JPH06345468A - Production of glass rod - Google Patents

Production of glass rod

Info

Publication number
JPH06345468A
JPH06345468A JP15428893A JP15428893A JPH06345468A JP H06345468 A JPH06345468 A JP H06345468A JP 15428893 A JP15428893 A JP 15428893A JP 15428893 A JP15428893 A JP 15428893A JP H06345468 A JPH06345468 A JP H06345468A
Authority
JP
Japan
Prior art keywords
target
rod
target rod
discharge electrode
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15428893A
Other languages
Japanese (ja)
Inventor
Shigeru Emori
滋 江森
Masahiro Horikoshi
雅博 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP15428893A priority Critical patent/JPH06345468A/en
Publication of JPH06345468A publication Critical patent/JPH06345468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To efficiently produce a glass rod by improving the efficiency of deposition of silica fine powder to a target rod. CONSTITUTION:Four conductive target rods 1 are erected in the vertical direction and discharge electrode 2 as a point electrode is set at the central part. A high-voltage D.C. power supply 3 is connected between the target rods 1 and the discharge electrode 2 and a high voltage is applied. Each of the target rods 1 is allowed to rotate on its own central axis and the discharge electrode 2 is allowed to perform a reciprocating motion between both the ends of the target rod 1. A silica fine powder is sent to a space between the target rod 1 and the discharge electrode 2 so as to be charged negative with electricity and the charged fine powder is attracted through a coulomb force to the target rod 1, thus depositing the silica fine powder on the surface of the target rod 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シリカ微粉末を堆積
させてガラスロッドを製造する方法に関する。
FIELD OF THE INVENTION This invention relates to a method for producing glass rods by depositing fine silica powder.

【0002】[0002]

【従来の技術】従来より、光ファイバの母材となるガラ
スロッドを製造する方法として、VAD法や外付け法な
どが知られている。これらの方法は、バーナに酸素と水
素を送り込んで燃焼させ、その火炎中に四塩化珪素など
のガラスの原料ガスを送り込み、加水分解反応によって
シリカ(二酸化珪素)の微粉末(ガラス微粒子)を生成
し、これをターゲット棒に吹き付けて堆積させて円柱状
の多孔質のプリフォームを形成する、というものであ
る。この多孔質のプリフォームを加熱・焼結すれば、透
明ガラス化でき、透明ガラスのロッドが得られる。
2. Description of the Related Art Conventionally, as a method of manufacturing a glass rod which is a base material of an optical fiber, a VAD method and an external attachment method have been known. In these methods, oxygen and hydrogen are sent to a burner and burned, a raw material gas of glass such as silicon tetrachloride is sent into the flame, and a silica (silicon dioxide) fine powder (glass fine particles) is generated by a hydrolysis reaction. Then, this is sprayed onto a target rod and deposited to form a columnar porous preform. If this porous preform is heated and sintered, it can be made into transparent glass and a transparent glass rod can be obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
上記のようなガラスロッドの製造方法では、シリカ微粉
末のターゲット棒への堆積効率はおよそ40%程度と悪
く、使用される原料の半分以上が使われずに廃棄されて
いる状態である、という問題がある。
However, in the conventional method for producing a glass rod as described above, the deposition efficiency of fine silica powder on the target rod is as bad as about 40%, and more than half of the raw materials used are used. There is a problem that it is not used and is discarded.

【0004】この発明は、上記に鑑み、シリカ微粉末の
ターゲット棒への堆積効率を高めて効率良くガラスロッ
ドを製造できるように改善した、ガラスロッドの製造方
法を提供することを目的とする。
In view of the above, it is an object of the present invention to provide a glass rod manufacturing method improved so that the deposition efficiency of fine silica powder on a target rod can be improved to efficiently manufacture a glass rod.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明によるガラスロッドの製造方法では、ター
ゲット棒にプラスの高電圧を印加するとともに、ターゲ
ット棒近傍の放電極にマイナスの高電圧を印加し、この
電界内にシリカ微粉末を送り込み、クーロン力を利用し
て該シリカ微粉末をターゲット棒に集めて堆積させるこ
とが特徴となっている。
In order to achieve the above object, in the method of manufacturing a glass rod according to the present invention, a positive high voltage is applied to the target rod and a negative high voltage is applied to the discharge electrode near the target rod. Is applied to feed the silica fine powder into this electric field, and the silica fine powder is collected and deposited on the target rod by utilizing the Coulomb force.

【0006】[0006]

【作用】ターゲット棒にプラスの高電圧を印加するとと
もに、ターゲット棒近傍の放電極にマイナスの高電圧を
印加すると、ターゲット棒と放電極との間の空間の大部
分はマイナス電荷空間となり、この空間内にシリカ微粉
末を送り込むと、マイナスに帯電し、プラスのターゲッ
ト棒にクーロン力により引き寄せられる。その結果、こ
のターゲット棒にシリカ微粉末が集まり、堆積すること
になるので、シリカ微粉末の堆積効率が向上する。
When a positive high voltage is applied to the target rod and a negative high voltage is applied to the discharge electrode near the target rod, most of the space between the target rod and the discharge electrode becomes a negative charge space. When silica fine powder is sent into the space, it is negatively charged and is attracted to the positive target rod by Coulomb force. As a result, the silica fine powder is collected and deposited on the target rod, so that the deposition efficiency of the silica fine powder is improved.

【0007】[0007]

【実施例】以下、この発明の好ましい一実施例について
図面を参照しながら詳細に説明する。図1、図2はこの
発明の一実施例を示すもので、図1は横方向から見た模
式図、図2は上方から見た模式図である。この実施例で
は4本のターゲット棒1を上下方向に立て、その中央に
放電極2を配置している。ターゲット棒1は導電性のも
のである必要があり、ここでは直径5mm、長さ100
0mmの導電性FRP(強化プラスティック)を用いて
いる。放電極2は点電極で、Pb−Ti合金を構成して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the drawings. 1 and 2 show an embodiment of the present invention. FIG. 1 is a schematic view seen from the lateral direction, and FIG. 2 is a schematic view seen from above. In this embodiment, four target rods 1 are erected vertically and a discharge electrode 2 is arranged in the center thereof. The target rod 1 needs to be electrically conductive, here a diameter of 5 mm and a length of 100
0 mm conductive FRP (reinforced plastic) is used. The discharge electrode 2 is a point electrode and constitutes a Pb-Ti alloy.

【0008】そして、ターゲット棒1と放電極2との間
には直流高電圧電源3を接続して、ターゲット棒1と放
電極2との間に30kVの高電圧をかける。すると、放
電極2の表面近辺では強力な電場によりガス分子の電離
・衝突が起き、その結果、放電極2の付近に電離区域6
が形成される。この区域6はプラス電荷で充電されてプ
ラスの電荷空間4となるが、他の大部分の領域はマイナ
スの電荷で占められた空間5となる。
A direct current high voltage power source 3 is connected between the target rod 1 and the discharge electrode 2 to apply a high voltage of 30 kV between the target rod 1 and the discharge electrode 2. Then, near the surface of the discharge electrode 2, a strong electric field causes ionization / collision of gas molecules, and as a result, an ionization region 6 is generated near the discharge electrode 2.
Is formed. This area 6 is charged with a positive charge to form a positive charge space 4, while most of the other region is a space 5 occupied with a negative charge.

【0009】そこで、この4本のターゲット棒1によっ
て囲まれた空間にシリカ微粉末を吹き込むと、大部分を
占めるマイナス電荷によってシリカ微粉末はマイナスの
電荷を帯びることになる。その結果、シリカ微粉末はプ
ラス極であるターゲット棒1にクーロン力により吸引さ
れて集まり、ターゲット棒1の表面に堆積する。つま
り、このターゲット棒1がプラスの集塵極として機能す
る。
Therefore, when the silica fine powder is blown into the space surrounded by the four target rods 1, the silica fine powder has a negative charge due to the negative charge that occupies most of the space. As a result, the fine silica powder is attracted to the positive target rod 1 by the Coulomb force and gathers, and is deposited on the surface of the target rod 1. That is, this target rod 1 functions as a positive dust collecting electrode.

【0010】実際、上記のターゲット棒1、放電極2お
よび直流高電圧電源3を用いてシリカ微粉末を毎分40
gで5時間連続的に送り込んでターゲット棒1へのデポ
ジションを行なったところ、4本のターゲット棒1の各
々に、およそ2000gのシリカ微粉末を堆積させるこ
とができた。これは60%以上の高い効率でデポジショ
ンが行なわれたことを示している。なお、ここでは、タ
ーゲット棒1は毎分10回転の割合で回転させ、また、
放電極2はターゲット棒1の両端間を毎分50mmの移
動速度で往復移動させた。ターゲット棒1と放電極2と
の間隔は300mmとした。
In practice, the target rod 1, the discharge electrode 2 and the DC high-voltage power source 3 are used to produce silica fine powder at a rate of 40 per minute.
When it was continuously fed at 5 g for 5 hours for deposition on the target rod 1, about 2000 g of silica fine powder could be deposited on each of the four target rods 1. This indicates that the deposition was performed with a high efficiency of 60% or more. Here, the target rod 1 is rotated at a rate of 10 revolutions per minute, and
The discharge electrode 2 was moved back and forth between both ends of the target rod 1 at a moving speed of 50 mm / min. The distance between the target rod 1 and the discharge electrode 2 was 300 mm.

【0011】このようにしてシリカ微粉末を堆積して得
た多孔質のプリフォームを、ターゲット棒1を引き抜い
たうえで、加熱・燒結して透明ガラス化し、引き抜きに
より形成された穴をコラプスしてガラスロッドを形成し
たところ、光ファイバの母材としても良好なものとなっ
た。
The porous preform thus obtained by depositing silica fine powder is drawn out from the target rod 1, heated and sintered to form a transparent glass, and the hole formed by the extraction is collapsed. When a glass rod was formed by using it, it became a good base material for an optical fiber.

【0012】なお、上記では、シリカ微粉末を生成する
工程については説明を省略しているが、通常のバーナを
用いた火炎加水分解反応により生成すればよい。また、
第1段階のデポジション工程でターゲット棒に付着させ
られなかったシリカ微粉末を上記の方法で回収・付着さ
せるようにしてもよいし、デポジション工程は通常通り
行ない、その工程で付着させられなかったシリカ微粉末
を排気するラインの途中で上記の方法を行なってもよ
い。
Although the description of the step of producing the fine silica powder is omitted in the above, it may be performed by a flame hydrolysis reaction using an ordinary burner. Also,
The silica fine powder that could not be attached to the target rod in the first stage deposition process may be collected and attached by the above method, but the deposition process is performed normally and cannot be attached in that process. The above method may be performed in the middle of the line for exhausting the silica fine powder.

【0013】[0013]

【発明の効果】この発明のガラスロッドの製造方法によ
れば、シリカ微粉末をクーロン力を利用してターゲット
棒に集めて堆積させるようにしているため、シリカ微粉
末の堆積効率が大幅に向上し、製造効率が高まる。
According to the glass rod manufacturing method of the present invention, the fine silica powder is collected and deposited on the target rod by utilizing Coulomb force, so that the deposition efficiency of the fine silica powder is significantly improved. The manufacturing efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を横から見た模式図。FIG. 1 is a schematic view of an embodiment of the present invention viewed from the side.

【図2】同実施例の上から見た模式図。FIG. 2 is a schematic view of the same embodiment seen from above.

【符号の説明】[Explanation of symbols]

1 ターゲット棒 2 放電極 3 直流高電圧電源 4 プラス電荷空間 5 マイナス電荷空間 6 電離区域 1 Target rod 2 Discharge electrode 3 DC high voltage power source 4 Positive charge space 5 Negative charge space 6 Ionization area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ターゲット棒にプラスの高電圧を、ター
ゲット棒近傍の放電極にマイナスの高電圧を、それぞれ
印加し、この電界内にシリカ微粉末を送り込み、クーロ
ン力を利用して該シリカ微粉末をターゲット棒に集めて
堆積させることを特徴とするガラスロッドの製造方法。
1. A positive high voltage is applied to a target rod and a negative high voltage is applied to a discharge electrode in the vicinity of the target rod, fine silica powder is fed into this electric field, and Coulomb force is used to produce the fine silica particles. A method for manufacturing a glass rod, comprising collecting and depositing powder on a target rod.
JP15428893A 1993-05-31 1993-05-31 Production of glass rod Pending JPH06345468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15428893A JPH06345468A (en) 1993-05-31 1993-05-31 Production of glass rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15428893A JPH06345468A (en) 1993-05-31 1993-05-31 Production of glass rod

Publications (1)

Publication Number Publication Date
JPH06345468A true JPH06345468A (en) 1994-12-20

Family

ID=15580873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15428893A Pending JPH06345468A (en) 1993-05-31 1993-05-31 Production of glass rod

Country Status (1)

Country Link
JP (1) JPH06345468A (en)

Similar Documents

Publication Publication Date Title
JP4339003B2 (en) Method for producing quartz glass crucible
JPH04325425A (en) Manufacturing of quartz glass
US8047020B2 (en) Method of producing vitreous silica crucible
JP2012116714A (en) Method and apparatus for manufacturing silica glass crucible
DE112011101802B4 (en) Process for the preparation of a quartz glass crucible with a transparent inner layer of synthetically produced quartz glass
JPH06345468A (en) Production of glass rod
CN107699839B (en) One kind containing Ba2-xSrxSmTaO6The composite coating and preparation method thereof of ceramics
US3303115A (en) Methods for forming materials of high purity by fusion
US4689066A (en) Method for manufacturing glass bodies
US20010037662A1 (en) Method for maintaining quality of optical fiber preform and storage apparatus of the same
JP2612941B2 (en) Method for producing porous optical fiber preform
CN1832656A (en) Plasma apparatus and apparatus for fabricating optical fiber preform by using the same
CN206241262U (en) 3D printing equipment based on laminar flow plasma technology
JPS6465040A (en) Production of porous optical fiber preform
JPS58217448A (en) Method and device for producing porous base material for optical fiber by axis formation in vapor phase
JPH0255241A (en) Production of optical fiber preform
DE4416351A1 (en) Producing quartz glass preform
JPH061632A (en) Method and device for synthesizing porous base material for optical fiber
JPH04108534A (en) Method and apparatus for gaseous phase synthesis of minute particle by creeping plasma cvd
JPH11157865A (en) Production of large-diameter optical fiber preform
JPS58217447A (en) Method and device for producing porous base material for optical fiber by axis formation in vapor phase
JPS59137335A (en) Method for controlling concentration of dopant in vapor axial deposition method
CN110904389B (en) Multifunctional integrated Fe-Al-Ta eutectic composite material and preparation method thereof
JPS63382B2 (en)
JPH061631A (en) Method for synthesizing porous base material for optical fiber