JPS58161936A - Method and device for production of preform for optical fiber by external cvd method - Google Patents
Method and device for production of preform for optical fiber by external cvd methodInfo
- Publication number
- JPS58161936A JPS58161936A JP4506582A JP4506582A JPS58161936A JP S58161936 A JPS58161936 A JP S58161936A JP 4506582 A JP4506582 A JP 4506582A JP 4506582 A JP4506582 A JP 4506582A JP S58161936 A JPS58161936 A JP S58161936A
- Authority
- JP
- Japan
- Prior art keywords
- target
- optical fiber
- electrode
- target material
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/46—Comprising performance enhancing means, e.g. electrostatic charge or built-in heater
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は外付CVD法による、すす付けの収率を向上さ
せることを目的とする。DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to improve the yield of sooting by external CVD.
光ファイバーの母材を製造する外付化学気相堆積法(肉
付CVD法と略称する)とは、ガラスの原料である5I
CI4 、GeCl4 、 POCl3 、 BBr3
などの原料ガスを酸水素バーナー火焔あるいはプラズマ
炎全用いて、反応によりできる5i02 、GeO2、
B2O3等の微粒酸化物(通常すすという)を石英棒の
ようなターゲット上に堆積させる方法である。The external chemical vapor deposition method (abbreviated as CVD method) for producing the base material of optical fibers is a method that uses 5I, which is the raw material for glass.
CI4, GeCl4, POCl3, BBr3
5i02, GeO2, which can be produced by reaction of raw material gases such as oxyhydrogen burner flame or plasma flame.
This method involves depositing particulate oxides such as B2O3 (commonly referred to as soot) onto a target such as a quartz rod.
この方法によれば多孔質母材が得られる。According to this method, a porous base material is obtained.
以下第1図および第2図に示す本発明の実施例について
説明する。第1図は本発明の実施例を一部断面を含めて
示す側面図である。Embodiments of the present invention shown in FIGS. 1 and 2 will be described below. FIG. 1 is a side view showing an embodiment of the present invention, including a partial cross section.
lはガラス旋盤であり、2はガラス旋盤1の回転軸によ
り回転自在にかつ、チャック部5によシ着脱自在に保持
されるターゲツト材、例えば石英ガラス管であり、3は
ガラス旋盤1の回転軸方向に平行にトラバースすること
ができるトラバース機構(図示していない)に結合され
た吹付バーナーである。4はターゲツト材2上に反応の
進行により堆積した製造途中にある多孔質母材を示して
いる。1 is a glass lathe, 2 is a target material such as a quartz glass tube, which is rotatably held by the rotating shaft of the glass lathe 1 and detachably held by the chuck part 5; A blast burner coupled to a traversing mechanism (not shown) capable of traversing parallel to the axis. Reference numeral 4 indicates a porous base material that is in the process of being manufactured and deposited on the target material 2 due to the progress of the reaction.
前述のような構成において、ターゲツト材2である石英
ガラス管内部に電極6を通して張る。電極材としては白
金線が好ましい。また他方の電極7を多孔質母材4の外
側となるようによシ取付ける。In the structure as described above, the electrode 6 is passed through and stretched inside the quartz glass tube which is the target material 2. Platinum wire is preferred as the electrode material. Further, the other electrode 7 is attached so as to be on the outside of the porous base material 4.
図においては吹付はバーナー3に取付けである。In the figure, the sprayer is attached to burner 3.
13は直流電源であり、極性の切換えができ、電圧値の
調整ができる可変電圧形のものが用いられる。Reference numeral 13 denotes a DC power supply, which is of a variable voltage type whose polarity can be switched and whose voltage value can be adjusted.
この直流電源13ヲ前記電極6と7とに接続すれば、電
極間に静電界を発生する。例えば図に示すように、ター
ゲツト材2の内側の電極6を負極とし、外側の電極7を
正極とする。この際、外側の電極7と内側の電極6とに
より、電界がすす付けが進行して面を含むように配置さ
れる。When this DC power source 13 is connected to the electrodes 6 and 7, an electrostatic field is generated between the electrodes. For example, as shown in the figure, the electrode 6 on the inside of the target material 2 is used as a negative electrode, and the electrode 7 on the outside is used as a positive electrode. At this time, the outer electrode 7 and the inner electrode 6 are arranged so that the electric field spreads soot and covers the surface.
従って、吹き付はバーナー3よりでる原料ガス、例えば
S+CI4 、 GeCl4などのガスの微粒酸化物5
i02. GeO2等が正イオンに帯電しているときは
、内側の電極6の側に引き付けられる。もし、微粒酸化
物8が負イオンに帯電しているときは、電源11の極性
を切換えればよく、このようにして、トラバースしなが
ら吹き付けられた微粒酸化物8はターゲツト材2および
その上に堆積する多孔質母材4上に堆積する。Therefore, the spraying is performed on the raw material gas emitted from the burner 3, such as fine oxide particles 5 of gases such as S+CI4 and GeCl4.
i02. When GeO2 or the like is positively charged, it is attracted to the inner electrode 6 side. If the fine oxide particles 8 are negatively charged, the polarity of the power source 11 can be changed, and in this way, the fine oxide particles 8 sprayed while traversing the target material 2 and the top thereof. It is deposited on the porous base material 4 to be deposited.
内側の電極6については、電極6の先端部において絶縁
物9によりその先に例えば白金線を引張り線lOとして
接続した移動形の電極とすることができる。絶縁物9よ
り先の引張り線IOは電極6を石英ガラス管内で移動さ
せる目的に使用され、この部分には、電源電圧の印加に
より電圧はかからず、この引張り線lOと電極7とによ
り電界を生じない。The inner electrode 6 may be a movable electrode in which a platinum wire, for example, is connected to the tip of the electrode 6 through an insulator 9 as a pull wire 1O. The tension line IO beyond the insulator 9 is used for the purpose of moving the electrode 6 within the quartz glass tube. No voltage is applied to this part due to the application of the power supply voltage, and the electric field is created between this tension line IO and the electrode 7. does not occur.
この移動形の電極6を引張り線10の端部、および電極
6の他端部を抑えながら一方に引張れば、電極6の先端
を石英ガラス管内で移動させることができるから、多孔
質母材4の成長の度合に応じて、常に成長面を含むよう
に維持すれば、多孔質母材4における収率は増加する。By pulling this movable electrode 6 in one direction while holding down the end of the pull wire 10 and the other end of the electrode 6, the tip of the electrode 6 can be moved within the quartz glass tube. Depending on the degree of growth of porous base material 4, the yield in porous base material 4 increases if the growth surface is always maintained to be included.
特に、弗素ドープを行う場合、弗素分はとびやすくドー
プしにくいものであるが前記の移動電極構成によれば、
弗素分の放散を防止し、すす付けの収率向上をはかるこ
とができる。この場合、吹付はバーナー8としては後述
のプラズマ火炎によるものを適用する。In particular, when doping with fluorine, the fluorine component tends to scatter and is difficult to dope, but according to the above-mentioned moving electrode configuration,
It is possible to prevent the diffusion of fluorine content and improve the yield of sooting. In this case, the burner 8 used for spraying is plasma flame, which will be described later.
第2図は第1図の吹付はバーナー3を含む一部を拡大し
た図である。FIG. 2 is an enlarged view of a part of the spraying device shown in FIG. 1, including the burner 3.
図で示すように、内側の電極6の先端、すなわち絶縁物
9の接続附近を中心として、等距離となるように外側の
電極7の面が向けられている。電極7の形状は種々採り
得−る。As shown in the figure, the surfaces of the outer electrodes 7 are oriented to be equidistant from the tip of the inner electrode 6, that is, near the connection of the insulator 9. The electrode 7 can have various shapes.
すでに説明した実施例のように、吹付はバーナー3を石
英ガラス管の軸方向に移動させる形式のものであるとき
は、電極7も同時に移動するから、これに対応して、内
側の電極6の先端が前述の電極7に対する関係を維持す
るよう移動すればよく、これは逆に、吹付バーナー3、
電極7が固定であシ、石英ガラス管が回転軸方向に移動
する形式のものにおいても同様に移動させる構成をとる
。As in the embodiment already described, when the blowing is performed by moving the burner 3 in the axial direction of the quartz glass tube, the electrode 7 also moves at the same time, so that the inner electrode 6 is moved accordingly. The tip only needs to be moved so as to maintain the relationship with the aforementioned electrode 7;
Even in the case of a type in which the electrode 7 is fixed and the quartz glass tube moves in the direction of the rotation axis, a similar configuration is adopted.
吹付はバーナー3としては、多重心構造の酸水素バーナ
ーにより、S+C14、GeCl4 、酸素、水酸等の
ガス材料を用いるもの(加水分解法)、多重心構造のノ
ズルにより、5i(I4. GeCl4.酸素等を用い
たプラズマ炎による酸化装置(非加水分解法)でもよい
。第2図における11はプラズマ発生用コイルであシ、
12はプラズマ発生コイル11の外周附近に設けられ、
近接して配置される外側電極7との電気的干渉を避ける
ことを目的としたシールドである。吹付はバーナー3は
外側電極7と一体に結合されても、単独の構成とされて
もよい。The burner 3 is an oxyhydrogen burner with a multi-centre structure that uses gaseous materials such as S+C14, GeCl4, oxygen, and hydroxyl (hydrolysis method), and a nozzle with a multi-centre structure that uses 5i (I4.GeCl4. An oxidation device (non-hydrolysis method) using a plasma flame using oxygen etc. may also be used. 11 in Fig. 2 is a plasma generation coil;
12 is provided near the outer periphery of the plasma generating coil 11,
This is a shield intended to avoid electrical interference with the outer electrode 7 that is placed close to it. For spraying, the burner 3 may be integrally combined with the outer electrode 7, or may be configured independently.
以上のように本発明によりプレフォームされた多孔質母
材4よシ内側電極6を抜き、次の工程に移される。The inner electrode 6 is removed from the porous base material 4 preformed according to the present invention as described above, and the next step is carried out.
本発明によれば従来の外付CVD法によるよりもすす付
は収率を向上することができ、すす付は時におけるすす
付は量を電界の調整によって制御することが可能であり
、これらに伴い5i02等のすすの破棄量の減少1には
かることができる。According to the present invention, it is possible to improve the yield of sooting compared to the conventional external CVD method, and the amount of sooting can be controlled by adjusting the electric field. Accordingly, the amount of discarded soot such as 5i02 can be reduced by 1.
第1図は本発明の実施例を一部断面を含めて示す、
第2図は第1図実施例の一部拡大図である。
】・・・ガラス旋盤、2・・・ターゲツト材、3・・・
吹付はバーナー、4・・・多孔質母材、5・・・チャッ
ク部、6・・・内側電極、7・・・外側電極、8・・・
微粒酸化物、9・・・絶縁物、10・・・引張り線、1
1・・・プラズマ発生用コイル、12・・・シールド、
1B・・・直流電源。
π1閃FIG. 1 shows an embodiment of the present invention, including a partial cross section, and FIG. 2 is a partially enlarged view of the embodiment in FIG. ]...Glass lathe, 2...Target material, 3...
Spraying is performed using a burner, 4... porous base material, 5... chuck part, 6... inner electrode, 7... outer electrode, 8...
Fine grain oxide, 9... Insulator, 10... Tensile wire, 1
1... Coil for plasma generation, 12... Shield,
1B...DC power supply. π1 flash
Claims (1)
の製造において、回転しつつあるターゲツト材にS i
O2等の微粒酸化物を付着させる際、前記ターゲツト
材の内側と外側とに設置した電極によ多形成される電界
に前記ターゲツト材における多孔質母材の成長面を置き
、前記5i02等微粒酸化物をターゲツト材、多孔言置
材上に付着させることを特徴とする外付CVD法による
光ファイバーのプレフォーム製造方法。 (2) ターゲツト材を着脱自在、回転可能に保持す
る旋盤および前記ターゲツト材等の表面にS r 02
等の、微粒酸化物をすす付けする吹付はバーナー等を
備え、ターゲツト材上にすす付は作業中、電界を生じる
ように、ターゲツト材内側と外側に電極を設け、これ全
電源に接続すること全特徴とする外付CVD 法による
光ファイバーのプレフォーム製造装置。 (3) ターカット材の内側に配置される電極は、そ
の先端に引張り線を接続した移動電極よりなり、すす付
は作業中、前記移動電極の先端が、多孔質母材の成長の
度合に応じて成長面に移動するように構成されたことを
特徴とする特許請求の範囲第2項記載の外付CVD法に
よる光ファイバーのプレフォーム製造装置。[Claims] (υ In the production of optical fiber preforms by the external CVD method, Si
When depositing fine grain oxides such as O2, the growth surface of the porous base material in the target material is placed in an electric field formed by electrodes installed on the inside and outside of the target material, and the fine grain oxide such as 5i02 is deposited. A method for producing an optical fiber preform by an external CVD method, which is characterized by attaching a material onto a target material and a porous material. (2) A lathe that removably and rotatably holds the target material, and S r 02 on the surface of the target material, etc.
For spraying fine oxide particles such as soot, a burner etc. should be installed, and electrodes should be installed inside and outside the target material to generate an electric field during the process of applying soot onto the target material, and these should be connected to all power sources. Optical fiber preform manufacturing equipment using external CVD method with all the features. (3) The electrode placed inside the turcut material consists of a moving electrode with a tension wire connected to its tip, and during the sooting process, the tip of the moving electrode moves according to the degree of growth of the porous base material. 3. The apparatus for producing an optical fiber preform by an external CVD method according to claim 2, wherein the apparatus is configured to move the preform to the growth surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4506582A JPS58161936A (en) | 1982-03-19 | 1982-03-19 | Method and device for production of preform for optical fiber by external cvd method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4506582A JPS58161936A (en) | 1982-03-19 | 1982-03-19 | Method and device for production of preform for optical fiber by external cvd method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58161936A true JPS58161936A (en) | 1983-09-26 |
Family
ID=12708946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4506582A Pending JPS58161936A (en) | 1982-03-19 | 1982-03-19 | Method and device for production of preform for optical fiber by external cvd method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58161936A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998003441A1 (en) * | 1996-07-19 | 1998-01-29 | Heraeus Quarzglas Gmbh | Process and device for producing quartz glass bodies |
US6003342A (en) * | 1991-10-25 | 1999-12-21 | The Furukawa Electric Co., Ltd. | Apparatus for production of optical fiber preform |
-
1982
- 1982-03-19 JP JP4506582A patent/JPS58161936A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6003342A (en) * | 1991-10-25 | 1999-12-21 | The Furukawa Electric Co., Ltd. | Apparatus for production of optical fiber preform |
WO1998003441A1 (en) * | 1996-07-19 | 1998-01-29 | Heraeus Quarzglas Gmbh | Process and device for producing quartz glass bodies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6253580B1 (en) | Method of making a tubular member for optical fiber production using plasma outside vapor deposition | |
US8024945B2 (en) | Glass tube processing apparatus | |
JPS593036A (en) | Method and device for manufacturing optical preform by chemical gas phase axial method | |
JPS62171939A (en) | Apparatus for production of porous optical fiber preform | |
JPS58161936A (en) | Method and device for production of preform for optical fiber by external cvd method | |
US7003984B2 (en) | Hybrid manufacturing process for optical fibers | |
JP2612941B2 (en) | Method for producing porous optical fiber preform | |
GB2079742A (en) | Optical fibre preform manufacture | |
JPH0570166A (en) | Apparatus for producing porous preform for optical fiber | |
JPS58217448A (en) | Method and device for producing porous base material for optical fiber by axis formation in vapor phase | |
JPS6311541A (en) | Plasma torch and production of glass base material for optical fiber by using said plasma torch | |
JP3133392B2 (en) | Manufacturing method of soot base material for optical fiber | |
JPS63382B2 (en) | ||
JP2000327341A (en) | Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same | |
JPH0369527A (en) | Torch for synthesizing porous base material for optical fiber | |
JPS58217447A (en) | Method and device for producing porous base material for optical fiber by axis formation in vapor phase | |
JPS58161935A (en) | Method and device for production of preform for optical fiber by internal cvd method | |
JP2000109329A (en) | Production of porous preform | |
JPH06321552A (en) | Production of fluorine-doped quartz glass | |
JPH06321553A (en) | Production of fluorine-doped quartz glass | |
JPS6374932A (en) | Production of preform for optical fiber | |
JPH10330129A (en) | Production of porous glass body for optical fiber | |
JPH06321551A (en) | Production of fluorine-doped quartz glass | |
JPH11157865A (en) | Production of large-diameter optical fiber preform | |
JPH061632A (en) | Method and device for synthesizing porous base material for optical fiber |