAs cladding layer 14 for forming a heterojunction and an n''-GaAs cap layer 15 for making ohmic contact with an electrode are sequentially grown to form a multilayer crystal for laser operation with a double heterojunction structure.

この成長の際、主ストライプ溝21に比べて副ストライ
プ溝22.23の幅が広いため。
During this growth, the width of the sub-stripe grooves 22 and 23 is wider than that of the main stripe groove 21.

最初に形成されるp−クラッド層12は下地層形状の影
響を受けて副ストライプ溝22.23の部分で下方へ湾
曲した凹植形状となる。このクラッド層12上に活性層
13の成長を行なうとクラッド層12の湾曲部における
活性層13の成長速度はクラッド層12の平坦部におけ
る活性層13の成長速度に比べて速いために、クラッド
層】2の湾曲部と接している成長融液中のAsが早く消
費され融液周囲f、らのAs拡散が起こる。この結果、
湾曲部周辺でのAsの濃度が低下することとなって湾曲
部周辺の平坦部より成長される活性層13の成長速度が
抑えられる。本実施例においては、副ストライプ溝22
.23直上において湾曲した活性層が厚く形成されるの
で、その周囲特に2木の副ストライプ溝22.23の中
間の主ストライプ溝21直上での成長速度が抑えられる
ことになる。
The p-cladding layer 12 that is formed first has a concave shape that is curved downward at the sub-stripe grooves 22 and 23 due to the influence of the underlying layer shape. When the active layer 13 is grown on this cladding layer 12, the growth rate of the active layer 13 in the curved part of the cladding layer 12 is faster than that in the flat part of the cladding layer 12, so the cladding layer ] The As in the growing melt that is in contact with the curved part 2 is quickly consumed and As diffuses around the melt. As a result,
Since the As concentration around the curved portion is reduced, the growth rate of the active layer 13 grown from the flat portion around the curved portion is suppressed. In this embodiment, the sub stripe groove 22
.. Since the curved active layer is formed to be thick just above 23, the growth rate around it, especially right above the main stripe groove 21 between the two sub-stripe grooves 22 and 23, is suppressed.

このように活性層13の成長速度を抑えることにより薄
い活性層13を容易に得ることができ、活性層厚の制御
性と再現性を確保することができる。
By suppressing the growth rate of the active layer 13 in this way, a thin active layer 13 can be easily obtained, and controllability and reproducibility of the active layer thickness can be ensured.

またp−クラッド層12は活性層13内の光が一部基板
10側へ吸収される°程度に薄く層厚が設定制御されて
いる。
The thickness of the p-cladding layer 12 is controlled to be so thin that a portion of the light in the active layer 13 is absorbed toward the substrate 10 side.

第2図は上記実施例により得られる主ストライプ溝21
のストライプ幅を3μm、副ストライプ溝22.23の
ストライプ幅を8μm、深さを共に1μmとした半導体
レーザ素子の主ストライプ溝21と副ストライプ溝22
.23の間隔を変化させた場合のべ長速度の鈍化による
活性層厚の薄層化の効果を図示したものである。成長条
件は過飽和度4℃、活性層成長時間2秒とした。主スト
ライプ溝21と一方の副ストライプ溝22.23間の距
離をWとすると、同一条件で活性層を液相エピタキシャ
ル成長させた場合であってもWが短い程活性層の薄層化
に効果があり、Wがある程度(約70μrn)大きくな
ると副ストライプ溝22.23の効果はなくなることが
認められる。
FIG. 2 shows the main stripe groove 21 obtained by the above embodiment.
The main stripe groove 21 and the sub-stripe groove 22 of the semiconductor laser device have a stripe width of 3 μm, a stripe width of the sub-stripe grooves 22.23 of 8 μm, and a depth of both 1 μm.
.. 23 illustrates the effect of reducing the active layer thickness by slowing down the elongation speed when changing the spacing between 23 and 23. The growth conditions were a supersaturation degree of 4° C. and an active layer growth time of 2 seconds. Assuming that the distance between the main stripe groove 21 and one of the sub-stripe grooves 22 and 23 is W, the shorter W is, the more effective it is in thinning the active layer even when the active layer is grown by liquid phase epitaxial growth under the same conditions. It is recognized that when W increases to a certain extent (approximately 70 μrn), the effect of the sub-stripe grooves 22 and 23 disappears.

以上の如く作製されたダブルへテロ接合構造多層結晶に
従来と同様の方法によりp及びn側電極を形成し2襞開
によりレーザ発振用共振器を形成して個々のレーザ素子
に分割する。このレーザ素子は従来のものに比べて2〜
3倍の高出力動作が、23・・・副ストライプ溝 可能となった。    ・ 尚、上記実施例におりで副ストライプ溝は主ストライプ
溝の左右の一方のみに設けても良く左右それぞれに複数
本形成しても良い。またレーザ素子としてはGaAJA
s系以外にGaAfflInP系その他種々の材料を用
いることができる。
P and n side electrodes are formed on the double heterojunction structure multilayer crystal produced as described above by a method similar to the conventional method, and a laser oscillation resonator is formed by two folds, and the crystal is divided into individual laser elements. This laser element has a 2~
Three times higher output operation is now possible with 23 sub-stripe grooves. - Incidentally, in the above embodiment, the sub stripe grooves may be provided only on one side of the main stripe groove, or may be formed in plural on each of the left and right sides. Also, as a laser element, GaAJA
In addition to s-based materials, GaAfflInP-based materials and other various materials can be used.

〈発明の効果〉 以上詳説した如く本発明によれば制御性良く薄い活性層
を形成することができるため、高出力用半導体レーザ素
子として種々の分野で有効に利用することができる。
<Effects of the Invention> As described in detail above, according to the present invention, a thin active layer can be formed with good controllability, so that it can be effectively used in various fields as a high-output semiconductor laser device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A)乃至(F、lは本発明の一実施例を示す半導
体レーザ素子の製造工程説明図である。 第2図へ+[B)rri第1図に示す製造工程により作
製された半導体レーザ素子の斜視図及びストライプ溝間
隔Wと活性層厚の関係を示す説明図である。 10・・・基板、11・・・電流明止層、12・・・p
−り代理人 弁理士 福 士 愛 彦(他2名)■豐艶
 ) ))′−
Fig. 1 A) to (F, l are explanatory diagrams of the manufacturing process of a semiconductor laser device showing one embodiment of the present invention. To Fig. 2 + [B) rri FIG. 2 is a perspective view of a semiconductor laser device and an explanatory diagram showing the relationship between stripe groove interval W and active layer thickness. DESCRIPTION OF SYMBOLS 10... Substrate, 11... Current blocking layer, 12... p
-Representative Patent Attorney Aihiko Fukushi (and 2 others)

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ発振用活性層に対する電流狭窄用ストライプ
構造の左右位置に前記活性層を湾曲させる前記ストライ
プ構造に沿ったストライプ溝を形成し、該ストライプ溝
直上の前記活性層の湾曲部周囲に位置する前記ストライ
プ構造直上の前記活性層を薄く層設したことを特徴とす
る半導体レーザ素子。
1. Forming stripe grooves along the stripe structure that curves the active layer at left and right positions of the current confinement stripe structure with respect to the active layer for laser oscillation, and forming stripe grooves along the stripe structure that curve the active layer, and forming stripe grooves around the curved portions of the active layer directly above the stripe grooves. A semiconductor laser device characterized in that the active layer is formed in a thin layer directly above the stripe structure.
JP8788185A 1985-04-23 1985-04-23 Semiconductor laser element Granted JPS61245592A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8788185A JPS61245592A (en) 1985-04-23 1985-04-23 Semiconductor laser element
DE86303044T DE3688943T2 (en) 1985-04-23 1986-04-22 Semiconductor laser device.
EP86303044A EP0199588B1 (en) 1985-04-23 1986-04-22 A semiconductor laser device
US06/854,627 US4819245A (en) 1985-04-23 1986-04-22 Semiconductor laser device having substriped channels for forming an active layer which is thin in an inside portion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8788185A JPS61245592A (en) 1985-04-23 1985-04-23 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS61245592A true JPS61245592A (en) 1986-10-31
JPH0315829B2 JPH0315829B2 (en) 1991-03-04

Family

ID=13927210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8788185A Granted JPS61245592A (en) 1985-04-23 1985-04-23 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS61245592A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS60789A (en) * 1983-06-16 1985-01-05 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6037191A (en) * 1983-08-09 1985-02-26 Nec Corp Manufacture of semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser
JPS60789A (en) * 1983-06-16 1985-01-05 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6037191A (en) * 1983-08-09 1985-02-26 Nec Corp Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPH0315829B2 (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US4819245A (en) Semiconductor laser device having substriped channels for forming an active layer which is thin in an inside portion
JPH0314281A (en) Self-alignment type semiconductor laser with window and manufacture thereof
JPH073908B2 (en) Method for manufacturing semiconductor light emitting device
JPS61245592A (en) Semiconductor laser element
JPS589592B2 (en) Method for manufacturing semiconductor light emitting device
US5087587A (en) Epitaxial growth process for the production of a window semiconductor laser
US5042044A (en) Semiconductor laser device, a semiconductor wafer
JPS60261184A (en) Semiconductor laser device and manufacture thereof
JPS637691A (en) Semiconductor laser device
JPS61242091A (en) Semiconductor light-emitting element
JPH05226774A (en) Semiconductor laser element and its production
JPH0410705Y2 (en)
JPS6318874B2 (en)
JPH0380589A (en) Semiconductor laser element and manufacture thereof
JPS6237835B2 (en)
JPS61247086A (en) Semiconductor laser element
JPS6356982A (en) Semiconductor laser
JPS59115582A (en) Semiconductor laser
JPS6241436B2 (en)
JPH01293686A (en) Manufacture of semiconductor laser element
JPH03244178A (en) Semiconductor laser
JPS6223189A (en) Semiconductor laser element
JPS59200482A (en) Semiconductor laser device
JPH0314280A (en) Large-output semiconductor laser and manufacture thereof
JPH03209892A (en) Semiconductor laser and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees