JPS58161935A - Method and device for production of preform for optical fiber by internal cvd method - Google Patents

Method and device for production of preform for optical fiber by internal cvd method

Info

Publication number
JPS58161935A
JPS58161935A JP4506482A JP4506482A JPS58161935A JP S58161935 A JPS58161935 A JP S58161935A JP 4506482 A JP4506482 A JP 4506482A JP 4506482 A JP4506482 A JP 4506482A JP S58161935 A JPS58161935 A JP S58161935A
Authority
JP
Japan
Prior art keywords
preform
target
target material
electric field
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4506482A
Other languages
Japanese (ja)
Other versions
JPH0227291B2 (en
Inventor
Hideo Kakuzen
覚前 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4506482A priority Critical patent/JPS58161935A/en
Publication of JPS58161935A publication Critical patent/JPS58161935A/en
Publication of JPH0227291B2 publication Critical patent/JPH0227291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To form a preform for optical fibers at high yields of raw materials in the stage of forming the preform on the inside of a target by an internal CVD method, by providing electrodes on the inside and outside of a target and forming an electric field. CONSTITUTION:A target material 1 made of a quartz glass tube is gripped freely rotatably by means of the chucks 5 of a glass lathe 2, and gaseous substances 4 such as SiCl4, GeCl4, BBr2, POCl3 and O2 are supplied as raw materials for the preform for optical fibers through an inlet 4 into a target 1. The target 1 is heated with a burner 3 to cause said gases to react, and to form particulate oxides 8 such as SiO2, GeO2, P2O5, B2O3 or the like. These oxides are stuck and melted on the inside wall of the quartz glass tube which is the target, thereby forming the preform for optical fibers. A platinum cathode 6 is disposed in the target 1 in this stage and the fine particles 8 of oxides are attracted forcibly to the inside wall of the tube 1 by the electric field formed when voltage is applied to the outside of the cathode with an anode 7 kept at the earth potential, whereby the preform is formed in high yields of raw materials.

Description

【発明の詳細な説明】 本発明は肉付CVD法の改良に係わる方法ならびに装置
に関するものであシ、その主とする目的はすす付けにお
ける収率の向上にある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for improving the CVD method with soot, and its main purpose is to improve the yield in soot deposition.

光ファイバーの母材を製造する内封化学気相堆積法(肉
付CVD法と略称する)とは、ガラスの原料である5I
C14、GeC14、POCl2 、 BBrBなどの
ガスを酸素と共に加熱したターゲツト材、例えば石英ガ
ラス管内に送り込み、石英ガラス管の内壁面に光ファイ
バーのコアとなるガラス層を堆積合成させるものである
The encapsulated chemical vapor deposition method (abbreviated as the fleshed CVD method) for producing the base material of optical fibers uses 5I, which is the raw material for glass.
A gas such as C14, GeC14, POCl2, or BBrB is fed together with oxygen into a heated target material, such as a quartz glass tube, and a glass layer that will become the core of the optical fiber is deposited and synthesized on the inner wall surface of the quartz glass tube.

本発明はこのような肉付CVD法にコットレルの手法を
併用したものである。すなわち、石英ガラス管の内側と
外側に電極を設け、゛これに電圧を印加してできる電界
のもとで、前述の肉付CVD法によりすす付けを行う方
法ならびにすす付けを実施する装置を提供しようとする
本のである。
The present invention combines Cottrell's method with such a fleshy CVD method. That is, the present invention provides a method for applying soot by the above-mentioned CVD method under which electrodes are provided on the inside and outside of a quartz glass tube and a voltage is applied to the electrodes to generate an electric field, as well as an apparatus for applying soot. This is a book that tries to

以下図面に示す実施例について説明する。The embodiments shown in the drawings will be described below.

第1図は本発明の一実施例を一部断面を含めて側面図で
示す。
FIG. 1 shows an embodiment of the present invention in a side view, including a partial cross section.

lはターゲツト材、例えば石英ガラス管であシ、ガラス
旋盤2のチャック部5により、回転自在、取付は自在に
保持されている。8は加熱装置を示し、図では酸水素バ
ーナーである。ガラス旋盤2の回転軸を挿通する原材ガ
ス供給口4が設けられ、保持された石英ガラス管1を通
り、残シとなっ几廃ガス、微粒酸化物8はガラス旋盤2
の回転軸の他端より排気されるように構成される。
1 is a target material, for example, a quartz glass tube, and is held by a chuck portion 5 of the glass lathe 2 so as to be rotatable and mountable. 8 indicates a heating device, which is an oxyhydrogen burner in the figure. A raw material gas supply port 4 is provided through which the rotating shaft of the glass lathe 2 is inserted, and the waste gas and fine oxide particles 8 are passed through the held quartz glass tube 1 and left in the glass lathe 2.
The exhaust gas is configured to be exhausted from the other end of the rotating shaft.

また前記酸水素バーナ−8は図示していな゛いが、左右
にトラバースできるようにトラバー2機構により移動す
る構成とされる。
Although the oxyhydrogen burner 8 is not shown, it is configured to be moved by a traverse 2 mechanism so that it can traverse left and right.

石英ガラス管1を保持した状態で、この内側に電極線6
例えば白金線を張シ、電源によシ負電位に接続する。こ
れに対し、石英ガラスパイプlの外側に近接して電極7
を設けてこれを電源の正側に接続し、大地電位とする。
While holding the quartz glass tube 1, insert the electrode wire 6 inside it.
For example, a platinum wire is stretched and connected to a negative potential by a power source. On the other hand, the electrode 7 is located close to the outside of the quartz glass pipe l.
Connect this to the positive side of the power supply and set it to ground potential.

この電極7は石英ガラス管1の外径面にそって板状をな
し広い範囲にわたっている。従って、電極6と電極7と
により、電界が形成され、丁度コットレル集じん装置の
収じん空間の間に石英ガラス管lが入り込んだ状態とな
る。このように電界が形成され、石英ガラス管lが加熱
装置8により回転しながら加熱されているところに、前
記ガス供給口4より原料ガス、例えば5ICI4 、 
GeCl4 、 BBrB 、 POCIB 、酸素等
を流入させれば、加熱装置3による加熱により、5i0
2. GeO2,P2O6,B20B等の微粒酸化物8
となシ、石英ガラス管夏の?′3壁面に引き寄せられ、
この引き寄せられた前記微粒酸化物8は溶融して内壁面
に付着する。
This electrode 7 is plate-shaped and extends over a wide area along the outer diameter surface of the quartz glass tube 1. Therefore, an electric field is formed by the electrodes 6 and 7, and the quartz glass tube 1 is just inserted between the dust collection space of the Cottrell dust collector. While the electric field is formed in this manner and the quartz glass tube l is heated while being rotated by the heating device 8, a raw material gas, for example 5ICI4,
If GeCl4, BBrB, POCIB, oxygen, etc. are introduced, 5i0 is heated by the heating device 3.
2. Fine grain oxides such as GeO2, P2O6, B20B, etc.8
Tonashi, quartz glass tube summer? '3 I was drawn to the wall,
The attracted fine oxide particles 8 are melted and attached to the inner wall surface.

以上説明したように第1図に示す装置において外側の電
極7は石英ガラス管lの外径にそい、その軸線方向の比
較的長い範囲にわたるように構成しているが、これに対
し、第2図に示す実施例におけるように、軸線方向の寸
法を縮め、実際に加熱装置8によシ、加熱を受けている
部分およびその近傍に及ぶ程度の寸法とすることもでき
る。この場合加熱装置81d図のように湾曲面を有す板
状の電極7の一部にスリットを設け、このスリットより
石英ガラス管lを指向するように取付ける。このような
構成とすれば、加熱装置3ともに電極7を回転する石英
ガラス管lの軸線方向に移動させることができ、電界も
それに従って移動させることができ、このように電界の
移動、加熱装置3の移動により、原料ガスまたは微粒酸
化物が捕集され、その多くが排気側に流出するのを防止
し、収率を高めることができ、集中的な静電界の一様な
移動によシ、石英ガラス管lの内壁面に均質な微粒酸物
が付着する光フアイバ用の母材を得ることができる。
As explained above, in the device shown in FIG. As in the embodiment shown in the figure, the dimension in the axial direction can be reduced to a size that extends to the portion actually heated by the heating device 8 and its vicinity. In this case, as shown in FIG. 81d of the heating device, a slit is provided in a part of the plate-shaped electrode 7 having a curved surface, and the quartz glass tube l is attached so as to be oriented through the slit. With such a configuration, both the heating device 3 and the electrode 7 can be moved in the axial direction of the rotating quartz glass tube l, and the electric field can also be moved accordingly.In this way, the movement of the electric field and the heating device The movement of step 3 collects the raw material gas or particulate oxide, prevents most of it from flowing out to the exhaust side, and increases the yield. , it is possible to obtain a base material for an optical fiber in which homogeneous fine acid particles adhere to the inner wall surface of the quartz glass tube l.

原料ガスの性質、ガス雰囲気等の状況により、石英ガラ
ス管lに対する内外電極の極性を互に逆極としてもよい
。更に交番電圧を前記両電極間に印加し、交番電界を置
いがもよい。この場合、周波数を状況により変えること
ができるものがよく、直流、交流両電源とも、電圧値が
変更できるものが適用される。
Depending on the nature of the source gas, the gas atmosphere, etc., the polarities of the inner and outer electrodes relative to the quartz glass tube 1 may be reversed. Furthermore, an alternating voltage may be applied between the two electrodes to create an alternating electric field. In this case, it is preferable to use a power source whose frequency can be changed depending on the situation, and a power source whose voltage value can be changed is used for both DC and AC power supplies.

交番電界とした場合も、石英ガラス管1の中にある微粒
酸化物は励起され、加熱中にある石英ガラス管1の内壁
面の粘着力により付着し、斥力が働いても飛散しなくな
り、石英ガラス管1の内壁面にガラス膜層が成長する。
Even in the case of an alternating electric field, the fine oxide particles in the quartz glass tube 1 are excited and adhere to the inner wall surface of the quartz glass tube 1 during heating, and do not scatter even when a repulsive force is applied. A glass film layer grows on the inner wall surface of the glass tube 1.

また、内側の電極6については第1図に説明したように
、白金線を用いることができるが、実際にこれが長い付
性のものになると弛みなく保持することは困難となるの
で、第2図の9で示す石英ガラスパイプあるいはバイコ
ールガラスパイプ等を用いて几るみを生じないようにす
ることができる。
As for the inner electrode 6, a platinum wire can be used as explained in FIG. 1, but if it becomes a long wire, it will be difficult to hold it without loosening, so as shown in FIG. The sagging can be prevented by using a quartz glass pipe or a Vycor glass pipe as shown in 9.

この場合、電極材による異物が石英ガラスパイプlの反
応空間内に侵入しないように、内側の電極6を前記石英
ガラスパイプあるいはバイコールガラスバイブ9の内に
封じ込めることも好適であり、このような構成を採れば
、電極材として銅、銀、炭素線等の使用が可能となる。
In this case, it is also preferable to confine the inner electrode 6 within the quartz glass pipe or the Vycor glass vibe 9 to prevent foreign matter from the electrode material from entering the reaction space of the quartz glass pipe l; If this is adopted, it becomes possible to use copper, silver, carbon wire, etc. as the electrode material.

しかし、このように核種した電極を用いるよりも、被a
を有しない、裸状の電極を用いるものが好適であること
はいうまでも、ないことであり、形成された光フアイバ
ー用プレフォームに影響がでないものを選択して用いる
However, compared to using electrodes containing nuclides in this way,
Needless to say, it is preferable to use a bare electrode without having an electrode, and one that does not affect the formed optical fiber preform is selected and used.

以上説明にし友ように本発明によれば、5i02゜Ge
O2,P2O3等の収率が向上し、それに従って前記の
微粒酸化物の廃ガスも低減する。
As explained above, according to the present invention, 5i02°Ge
The yield of O2, P2O3, etc. is improved, and the waste gas of the above-mentioned fine oxides is also reduced accordingly.

また電極に印加する電圧、周波数を変圧することにより
、石英ガラス管内壁面に付着するすすの量を制御するこ
とができる。
Furthermore, by changing the voltage and frequency applied to the electrodes, the amount of soot adhering to the inner wall surface of the quartz glass tube can be controlled.

できあがったプレフォームは次の工程に移される。The completed preform is transferred to the next process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を一部断面を含めて示す側面
図である。 第2図は本発明の他の実施例であり、一部所面を含めて
示す側面図である。
FIG. 1 is a side view showing an embodiment of the present invention, including a partial cross section. FIG. 2 is a side view showing another embodiment of the present invention, including some parts.

Claims (3)

【特許請求の範囲】[Claims] (1)  肉付CVD法による光ファイ−(−のプレフ
ォームの製造において、加熱され、回転しつつあるター
ゲツト材にS r 02等の微粒酸化物を付着させる際
、前記ターゲツト材の内側と外側に設けた電極による電
界を置いて、前記微粒酸化物を前記ターゲツト材内壁に
付着させることを特徴とする肉付CVD法による光ファ
イバーのプレフォーム製造方法。
(1) In the production of optical fiber preforms by the CVD method, when attaching fine grain oxides such as Sr02 to a heated and rotating target material, the inside and outside of the target material are 1. A method for producing an optical fiber preform by a thickened CVD method, characterized in that an electric field is applied by an electrode provided at the target material to cause the fine oxide particles to adhere to the inner wall of the target material.
(2)  電界として交番電界が用いられることを特徴
とする特許請求の範囲第1項記載の肉付CVD法による
光ファイバーのプレフォーム製造方法。
(2) A method for producing an optical fiber preform by the CVD method as set forth in claim 1, wherein an alternating electric field is used as the electric field.
(3)  ターゲツト材を着脱自在、回転可能に保持し
、原料ガスを供給する供給口等を備えたガラス旋盤およ
び前記ターゲツト材等の表面を加熱する加熱装置を備え
、ターゲツト材内壁にすす付は作業中、電界を生じるよ
うに、ターゲツト材内側と外側に電極を設け、これを電
源に接続することを特徴とする内封CVDによる光ファ
イバーのプレフォーム製造装置。
(3) A glass lathe that holds the target material in a removable and rotatable manner and is equipped with a supply port for supplying raw material gas, and a heating device that heats the surface of the target material, etc., to prevent soot from forming on the inner wall of the target material. An apparatus for producing an optical fiber preform by internal CVD, characterized in that electrodes are provided on the inside and outside of a target material and connected to a power source so as to generate an electric field during operation.
JP4506482A 1982-03-19 1982-03-19 Method and device for production of preform for optical fiber by internal cvd method Granted JPS58161935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4506482A JPS58161935A (en) 1982-03-19 1982-03-19 Method and device for production of preform for optical fiber by internal cvd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4506482A JPS58161935A (en) 1982-03-19 1982-03-19 Method and device for production of preform for optical fiber by internal cvd method

Publications (2)

Publication Number Publication Date
JPS58161935A true JPS58161935A (en) 1983-09-26
JPH0227291B2 JPH0227291B2 (en) 1990-06-15

Family

ID=12708918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4506482A Granted JPS58161935A (en) 1982-03-19 1982-03-19 Method and device for production of preform for optical fiber by internal cvd method

Country Status (1)

Country Link
JP (1) JPS58161935A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100982U (en) * 1990-01-30 1991-10-22
JPH0444087U (en) * 1990-08-10 1992-04-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472214A (en) * 1977-11-18 1979-06-09 Fujitsu Ltd Method of making raw glass for potical transmission fiber
JPS5651137A (en) * 1979-10-04 1981-05-08 Tohoku Metal Ind Ltd Power line signal injecting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472214A (en) * 1977-11-18 1979-06-09 Fujitsu Ltd Method of making raw glass for potical transmission fiber
JPS5651137A (en) * 1979-10-04 1981-05-08 Tohoku Metal Ind Ltd Power line signal injecting circuit

Also Published As

Publication number Publication date
JPH0227291B2 (en) 1990-06-15

Similar Documents

Publication Publication Date Title
CN104556673A (en) Device and method for reducing impurity and bubble on core cladding interface for large-size optical fiber perform
JPS58161935A (en) Method and device for production of preform for optical fiber by internal cvd method
CN1197798C (en) Method for producing fibre-optical precast stick
JPS6221724A (en) Polishing of inner surface of glass pipe
JP2003171137A (en) Method for manufacturing optical fiber preform
KR100526534B1 (en) Method and apparatus for manufacturing optical fiber preforms
CN1832656A (en) Plasma apparatus and apparatus for fabricating optical fiber preform by using the same
JPH0570166A (en) Apparatus for producing porous preform for optical fiber
US20050000252A1 (en) Method and apparatus for fabricating optical fiber preform using double torch in mcvd
JPS58161936A (en) Method and device for production of preform for optical fiber by external cvd method
JPS58151340A (en) Method and apparatus for manufacturing preform for optical fiber by internal cvd method
JP3576873B2 (en) Manufacturing method of optical fiber preform
JPH03109231A (en) Production of optical fiber porous preform
JPS63210044A (en) Formation of quartz-based glass film
JPS58217448A (en) Method and device for producing porous base material for optical fiber by axis formation in vapor phase
JP3290612B2 (en) Method of detecting core tube crack in sintering process of optical fiber preform and method of manufacturing optical fiber preform
JP2820212B2 (en) Manufacturing method of preform for optical fiber
JP4495838B2 (en) Manufacturing method of glass preform for optical fiber
JPH11349344A (en) Production of preform for optical fiber and production unit therefor
JP2001172039A (en) Method for producing quartz glass preform for optical fiber
JPH0230634A (en) Production of matrix for optical fiber and unit therefor
JP3064276B1 (en) Apparatus for producing porous preform for optical fiber and glass rod for optical fiber
CN114057386A (en) Processing device system and surface processing method for obtaining specified geometric dimension energy transmission optical fiber preform
JPS62207734A (en) Method for depositing fine glass particle
JPH064492B2 (en) Method for manufacturing base material for optical fiber