JPS5816185A - Device for transmitting heat through hollow fiber - Google Patents

Device for transmitting heat through hollow fiber

Info

Publication number
JPS5816185A
JPS5816185A JP57116335A JP11633582A JPS5816185A JP S5816185 A JPS5816185 A JP S5816185A JP 57116335 A JP57116335 A JP 57116335A JP 11633582 A JP11633582 A JP 11633582A JP S5816185 A JPS5816185 A JP S5816185A
Authority
JP
Japan
Prior art keywords
hollow fiber
hollow
layer
hollow fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57116335A
Other languages
Japanese (ja)
Inventor
ヘルマン・ゲマインハルト
アルフレ−ト・ツルンマ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo NV
Original Assignee
Akzo NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV filed Critical Akzo NV
Publication of JPS5816185A publication Critical patent/JPS5816185A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular

Abstract

1. An apparatus in which heat is transmitted from a first liquid to a second liquid through the walls of hollow filaments and in which the hollow filaments open into distributing or collecting pipes, which have connecting parts for the supply or discharge of the fluid and to which the end sections of the hollow filaments are connected in a fluid-tight manner outwards by means of a packing composition, characterised in that the hollow filaments are supported by a support frame (2, 3, 6), which is at least partially formed by the distributing or collecting pipes (2; 3), that at least a part of the hollow filaments (1) is curved or bent once continuously or discontinuously, that the hollow filaments (1) are arranged in at most two layers, that in the two-layer arrangement of the hollow filaments (1), the hollow filaments (1) of the first layer cross the hollow filaments (1) of the second layer and contact the crossing hollow filaments (1) at the crossing points, that the hollow filaments (1) of each layer are supported by support rods (7), which cross the hollow filaments (1) and which are tightly connected to the support frame (2, 3, 6) and the hollow filaments (1) at the contact points thereof, that the hollow filament (1) of each layer are arranged at a spacing from each other and that the maximum excursion of each curved or bent hollow filament (1) is a twentieth (1/20) to a fifth (1/5) of the distance between the two ends thereof and that the hollow filaments lie in a spatially curved or arched surface.

Description

【発明の詳細な説明】 本発明は、第1流体から第2流体に中空糸の壁を通して
熱伝達する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for transferring heat from a first fluid to a second fluid through the walls of hollow fibers.

中空糸が2つの面に設けられており、その際各面の中空
糸が相互に同一間隔で設けられかつ相互に平行に延び、
それ放置線状に形成されており、かつ中空糸が共通の分
配管もしくは捕集管中に開口しており、肢管が流体供給
もしくは排出用の接続部を有しかつ支持フレームとして
構成されていてよく、かつ中空糸の、末端区域が該該管
と接合材料により液密に結合している冒I゛頭に記載し
た種類の熱交換器は公知である。この公知の熱交換器で
は両方の面の中空、糸は相互に直角で設けられておりか
つそれらの交点で接している。更に、この公知の熱交換
器は、間隔をおいて相互に設けられており、支持すべき
中空糸に対して直角に延びておりかつ交点で中空糸と固
定結合されている中空糸用支持棒を有する。その際、支
持棒は中空糸よりも大きな直径を有する。
hollow fibers are provided on two sides, the hollow fibers on each side are provided at the same distance from each other and extend parallel to each other;
It is constructed in the form of a free line and the hollow fibers open into a common distribution or collection pipe, the limbs have connections for fluid supply or discharge and are constructed as a support frame. Heat exchangers of the type mentioned in the opening paragraph are known, in which the hollow fibers can be connected in a fluid-tight manner with the end sections of the tubes by means of a joining material. In this known heat exchanger, the hollow threads on both sides are arranged at right angles to each other and meet at their intersection points. Furthermore, this known heat exchanger includes support rods for the hollow fibers which are arranged at a distance from one another and which extend at right angles to the hollow fibers to be supported and which are fixedly connected to the hollow fibers at the intersection points. has. The support rod then has a larger diameter than the hollow fiber.

この公知の熱交換器は、中空糸の周囲を流動するガス状
媒体、例えば空気と、中空糸中を流動する液状媒体、例
えば水との間の熱伝達に全く特別に有効であることが判
明した。その際に1、   ガス状媒体が中空糸をその
長袖に対して垂直に、つまり横方向にその周囲を流動す
る場合に所望に応じて最良の結果が達成される。他方、
この公知の熱交器を戸外で使用する際に高い風速ではそ
の際に起る、特に突風により惹起される高い風力による
問題がしばしば発生した。この公知の熱交換器がその都
度の、場合によっては絶えず変化する風向に相応して設
置された場合にだけ最適な熱伝達が達成され得だに過ぎ
なかった。
This known heat exchanger has been found to be quite particularly effective for heat transfer between a gaseous medium, such as air, flowing around the hollow fibers, and a liquid medium, such as water, flowing in the hollow fibers. did. In this case, the best results are preferably achieved if: 1. the gaseous medium flows around the hollow fiber perpendicularly to its sleeve, ie transversely; On the other hand,
When using this known heat exchanger outdoors, problems often arise due to the high wind speeds that occur, especially caused by gusts of wind. Optimum heat transfer could only be achieved if the known heat exchanger was installed in accordance with the respective, possibly constantly changing, wind direction.

それ故、本発明は、高い風速にも好適でありかつ風向が
変化する際にもほぼ均一な熱伝達を保障する最初に記載
した種類の装置を開示するという課題に基づく。
The invention is therefore based on the problem of disclosing a device of the type mentioned at the outset, which is also suitable for high wind speeds and ensures an approximately uniform heat transfer even when the wind direction changes.

この課題は、中空糸が分配管もしくは捕集管中に開口し
ており、肢管が流体供給もしくは流体排出用の接続部を
有しかつ支持フレームとじ−しており、本発明では中−
学系の少なくとも一部が連続的に湾曲しているか、もし
くは屈曲して。
This problem is solved by the fact that the hollow fiber opens into a distribution pipe or a collection pipe, and the limb has a connection for fluid supply or fluid discharge and is attached to a supporting frame.
At least part of the system is continuously curved or bent.

いる形状で設けられている装置により解決される。従っ
て、中空糸は例えば円弧形で構成されているか、1回又
は数回屈曲されているか、ジグずグ状に延びているか又
は同様に構成されていてよい。重要なことけ中空糸の少
な・くとも一部、有利にはすべての中空糸が直線で延び
ているのではなく、少なくとも1回は方向を変えて延び
ているととである。
The problem is solved by a device that is provided in the form of Thus, the hollow fibers can, for example, be constructed in the shape of a circular arc, bent once or several times, run in a zigzag manner or the like. It is important that at least some, preferably all, of the hollow fibers do not run in a straight line, but that they run with at least one change of direction.

このように構成した本発明による装置のそれぞれの中空
糸の両端を直線線分(弦)により結合したと仮定しかつ
この結合直線(弦)から中空糸までの最大距離を最大偏
倚距離とする場合、本発明による装置の中空糸の最大偏
倚距離が各中空糸の両端相互の距離つ1り結合直線(弦
)の長さの約ン。〜に、特に約イ。である場合に特に良
好々結果が得られる。
Assuming that both ends of each hollow fiber of the device according to the present invention configured as described above are connected by a straight line segment (chord), and the maximum distance from this connecting straight line (chord) to the hollow fiber is defined as the maximum deviation distance. , the maximum deflection distance of the hollow fibers of the device according to the invention is equal to the distance between the ends of each hollow fiber and the length of the connecting straight line (chord). ~, especially about i. Particularly good results are obtained when .

本発明による装置の熱伝達面を形成する糸群の中空糸の
数は任意に選択することができ、その際にそれぞれの糸
群の中空糸は必要に応じて同じか又は類似の形状を有し
ている必要はないが、一般には同じか又は類似の形状を
有してい中空糸群が1つの平面中にではなく、空間的に
アーチ状の血中に設けられている、従って例えば半球キ
ャップの表面、円筒側面、屋根、ドーム、アコーディオ
ン、ピラミッド型台形等の部分の形状を有する場合に特
に良好な結果が得られる。
The number of hollow fibers in the thread groups forming the heat transfer surface of the device according to the invention can be selected arbitrarily, with the hollow fibers in each thread group having the same or similar shape, if desired. Generally, although not necessarily, the hollow fibers have the same or similar shape and are arranged not in one plane, but in a spatially arched blood, thus e.g. the surface of a hemispherical cap, Particularly good results are obtained when the part has the shape of a cylindrical side, a roof, a dome, an accordion, a pyramid, a trapezoid, etc.

本発明の実施形において、中空糸は数個の団で上下に設
けられていてよく、その際殊にそれぞれの団は1個又は
2個の中空糸層より成っていてよい。その際に1つの層
の中空糸が同一間隔で相互に配置されていると有利であ
るが、扇形に広がっていてもよい。中空糸数は層ごとに
異なっていてもよい。そのような中空糸層の最も有利な
実施形が常に得られるように、すべての場合にそのよう
な中空糸層の中空糸の配置を、中空糸が広義に並列に設
けられているとも表わし得るようにする。中空糸層1個
当り2個の中空糸層では第1層の中空糸は第2層の中空
糸と交差し、これらは交点で接している。数個の中空糸
層の場合、これらを簡単な実験により決定される十分な
間隔をおいて配置すると有利である。
In one embodiment of the invention, the hollow fibers can be arranged in several clusters one above the other, each cluster consisting in particular of one or two hollow fiber layers. In this case, it is advantageous if the hollow fibers of a layer are arranged with equal spacing from each other, but they may also spread out in a fan-shaped manner. The number of hollow fibers may vary from layer to layer. In order that the most advantageous embodiment of such a hollow fiber layer is always obtained, the arrangement of the hollow fibers of such a hollow fiber layer in all cases can also be expressed as the hollow fibers being arranged broadly in parallel. do it like this. In the case of two hollow fiber layers per hollow fiber layer, the hollow fibers of the first layer intersect with the hollow fibers of the second layer, and these are in contact at the intersection points. In the case of several hollow fiber layers, it is advantageous to arrange them with a sufficient distance between them, which can be determined by simple experimentation.

その際に、有利にそれぞれの中空糸層もしくは中空糸層
はそれぞれ固有の、場合により支持フレームとして構成
されている流体供給もしくは流体排出用の分配管もしく
は捕集管を有し、それらは共通の流入導管もしくは流出
導管に接続している。特に有利に、本発明により構成さ
れたこの種の中空糸層もしくは中空糸層はその分配管及
び捕集管を含めてモジュール単位として構成されていて
よく、任意の数のモジュール単位を上下に又は並列に配
列することができる。
In this case, each hollow fiber layer or hollow fiber layer preferably has its own distribution or collection pipe for fluid supply or fluid discharge, which is optionally designed as a supporting frame, and these are common. Connected to inflow or outflow conduits. Particularly advantageously, hollow fiber layers or hollow fiber layers of this kind constructed according to the invention, including their distribution pipes and collection pipes, can be constructed as modular units, with any number of modular units one above the other or one above the other. Can be arranged in parallel.

この際に、共通の流入−及び流出導管が分配管もしくは
捕集管に配置した、差込み結合部の形式で相互に共同作
用をする管片もしくは接続部により構成されている場合
に特に有利である。
In this case, it is particularly advantageous if the common inflow and outflow conduits are constituted by mutually cooperating pipe pieces or connections in the form of bayonet connections arranged in the distribution or collection pipes. .

この差込み結合部は着脱可能で自己シーリング詰に構成
されているか或いはモジュール単位を溶接、接着等によ
り接合した後で着脱不可能に又は外方向に対して液密に
結合することもできる。このように形成された本発明に
よる装置の積み重ね形の実施形は正方形、方形、六角形
、円形又は任意の他の形状の断面を有するかもしくは平
面図でみて底面はまさに前記の形状に一致する。
This plug-in connection can be designed to be removable and self-sealing, or it can also be connected non-removably or liquid-tightly to the outside after the module units have been joined by welding, gluing, etc. The stacked embodiment of the device according to the invention thus formed has a square, rectangular, hexagonal, circular or any other shaped cross-section or the bottom surface, viewed in plan, corresponds exactly to said shape. .

その際、中空糸層もしくは中空糸層はそれぞれに又は団
ごとに直列に接続されていてよく、混合形も可能であり
、例えば各中空糸層の中空糸層は並列接続しているが中
空糸層は直列接続している。
In this case, the hollow fiber layers or hollow fiber layers may be connected in series individually or in groups, and a mixed form is also possible. For example, the hollow fiber layers of each hollow fiber layer may be connected in parallel, but the hollow fiber layers may be connected in series. The layers are connected in series.

上下に又は並列に配置した中空糸層もしくは中空糸層は
同一方向に湾曲していてもしかしまだ交互に反対方向に
、例えば鏡像のように湾曲していてもよい。端部が1つ
の血中に位置する2つの反対方向に湾曲した中空糸層も
しくは中空糸層は底面が重なり合う配置では例えばクッ
ション、レンズ、シリンダ、球体等の形状を形成してよ
い。
The hollow fiber layers or hollow fiber layers arranged one above the other or in parallel can be curved in the same direction, but can also be curved alternately in opposite directions, for example in mirror images. Two oppositely curved hollow fiber layers or hollow fiber layers, the ends of which are located in one blood vessel, may form the shape of, for example, a cushion, a lens, a cylinder, a sphere, etc. in a bottom-overlapping arrangement.

本発明による装置を構成する中空糸層もしくは中空糸間
についての、簡単な実験により直ちに決められる有利な
形状及び配置により、中空糸の周囲を流動する際に発生
する通風、騒音を低くおさえ、それ故騒音の少ない環境
を損わない本発明による装置が得られる。
Due to the advantageous shape and arrangement of the hollow fiber layers or between the hollow fibers constituting the device according to the invention, which can be readily determined by simple experiments, the draft and noise generated when flowing around the hollow fibers can be kept low. Therefore, a device according to the invention is obtained which does not spoil the environment with less noise.

中空糸層もしくは中空糸間の形成は、分配管もしくは捕
集管、及び/又は中空糸群に大きな形状安定性をも与え
る支持棒を相応して形成することにより達成される。こ
れらの支持棒は、それが中空糸層の少なくとも1つと交
差してその接触点で溶接、接着等により中空糸と固く結
合するように配置すると有利である。支持棒が中空糸よ
り大きな直径を有しかつ中空糸より相互に大きな間隔で
設けられていると有利である。
The formation of hollow fiber layers or between hollow fibers is achieved by correspondingly forming distribution or collection tubes and/or support rods which also provide great dimensional stability to the hollow fiber groups. Advantageously, these support rods are arranged in such a way that they cross at least one of the hollow fiber layers and are firmly connected to the hollow fibers at their contact points by welding, gluing or the like. It is advantageous if the supporting rods have a larger diameter than the hollow fibers and are arranged at a greater distance from each other than the hollow fibers.

支持棒の端部は分配管もしくは捕集管と固定結合されて
いる。支持棒は取付ける前に既に予備成形されているか
或いは例えば2つの分配管もしくは捕集管の間に取付け
る際に相応して長い棒を弓状に張設することができる。
The end of the support rod is fixedly connected to the distribution or collection tube. The supporting rod can already be preformed before installation or can be a correspondingly long rod stretched in the form of an arc when installed, for example, between two distribution or collection pipes.

本発明による装置を製造する際に熱伝達に好(11) れは乾式又は湿式紡糸法又は押出し法により製造されて
いてよい。本発明では中空糸という用語は所謂中空繊維
、細いチューブ、薄壁チューブ、毛細管、小管、プラス
チック管等を包含する。一般に、非金属性中空糸を用い
た本発明による装置の実施形が有利であるが、本発明を
相応する金属性小管を有する装置にも直ちに転用するこ
とができる。
When producing the device according to the invention, preferred methods for heat transfer (11) may be produced by dry or wet spinning methods or extrusion methods. In the present invention, the term hollow fiber includes so-called hollow fibers, thin tubes, thin-walled tubes, capillaries, small tubes, plastic tubes and the like. Although the embodiment of the device according to the invention with non-metallic hollow fibers is generally preferred, the invention can also be readily applied to devices with corresponding metallic tubules.

使用される中空糸の断面形は任意であってよく、中空糸
の断面の大きさ並びにその壁厚には上限も下限も々い。
The cross-sectional shape of the hollow fibers used may be arbitrary, and there are upper and lower limits to the cross-sectional size of the hollow fibers and their wall thickness.

更に、中空糸の断面形、壁厚及び断面の大きさは中空糸
の長さにそって変化してよい。例えば円形断面の中空糸
は外径800μm〜5 mm及びそれ以上を有してよい
。例えば中空糸の壁厚は30〜200μmであってよい
Furthermore, the cross-sectional shape, wall thickness and cross-sectional size of the hollow fibers may vary along the length of the hollow fibers. For example, hollow fibers of circular cross section may have an outer diameter of 800 μm to 5 mm and more. For example, the wall thickness of the hollow fibers may be between 30 and 200 μm.

特に、本発明による装置を製造するに当り、範囲15〜
200 W/m2K及びそれ以上の熱伝達係数を有する
中空糸が特に有利であることが(12) 明らかとなり、その際場合により、微粉形又は粉末形の
金属、グラファイト等の導入により改良された熱伝達性
を有する中空繊維も使用することができる。中空糸は場
合により或、いは付加的に充填剤、付加物、安定剤、カ
ーボンブラック、色相等を含有してもよい。有利K、多
孔性又は微孔性の中空糸を使用することにより本発明に
よる装置の使用範囲を更に拡大することができる。
In particular, in manufacturing the device according to the invention, the range 15 to
Hollow fibers with heat transfer coefficients of 200 W/m2K and above have proven to be particularly advantageous (12), optionally with improved heat transfer by the introduction of finely divided or powdered metals, graphite, etc. Hollow fibers with conductive properties can also be used. The hollow fibers may optionally or additionally contain fillers, adducts, stabilizers, carbon black, hues, etc. The range of use of the device according to the invention can be further expanded by using porous or microporous hollow fibers.

中空糸端部の接合に際し、常用の接着剤、硬化性封止用
コンパウンド、注型用樹脂、特殊セメント等を使用する
ことができ、また中空糸と最初に接触した直後に中空糸
を表面的に軽度にエツチングするか又は溶融する接合材
料も使用することができる。中空糸もしくはその末端区
域の接合は公知であるので詳説する必要はない。
To join the ends of the hollow fibers, conventional adhesives, hardening sealing compounds, casting resins, special cements, etc. can be used, and the hollow fibers can be superficially bonded immediately after first contact with the hollow fibers. Bonding materials that are lightly etched or melted can also be used. The joining of hollow fibers or their end sections is well known and need not be described in detail.

本発明による装置の大きさは常用の寸法範囲において制
限はない。
The size of the device according to the invention is not limited within the range of conventional dimensions.

中空糸を狭い間隔で設ける際に中空糸の周囲を流動する
流体の流動抵抗が上昇して、熱伝達効率が低下すること
が明らかになった。非常に大きな中空糸相互の間隔では
不必要に大きな本発明による装置の寸法がもたらされる
。それ故、本発明による装置の特に有利な実施形のため
に、隣接する2本の中空糸の間の平均間隔がその直径の
1.7〜10倍、特に2.5〜3.6倍であるように選
択することが提案される。その際、隣接する2本の中空
糸間の内側間隔を0.5〜15朋、特に1〜10mmに
すると有利である。
It has become clear that when hollow fibers are provided at narrow intervals, the flow resistance of the fluid flowing around the hollow fibers increases, resulting in a decrease in heat transfer efficiency. Very large spacings between the hollow fibers lead to unnecessarily large dimensions of the device according to the invention. Therefore, for a particularly advantageous embodiment of the device according to the invention, the average spacing between two adjacent hollow fibers is from 1.7 to 10 times, in particular from 2.5 to 3.6 times, their diameter. It is suggested that you choose as follows. In this case, it is advantageous if the inner distance between two adjacent hollow fibers is between 0.5 and 15 mm, in particular between 1 and 10 mm.

分配管もしくは捕集管の寸法は、その管から突出してい
るもしくはその中に開口している中空糸の数及び寸法に
よシ、また中空糸中を流動する全流体量により決定され
る。それというのも分配管及び捕集管中で不必要に高い
圧力損失が生じるのは望ましくないからである。更に、
分配管及び捕集管の寸法は、それらを同時に支持フレー
ムとして使用しかつそれらが本発明による装置に当然の
要求に相応した安定性を付与するかどうか、又は安定性
が他の構造的手段及び装置により与えられるかどうかに
左右される。
The dimensions of a distribution or collection tube are determined by the number and size of the hollow fibers protruding from or opening into the tube, and by the total amount of fluid flowing through the hollow fibers. This is because unnecessarily high pressure losses in the distribution and collection pipes are undesirable. Furthermore,
The dimensions of the distribution and collection pipes are determined by their simultaneous use as a support frame and whether they give the device according to the invention a stability commensurate with the demands due, or whether stability can be achieved by other structural measures and Depends on what is provided by the device.

それ故、分配管もしくは捕集管に対する要求に応じて例
えばその長手方向に延びている補強リプ等を設けること
もできる。前記の管に周囲流動技術的に有利な形を施す
か或いは、相応してカバリングすることにより同じ結果
をもたらすこともできる。
Therefore, depending on the requirements for the distribution or collection pipe, it is also possible to provide it with reinforcing lips, for example, extending in its longitudinal direction. The same result can also be achieved by providing the tube with a shape that is advantageous in terms of ambient flow technology or by covering it accordingly.

更に、本発明範囲では、中空糸をルーズなチューブ形で
分配管と捕集管との間の糸群として懸垂させることもで
き、しかしこの場合にも同じ中空糸間隔を保持するため
に中空糸に対して横方向の棒を設けることもでき、これ
は中空糸と交点で固定結合されている。
Furthermore, within the scope of the present invention, the hollow fibers can also be suspended in the form of loose tubes as a group of threads between the distribution pipe and the collection pipe, but in this case also the hollow fibers may be In contrast, transverse rods can also be provided, which are fixedly connected to the hollow fibers at the points of intersection.

単一の中空糸層から形成されている中空糸層と共に、好
適な中空糸層を中空糸織物により形成することもできる
。中空糸相互の間隔が織込まれた糸、接着させた帯材等
により固定されている中空糸マットを使用することもで
きる。
In addition to hollow fiber layers formed from a single hollow fiber layer, suitable hollow fiber layers can also be formed from hollow fiber fabrics. It is also possible to use a hollow fiber mat in which the intervals between the hollow fibers are fixed by woven threads, adhesive strips, or the like.

次に、本発明を添付図面により詳説する。Next, the present invention will be explained in detail with reference to the accompanying drawings.

第1a図では中空糸1はジグザグ形に形成されているが
、1つの面内に設けられている。中管2中に及び流体排
出用の接続部5を有する捕集管3中に開口している。ジ
グザグ状に構成した中空糸1からの糸群の支持フレーム
を構成するだめに分配管2と捕集管3とが支柱6により
固定結合されている。更に、第1a図では中空糸1に対
して横方向に延びている支持棒7が図示されており、支
持棒7は中空糸1及び支柱6と交点で固定結合されてい
る。支持棒7は中空糸1が屈曲している位置、つまり方
向変換して更に延びる位置でその都度中空糸と交差して
いる。本発明範囲では第1a図に図示しだ中空糸1は数
回折曲がっていると表わすこともできる。
In FIG. 1a, the hollow fibers 1 are formed in a zigzag shape, but are arranged in one plane. It opens into the middle tube 2 and into the collecting tube 3 which has a connection 5 for fluid discharge. A distribution tube 2 and a collection tube 3 are fixedly connected by a support 6 to form a support frame for a group of fibers from the hollow fibers 1 having a zigzag configuration. Furthermore, FIG. 1a shows a support rod 7 which extends transversely to the hollow fiber 1 and is fixedly connected to the hollow fiber 1 and to the strut 6 at an intersection point. The support rod 7 intersects the hollow fibers each time at a position where the hollow fiber 1 is bent, that is, at a position where it changes direction and extends further. Within the scope of the invention, the hollow fiber 1 shown in FIG. 1a can also be represented as being bent several times.

第1b図に図示しだ本発明による装置の実施形は、中空
糸が波形で構成されている、つまり数回連続的に湾曲し
ている点で第1a図と基本的に異なる。
The embodiment of the device according to the invention illustrated in FIG. 1b differs fundamentally from FIG. 1a in that the hollow fibers are constructed in a corrugated manner, that is, they are curved several times in succession.

第2図に図示した本発明による装置の実施形では、交差
している中空糸10層2個から形成された中空糸層が円
筒側面状の切片の形で構成されている。その際、両方の
中空糸層は平行に接続しており、分配管2は捕集管3と
一緒に前記の形状の中空糸層を確保する支持フレームを
形成する。流体供給用もしくは排出用の接続部4.5の
それぞれが上下の方向に向いており、それ数本発明によ
る装置の第2図に図示した実施形数個を上下に積み重ね
ることができ、その際組み立てた後で流体供給用の接続
部4は共通の流入導管を形成しかつ流体排出用の接続部
5は共通の流出導管を形成する。管2及び3は位置10
及び11で相互に密閉されている。
In the embodiment of the device according to the invention illustrated in FIG. 2, the hollow fiber layers formed from two intersecting layers of 10 hollow fibers are constructed in the form of cylindrical lateral sections. In this case, both hollow fiber layers are connected in parallel, and the distribution tube 2 together with the collection tube 3 forms a support frame which ensures the hollow fiber layer of the above-mentioned shape. Each of the connections 4.5 for supplying or discharging fluid is oriented in the vertical direction, so that several embodiments of the device according to the invention shown in FIG. 2 can be stacked one above the other, in which case After assembly, the connection 4 for fluid supply forms a common inflow conduit and the connection 5 for fluid discharge forms a common outflow conduit. Tubes 2 and 3 are at position 10
and 11 are mutually sealed.

第6図には、第2図に略示しだ接続部4もしくは5が拡
大して図示されている。例えば第2図に図示されている
ような本発明による装置の数個の実施形を上下に積み重
ねる際に接続部4もしくは5を相互にどのように継ぎ合
わせるかが明示されている。継ぎ合せた後で接続部4a
及び4bを接着又は溶接により固定結合することができ
る。同様のことが相応して構成されている流体排出用の
接続部(図示せず)にも該当する。第3図に図示した、
相互に共同作用をする接続部4a及び4bの実施形の代
りに市販されている着脱可能な又は着脱不可能な簡単な
管片をここに記載の目的に使用することもでき、例えば
所謂迅速ユニオン継手である。
FIG. 6 shows an enlarged view of the connection 4 or 5 which is shown schematically in FIG. It is clearly shown how the connections 4 or 5 are joined together when stacking several embodiments of the device according to the invention one above the other, such as is illustrated in FIG. 2, for example. Connection part 4a after splicing
and 4b can be fixedly connected by adhesive or welding. The same applies to a correspondingly designed connection for fluid discharge (not shown). As illustrated in Figure 3,
Instead of the embodiments of the mutually cooperating connections 4a and 4b, commercially available simple removable or non-removable tube pieces can also be used for the purpose described here, for example so-called quick unions. It is a joint.

第4図に図示しだ本発明による装置の実施形ではすべて
の部材の番号は第1a図〜第3図に記載した部材番号に
相応する。第4図は例えば第2図の本発明による装置の
実施形を上から見る際に得られる。ただし、流体供給用
の接続部4及び流体排出用の接続部5だけは、第4図に
示しだ実施形の場合、若干変更した形式で設けられてい
る。
In the embodiment of the device according to the invention illustrated in FIG. 4, the numbering of all parts corresponds to the part numbers given in FIGS. 1a to 3. FIG. 4 is obtained, for example, when viewing the embodiment of the device according to the invention of FIG. 2 from above. However, only the connection 4 for fluid supply and the connection 5 for fluid discharge are provided in a slightly modified form in the embodiment shown in FIG.

第5図の本発明による装置の実施形では中空糸1は2回
折曲がっており、この屈曲は相応する位置に設けた支持
棒7により形成されている。
In the embodiment of the device according to the invention shown in FIG. 5, the hollow fiber 1 is bent twice, this bend being formed by support rods 7 arranged in corresponding positions.

その際上下に配置した中空糸層は同一方向に折曲がって
おり、各中空糸層は多角形断面を有する多面体の套の一
部の形状、つまり本発明の趣旨では空間的に屈曲した面
を有する。この図に示した他の部材は前記の図面におい
て記載した部材と同じである。
In this case, the hollow fiber layers arranged above and below are bent in the same direction, and each hollow fiber layer has the shape of a part of the mantle of a polyhedron having a polygonal cross section, that is, a spatially curved surface in the spirit of the present invention. have Other members shown in this figure are the same as those described in previous figures.

第6図では各中空糸層の中空糸はそれぞれ1個の支持棒
7によシ11回折げられており、隣接する中空糸層とは
鏡像的に折曲がってい・る。
In FIG. 6, the hollow fibers of each hollow fiber layer are each folded 11 times by one support rod 7, and the hollow fibers of each hollow fiber layer are bent mirror-imagely with respect to the adjacent hollow fiber layer.

それぞれ2個の中空糸層は共通の分配管2もしくは捕集
管3中に開口している。第6−に図示しだ中空糸層は屋
根形と表わすこともできる。
Each of the two hollow fiber layers opens into a common distribution pipe 2 or collection pipe 3. The hollow fiber layer shown in No. 6 can also be expressed as roof-shaped.

第7図の中空糸層/中空糸層も1回折曲げられ、つまり
屋根形に構成されており、この実施形では中空糸層/中
空糸層は反対方向に、ただし鏡像的にではなく折曲がっ
ている。例えば、本発明による装置のこの実施形は戸外
で使用するのに非常に好適である。それというのも風向
が変化しても基本的には同じ熱伝達効率が達成されるか
らである。該図の実施形による本発明の装置数個が上下
に配置されていてもよく、この場合にも相応して構成さ
゛れた差込み結合部系を使用することができることは明
らかである。
The hollow fiber layers/hollow fiber layers in FIG. 7 are also folded once, i.e. configured in the form of a roof; in this embodiment the hollow fiber layers/layers are bent in opposite directions, but not mirror-imagewise. ing. For example, this embodiment of the device according to the invention is very suitable for outdoor use. This is because essentially the same heat transfer efficiency is achieved even if the wind direction changes. It is clear that several devices of the invention according to the embodiments of the figure can be arranged one above the other, and a correspondingly designed plug-in connection system can also be used in this case.

更に、既に定義したように中空糸の最大偏倚距離を変え
ることによυ屋根形構造の中空糸群の゛′切妻屋根の角
度″を簡単に変えることができかつ要求に応じることが
できることは明らかである。
Furthermore, it is clear that by changing the maximum deflection distance of the hollow fibers as already defined, the ``gable roof angle'' of the hollow fiber group of the υ roof-shaped structure can be easily changed and adapted to the requirements. be.

第8図の実施形では同一方向に連続的に湾曲している数
個の中空糸層/中空糸層1は相互に上下に配置されてい
る。それぞれの中空糸層/中空糸層10分配管2及び捕
集管3は共通の流入導管8もしくは流出導管9に接続し
ている。
In the embodiment of FIG. 8, several hollow fiber layers/hollow fiber layers 1 which are continuously curved in the same direction are arranged one above the other. The respective hollow fiber bed/hollow fiber bed 10 distribution pipe 2 and collection pipe 3 are connected to a common inflow conduit 8 or outflow conduit 9.

この場合にも第2図及び第6図で既に記載したように差
込み結合部を使用することができる。
In this case too, a bayonet connection can be used as already described in FIGS. 2 and 6.

以上の図面に関する記載を考慮すると、すべての部材が
前記の図面による部材に相応して同じ位置番号を有する
第9図〜第15図或いは第18図に関する詳細な説明は
不要である。ただし、第9図、第12図、第14図及び
第15図の本発明による装置の実施形は風向が変化する
際に特に好適であシ、記載したすべての実施形に該当す
るが、任意に多数個の実施形の装置を上下に積み重ねる
か或いは並列に配置するととができる。
In view of the above description of the drawings, no detailed explanation is necessary with respect to FIGS. 9 to 15 or 18, in which all parts have the same position numbers corresponding to the parts according to the previous drawings. However, although the embodiments of the device according to the invention according to FIGS. 9, 12, 14 and 15 are particularly suitable when the wind direction changes, and this applies to all the embodiments described, Multiple embodiments of the device can be stacked one above the other or arranged in parallel.

第16図の実施形では合計3個の交換ユニットが直列に
接続されており、各ユニットの中空糸層は、第4図に図
示されているように並列に接続されていてよい。
In the embodiment of FIG. 16, a total of three exchange units are connected in series, and the hollow fiber layers of each unit may be connected in parallel as illustrated in FIG.

第17図では本発明により構成された交換ユニットは並
列接続されておシ、この場合にもそれぞれの交換ユニッ
トの個々の中空糸層は第4図の場合のように並列に接続
されていてもよく或いは直列であってもよい。
In FIG. 17, the exchange units constructed according to the present invention are connected in parallel; in this case, too, the individual hollow fiber layers of each exchange unit may be connected in parallel as in the case of FIG. It may be straight or in series.

第7図、第10図、第11図〜第15図では簡略化のだ
めに中空糸1もしくは中空糸層もしくは中空糸層だけを
それぞれの実施形で図示し、本発明による装置を実際に
作動させる際に必要な他の部材(2,3,4,5及び場
合により4a、4b、5a、5b、6,7,8,9.1
0及び11;他の図面には示され、既に説明されている
)は省略した。
In FIGS. 7, 10, and 11 to 15, only the hollow fiber 1, the hollow fiber layer, or the hollow fiber layer is illustrated in the respective embodiments for the sake of simplification, and the device according to the invention is illustrated in actual operation. Other parts as necessary (2, 3, 4, 5 and optionally 4a, 4b, 5a, 5b, 6, 7, 8, 9.1
0 and 11; shown in other drawings and already described) have been omitted.

第19図の本発明による装置の実施形では、反対方向に
かつ鏡像的に相互に湾曲するように構成されているそれ
ぞれ2個の中空糸層もしくは中空糸層から成る中空糸層
6個が共通の捕集管3の周囲に星形に配置されている。
In the embodiment of the device according to the invention according to FIG. 19, six hollow fiber layers, each consisting of two hollow fiber layers or hollow fiber layers, which are configured to curve in opposite directions and mirror image to each other, are common. They are arranged in a star shape around the collecting tube 3.

例えばそのような中空糸層2個は第16図に図示されて
おり、ただしその場合には上下に配置されている。それ
ぞれの組みごとの中空糸層は共通の分配W2中に開口し
ている。すべての分配管2は共通の流入導管8により相
互に結合しており、この導管中に流体は接続部4を介し
て流入し得る。この実施形は変化する流動方向/風向に
特に好適である。
For example, two such hollow fiber layers are illustrated in FIG. 16, but in that case arranged one above the other. The hollow fiber layers of each set open into a common distribution W2. All distribution pipes 2 are interconnected by a common inlet conduit 8 into which fluid can enter via connection 4 . This embodiment is particularly suitable for changing flow/wind directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図はジグザグ状構造の中空糸を備えた本発明によ
る装置の平面図、第1b図は波形構造の中空糸を備えた
本発明による装置の平面図、第2図は円筒側面の切片の
形状である本発明による装置の部分的に切断して示す斜
視図、第6図は第2図の差込み結合部を拡大して示す断
面図、第4図は本発明による装置の1実施形の平面図、
第5図は本発明による装置の1実施形の断面図、第6図
は鏡像的に、つまり反対方向に屈曲し、相互に上下に配
置された中空糸を備えた本発明による装置の1実施形の
断面図、第7図は相互に上下に配置された、鏡像・的で
は々いが反対方向に屈曲している中空糸を備えた本発明
による装置の1実施形の断面図、第8図は同一方向に湾
曲している数個の中空糸層が相互に上下に配置された本
発明による装置の1実施形の断面図、第9図は円筒形の
本発明による装置の1実施形、第10図はアコーディオ
ン壁形の本発明による装置の1実施形、第11図は同一
方向に湾曲している数個のシリンダ皿状の中空糸層が相
互に上下に配置されている本発明による装置の1実施形
、第12図は鏡像的ではないが反対方向に湾曲している
数個の中空糸層が相互に上下に配置されている本発明に
よる装置の1実施形、第16図は鏡像的に反対方向に湾
曲している数個の中空糸層が相互に上下に配置されてい
る本発明による装置の1実施形、第14図は同一方向に
湾曲しているボール皿状の数個の中空糸層が相互に上下
に配置されている本発明による装置の1実施形、第15
図は鏡像的に湾曲している2つのボール皿状の中空糸層
が相互に上下に配置されている本発明による装置の1実
施形、第16図は直列接続している中空糸団略示図、第
17図は並列接続している中空糸層の略示図、第18図
はループ状の中空糸が分配管と捕集管との間で懸垂して
いる本発明による装置の1実施形、第19図は本発明に
よる装置の他の実施形の平面図である。 1・・・中空糸、2・・分配管、3・・・捕集管、4゜
4a、4b、5.5a、5b−接続部、6・・・支柱、
7・・・支持棒、8,9・・・流入もしくは流出導管、
10.11・・・密閉部 気6区 第ε図 乙1 −428= 東:15゛ζ −429=
FIG. 1a is a plan view of a device according to the invention with hollow fibers of zigzag structure, FIG. 1b is a plan view of a device according to the invention with hollow fibers of corrugated structure, and FIG. FIG. 6 is an enlarged cross-sectional view of the plug-in connection of FIG. 2; FIG. Plan view,
5 is a sectional view of an embodiment of the device according to the invention, and FIG. 6 is an embodiment of the device according to the invention with hollow fibers bent in mirror image, ie in opposite directions, and arranged one above the other. FIG. 7 is a cross-sectional view of an embodiment of the device according to the invention with hollow fibers arranged one above the other, mirror images but bent in opposite directions, FIG. 9 is a sectional view of an embodiment of the device according to the invention in which several hollow fiber layers curved in the same direction are arranged one above the other; FIG. 9 is a cylindrical embodiment of the device according to the invention; FIG. , FIG. 10 shows an embodiment of the device according to the invention in the form of an accordion wall, and FIG. 11 shows an embodiment of the device according to the invention in the form of an accordion wall, and FIG. 11 shows an embodiment of the device according to the invention in the form of an accordion wall, and FIG. An embodiment of the device according to the invention, FIG. 12, and an embodiment of the device according to the invention, FIG. 16, in which several hollow fiber layers, which are not mirror images but curve in opposite directions, are arranged one above the other. FIG. 14 shows an embodiment of the device according to the invention in which several hollow fiber layers mirror-imagely curved in opposite directions are arranged one above the other; FIG. An embodiment of the device according to the invention, number 15, in which several hollow fiber layers are arranged one above the other
The figure shows an embodiment of the device according to the invention in which two mirror-curved bowl-shaped hollow fiber layers are arranged one above the other, and FIG. 16 schematically shows a series-connected hollow fiber layer. 17 is a schematic representation of hollow fiber layers connected in parallel, and FIG. 18 is an embodiment of the device according to the invention in which loop-shaped hollow fibers are suspended between a distribution pipe and a collection pipe. FIG. 19 is a plan view of another embodiment of the device according to the invention. DESCRIPTION OF SYMBOLS 1... Hollow fiber, 2... Distribution tube, 3... Collection tube, 4°4a, 4b, 5.5a, 5b-connection part, 6... Support column,
7... Support rod, 8, 9... Inflow or outflow conduit,
10.11... Sealed area 6th section ε Figure Otsu 1 -428= East: 15゛ζ -429=

Claims (1)

【特許請求の範囲】 1、 中空糸の壁を通して第1流体から第2流体に熱伝
達しかつ中空糸が分配管もしくは捕集管中に開口してお
り、肢管が支持フレームとして構成されていてよい流体
供給もしくは流体排出用の接続部を有し、かつ中空糸の
末端区域が肢管と埋込み材料により外方向に液密に結合
している、中空糸を通して熱伝達する装置において、中
空糸(1)の少なくとも一部が少なくとも1回は連続的
に湾曲しているかもしくは屈曲して構成されていること
を特徴とする中空糸を通して熱伝達する装置。 2、 中空糸(1)が1つの平面中にでは々く、空間的
に湾曲l〜ているか又は屈曲している血中に配置されて
いる特許請求の範囲第1項記載の装置。 ろ それぞれの湾曲又は屈曲している中空糸(1)の最
大偏倚距離が中空糸の両端部相互の距離の2〜才である
特許請求の範囲第105 項又は第2項に記載の装置。 4 事大偏倚距離がそれぞれの中空糸(1)の両端部の
間隔の約えである特許請求の範囲第3項記載の装置。 5 中空糸が数個の団で上下に配置されており、その際
にそれぞれの中空糸層は1個又は2個の中空糸層より成
りかつ中空糸層は相互に間隔をもって配置されている特
許請求の範囲第1項〜第4項のいずれか1項に記載の装
置。 6 各中空糸層が中空糸層2個より成り、その際に各中
空糸層において第1層の中空糸(1)が第2層の中空糸
(1)と交差しておりかつ交差しているその中空糸(1
)が交点で接している特許請求の範囲第5項記載の装置
。 7、 それぞれの中空糸層もしくは中空糸層がそれに固
有の、流体供給もしくは流体排出用の分配管もしくは捕
集管を有し、それらの管が共通の流入導管もしくは流出
導管に接続している特許請求の範囲第5項又は第6項に
記載の装置。 8、 中空糸層又は中空糸層が順次に反対方向に湾曲し
て構成されている特許請求の範囲第5項〜第7項いずれ
か1項に記載の装置。 9、 中空糸層もしくは中空糸層が、各中空糸層の少な
くとも1個の層の中空糸(ト)と交差する相応して成形
された支持棒(7)により支持されかつ中空糸(1)が
支持棒(7)とそれらの接触点で固定結合されている特
許請求の範囲第1項〜第8項のいずれか1項に記載の装
置。 10.2つの隣接する中空糸(1)の平均間隔がその直
径の1.7〜10倍である特許請求の範囲第1項〜第9
項のいずれか1項に記載の装置。 112つの隣接する中空糸(1)の平均間隔がその直径
の2.5〜ろ、6倍である特許請求の範囲第10項記載
の装置。 12、隣接する2つの中空糸(1)間の内側距離がり。 5〜15mmである特許請求の範囲第1項〜第11項の
いずれか1項に記載の装置。 16、隣接する2つの中空糸(1)間の内側距離が1〜
10mmである特許請求の範囲第12項記載の装置。 14  中空糸(1)が分配管と捕集管(2,3)との
間の糸群としてループ状に懸垂しておシ、その際に中空
糸間隔を同一に保持するために中空糸(1)に対して横
方向に延びている間隔支持体(7)が配置されている特
許請求の範囲第1項記載の装置。 15  中空糸(1)が多孔性もしくは微孔性である特
許請求の範囲第1項〜第14項のいずれか1項に記載の
装置。
[Claims] 1. Heat is transferred from the first fluid to the second fluid through the wall of the hollow fiber, the hollow fiber opens into a distribution pipe or a collection pipe, and the limb pipe is configured as a support frame. In a device for heat transfer through a hollow fiber, the hollow fiber has a connection for fluid supply or fluid discharge that may A device for transferring heat through a hollow fiber, characterized in that at least a portion of (1) is continuously curved or bent at least once. 2. Device according to claim 1, characterized in that the hollow fibers (1) are arranged in a single plane and are spatially curved or curved. 106. The device according to claim 105 or 2, wherein the maximum deflection distance of each curved or bent hollow fiber (1) is between 2 and 2 years of the distance between the two ends of the hollow fiber. 4. A device according to claim 3, wherein the major deflection distance is a measure of the spacing between the ends of each hollow fiber (1). 5. A patent in which hollow fibers are arranged one above the other in several clusters, each hollow fiber layer being composed of one or two hollow fiber layers, and the hollow fiber layers are arranged at intervals from each other. The apparatus according to any one of claims 1 to 4. 6 Each hollow fiber layer consists of two hollow fiber layers, and in each hollow fiber layer, the hollow fibers (1) of the first layer intersect with the hollow fibers (1) of the second layer, and the hollow fibers (1) of the second layer intersect with each other. That hollow fiber (1
6. The device according to claim 5, wherein the two portions (2) meet at an intersection point. 7. Patents in which each hollow fiber layer or hollow fiber layer has its own distribution or collection tube for fluid supply or fluid discharge, which tubes are connected to a common inflow or outflow conduit. An apparatus according to claim 5 or 6. 8. The device according to any one of claims 5 to 7, wherein the hollow fiber layers or hollow fiber layers are sequentially curved in opposite directions. 9. The hollow fiber layer or hollow fiber layers are supported by correspondingly shaped support rods (7) intersecting the hollow fibers (g) of at least one layer of each hollow fiber layer and the hollow fibers (1) 9. The device according to claim 1, wherein the support rod (7) is fixedly connected to the support rod (7) at their contact points. 10. Claims 1 to 9, wherein the average spacing between two adjacent hollow fibers (1) is 1.7 to 10 times the diameter thereof.
Apparatus according to any one of paragraphs. 11. Device according to claim 10, characterized in that the average spacing between two adjacent hollow fibers (1) is between 2.5 and 6 times their diameter. 12. Inner distance between two adjacent hollow fibers (1). 12. The device according to any one of claims 1 to 11, having a diameter of 5 to 15 mm. 16. The inner distance between two adjacent hollow fibers (1) is 1~
13. The device of claim 12, which is 10 mm. 14 The hollow fibers (1) are suspended in a loop as a group of fibers between the distribution tube and the collection tube (2, 3). 2. Device according to claim 1, characterized in that a spacing support (7) is arranged which extends transversely to ). 15. The device according to any one of claims 1 to 14, wherein the hollow fiber (1) is porous or microporous.
JP57116335A 1981-07-06 1982-07-06 Device for transmitting heat through hollow fiber Pending JPS5816185A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3126618A DE3126618C2 (en) 1981-07-06 1981-07-06 Hollow fiber heat exchanger
DE31266182 1981-07-06

Publications (1)

Publication Number Publication Date
JPS5816185A true JPS5816185A (en) 1983-01-29

Family

ID=6136229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116335A Pending JPS5816185A (en) 1981-07-06 1982-07-06 Device for transmitting heat through hollow fiber

Country Status (4)

Country Link
EP (1) EP0069262B1 (en)
JP (1) JPS5816185A (en)
AT (1) ATE10786T1 (en)
DE (1) DE3126618C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285577A (en) * 1987-05-04 1988-11-22 ベブ・カール・ツアイス・イエーナ Planetarium having no projector
JP2007506931A (en) * 2003-09-26 2007-03-22 ヴァレオ テルミーク モツール Curved heat exchanger and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320632A1 (en) * 1983-06-08 1984-12-13 Hoechst Ag, 6230 Frankfurt HEAT EXCHANGER
SE9300209L (en) * 1993-01-23 1994-07-24 Klaus Lorenz Heat
WO2000053992A1 (en) * 1999-03-08 2000-09-14 E.I. Du Pont De Nemours And Company Heat exchanger formed from tube plates having tubes joined by weaving
EP1835252B1 (en) * 2006-03-15 2010-11-24 Zehnder Verkaufs- und Verwaltungs AG Radiator
FR2930982A1 (en) * 2008-05-13 2009-11-13 Commissariat Energie Atomique Heat exchanger for e.g. domestic and industrial circle, has elementary module in which fluid circulation units are constituted by weft wire and warp wire, where each wire has internal diameter between specific millimeters
EP2307839A1 (en) * 2008-07-18 2011-04-13 Donald Herbst Heat exchanger, method for operating the heat exchanger and use of the heat exchanger in an air conditioner
WO2013043883A1 (en) 2011-09-20 2013-03-28 Lockheed Martin Corporation Extended travel flexure bearing and micro check valve
DE102014202536A1 (en) * 2014-02-12 2015-08-13 MAHLE Behr GmbH & Co. KG Pipe arrangement for a charge air cooler
CN105277043B (en) * 2014-06-06 2019-06-14 益科博能源科技(上海)有限公司 Liquid spray thrower for shell-and-tube phase change heat exchanger
US20160025422A1 (en) * 2014-07-22 2016-01-28 Hamilton Sundstrand Space Systems International, Inc. Heat transfer plate
FR3030029B1 (en) * 2014-12-16 2017-01-20 Commissariat Energie Atomique THERMAL EXCHANGE PLATE WITH MICROCHANNELS AND HEAT EXCHANGER COMPRISING AT LEAST ONE SUCH PLATE
DE102015224605A1 (en) * 2015-12-08 2017-06-08 Mahle International Gmbh Heat exchanger, in particular for a motor vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1991551U (en) * 1968-08-14 E I du Pont de Nemours and Company, Wilmington, Del (V St A) Heat exchanger
FR1194319A (en) * 1958-04-09 1959-11-09
AT260294B (en) * 1966-03-01 1968-02-26 Bruno Dipl Ing Dr Techn Eisler Heat exchanger
CH489259A (en) * 1968-06-08 1970-04-30 Dietzsch Gmbh Hans Joachim Process for the production of capillary exchangers
GB1280453A (en) * 1968-06-24 1972-07-05 Univ Newcastle Heat exchangers
US3616022A (en) * 1968-08-06 1971-10-26 Du Pont Method of making heat exchange components
DE1815544A1 (en) * 1968-12-19 1970-06-25 Schoell Dr Ing Guenter Space heater
US3662817A (en) * 1970-05-26 1972-05-16 Du Pont A process for accomplishing heat exchange between a corrosive liquid process stream and a second liquid
US4098852A (en) * 1972-07-04 1978-07-04 Rhone-Poulenc, S.A. Process for carring out a gas/liquid heat-exchange
JPS525402B2 (en) * 1973-08-03 1977-02-14
DE2410670A1 (en) * 1974-03-06 1975-09-11 Bauer Kompressoren Cooling or heating assembly parallel heat-exchanger tubes - spirally wound with individual tube coils at intervals
FR2400178A1 (en) * 1977-08-12 1979-03-09 Martel Catala & Cie Ets Tubular assembly formed by weaving - has metal or plastic tubes forming weft secured by suitable warp filaments
US4270596A (en) * 1979-03-05 1981-06-02 Bio-Energy Systems, Inc. Tube mat heat exchanger
GB2047874B (en) * 1979-03-17 1983-12-21 Akzo Nv Apparatus in which heat is transferred through hollow threads as well as hollow threads suitable for this purpose
GB2075172B (en) * 1979-09-27 1983-06-02 Braude E Ltd Tube-coil heat exchanger
DE8007199U1 (en) * 1980-03-15 1981-06-11 Genkinger, Helmut, 7293 Pfalzgrafenweiler TUBE ABSORBER BUILDING UNIT, IN PARTICULAR FOR SOLAR USE SYSTEMS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285577A (en) * 1987-05-04 1988-11-22 ベブ・カール・ツアイス・イエーナ Planetarium having no projector
JP2007506931A (en) * 2003-09-26 2007-03-22 ヴァレオ テルミーク モツール Curved heat exchanger and manufacturing method thereof

Also Published As

Publication number Publication date
DE3126618C2 (en) 1986-08-07
EP0069262A1 (en) 1983-01-12
ATE10786T1 (en) 1984-12-15
DE3126618A1 (en) 1983-01-13
EP0069262B1 (en) 1984-12-12

Similar Documents

Publication Publication Date Title
JPS5816185A (en) Device for transmitting heat through hollow fiber
US3995689A (en) Air cooled atmospheric heat exchanger
US4840227A (en) Process for producing a hollow fiber mass transfer module and module produced by this process
CN101526324B (en) Fin, heat exchanger with fin and heat exchanger device
JPH0679103A (en) Distributor of fluid for exchange of heat and substance particularly in packing column and collumn provided with said distributor
US4213640A (en) Coupling for interconnecting conduits
CN105277040A (en) Heat exchanger
JP2000514542A (en) Heat exchanger
JPH0541920B2 (en)
JPS613902A (en) Vertical tube type heat-exchanging panel used for waste heatboiler, such as contaminated liquid boiler, boiler for living waste incinerator or the like and manufacture thereof
MXPA01004961A (en) Column packing and method for manufacting the same.
JP3057831B2 (en) Humidifiers and heat exchangers
US4191247A (en) Heat exchangers
JPS63173689U (en)
RU2106589C1 (en) Cooling tower sprinkler unit
SU1333980A1 (en) Packing for heat-mass exchange apparatus
JPH0585803B2 (en)
JPS6172949A (en) Humidifier
RU211767U1 (en) COOLING TOWER SPRAY
JPH043623Y2 (en)
CN220583157U (en) Double-tube heat exchanger structure
JPS59221597A (en) Heat exchanger
EP0151262A2 (en) "Air-tubes type" heat-exchange elements
JPH0321602U (en)
SU1721409A1 (en) Method of fabricating film-type solar collector