JPS58161605A - Radial tire for heavy vehicle - Google Patents

Radial tire for heavy vehicle

Info

Publication number
JPS58161605A
JPS58161605A JP57041562A JP4156282A JPS58161605A JP S58161605 A JPS58161605 A JP S58161605A JP 57041562 A JP57041562 A JP 57041562A JP 4156282 A JP4156282 A JP 4156282A JP S58161605 A JPS58161605 A JP S58161605A
Authority
JP
Japan
Prior art keywords
rubber
tread
tire
main groove
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57041562A
Other languages
Japanese (ja)
Other versions
JPH0514642B2 (en
Inventor
Yukio Watanabe
幸雄 渡辺
Hikari Nibu
丹生 光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP57041562A priority Critical patent/JPS58161605A/en
Publication of JPS58161605A publication Critical patent/JPS58161605A/en
Publication of JPH0514642B2 publication Critical patent/JPH0514642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs

Abstract

PURPOSE:To improve the unbalanced abrasion resistance by providing two tread rubber layers made of rubber components with different tangential losses and by using a specific size of the main groove of the tread in a radial tire provided with two breaker layers and a carcass layer. CONSTITUTION:Two tread rubber layers are arranged around at least two breaker layers 14 crossing with each other at a small angle in relation to the peripheral direction of a tire. At least one zigzag main groove 1 is formed on the cap tread portion of these rubber layers, and the groove width 9 of this main groove 1 is made 2-10% of the tread width, the amplitude 10 is made 15-50% of the groove width 9, and the pitch length 11 is made 60-220% of the groove width. A bubber component with the maximum extension of 490% or more when it is broken at 100 deg.C is used for the cap tread portion, and a rubber component with a lower tangent loss as compared with said rubber is used fro a base tread portion 12, and a rubber component with a further lower tangent loss is used for the cushion rubber 13.

Description

【発明の詳細な説明】 本発明に耐偏摩耗性の改良されたトラック、バス等の重
車両用空気入りラジアルタイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pneumatic radial tire for heavy vehicles such as trucks and buses that has improved uneven wear resistance.

1車両用空気入シラシアルタイヤはバイアスタイヤに比
して、耐摩耗性、耐ウエツト性能、耐パンク性等の特性
が優ねでおり数々の利点を有するため、舗装道路や高速
道路の完備に伴い近年急速に使用が拡大されている。
Pneumatic tires for vehicles have many advantages over bias tires, such as wear resistance, wet resistance, and puncture resistance, so they are ideal for paved roads and expressways. Therefore, its use has been rapidly expanding in recent years.

かかる高速良路としてタイヤトレッド踏面部にトラクシ
ョン並ひに制動性能、その他一般耐摩耗性、耐発熱性を
考慮し、タイヤの周方向にのひるジグザグ模様のリフが
設けられたリフ型タイヤが使用さjている。
For such high-speed roads, riff-type tires are used in which the tire tread surface has a zigzag pattern rift in the circumferential direction, taking into account traction, braking performance, general wear resistance, and heat resistance. I'm in the middle of the day.

このようなリブはタイヤの周方向に連続するのが普通で
あるが、ときにはタイヤの幅方向に沿う機溝によって離
断され周方向に不連続をなす場合もある。
Such ribs are normally continuous in the circumferential direction of the tire, but sometimes they are separated by grooves along the width direction of the tire, making them discontinuous in the circumferential direction.

重車両用空気入りラジアルリブ型タイヤは高速で長距離
にわたシ直線的に連続走行した場合、従来見られなかっ
た偏摩耗、即ちレールウェイ摩耗全発生することが知ら
れて来ている。このレールウェイ摩耗とは第1図に示し
たようにタイヤTのトレンドの周方向に沿ってジグザグ
状に伸びるトレッド主溝1に向けてタイヤTの幅方向に
張出す周方向リブ2の凸部3の頂点付近の領域Aから偏
摩耗が局部的に発生し、それが促進されてついには、第
6図に示した様な断面において段差りが幅Wで生じ、こ
の偏摩耗の領>2 Aは、その後走行距離(軒数)の増
加と共に漸増し、終局的に隣接する領域Aと順次結合し
てタイヤTの周上で連続し、さらに走行距離の増加と共
に段差りおよび幅Wは拡大する、かような偏摩耗は一般
にレールウェイ摩耗と呼ばれ、それによるトレッド主溝
1の肩だれはタイヤTの外観全見苦しくするのみならず
、トレッド主溝1によシ区分されたリブ2の稜線の機能
に依存したタイヤ性能、とくにトラクション、制動性能
に悪影響を及ぼす上にタイヤの寿命全大幅に低下する、 この偏摩耗はジグザク状をなす周方向リブ2の凸部3の
頂も付近にのみ発生し始め、これとタイヤTの幅方向に
向いあった周方向リブ2の凹んだ隅部4がその起点にな
ることはないが偏摩耗の進展につれて、やがては隅部4
もレールウェイ摩耗に侵されることとなる。
It has become known that when pneumatic radial rib type tires for heavy vehicles are continuously driven in a straight line over long distances at high speeds, uneven wear, that is, railway wear, which has never been seen before, occurs. This railway wear refers to the convex portion of the circumferential rib 2 that extends in the width direction of the tire T toward the tread main groove 1 that extends in a zigzag shape along the circumferential direction of the tire T trend, as shown in Fig. 1. Uneven wear occurs locally from area A near the apex of No. 3, and this is promoted until a step with width W appears in the cross section as shown in Fig. 6, and this uneven wear area > 2 After that, A gradually increases as the mileage (number of houses) increases, and eventually connects with the adjacent area A and continues on the circumference of the tire T, and the step and width W further increase as the mileage increases. Such uneven wear is generally called railway wear, and the resulting shoulder sagging of the tread main groove 1 not only makes the overall appearance of the tire T unsightly, but also damages the ridgeline of the rib 2 divided by the tread main groove 1. This uneven wear occurs only near the top of the convex part 3 of the circumferential rib 2 which forms a zigzag shape. The concave corner 4 of the circumferential rib 2 facing in the width direction of the tire T is not the starting point, but as uneven wear progresses, eventually the corner 4
The railway will also be affected by railway wear.

このレールウェイ摩耗はベルト補強材として剛性の著し
く高い金属コード全使用した5 +Jブ型メタイヤ高速
連続走行に供された場合におきる特有の現象であり、一
般道路におけるような低速かつ断続的な走行や、摩耗度
合の激しい悪路などに使用された場合には発生しにくい
という事実から、この原因としてトレッド主溝1に向け
てタイヤTの幅方向に張り出す周方向リブ2の凸部3側
の頂点付近が高速連続走行中、横万中〕応力集中全うけ
ることによるとされている。
This railway wear is a peculiar phenomenon that occurs when 5 + J type tires are used for continuous high-speed running, using metal cords with extremely high rigidity as belt reinforcement materials, and are unique to low-speed and intermittent running such as on general roads. Due to the fact that this phenomenon is less likely to occur when the vehicle is used on rough roads with a high degree of wear, the cause of this is that the convex portion 3 side of the circumferential rib 2 that extends in the width direction of the tire T toward the tread main groove 1. It is said that this is due to the fact that the area near the peak of the vehicle is fully concentrated in stress during continuous high-speed running.

このような観点から従来トレッドパターン形状の改良が
試られている。
From this point of view, attempts have been made to improve the shape of the tread pattern.

例えば、タイヤ周方向にジグザグに配9置される主溝の
振幅、周方向ピッチを小さく即ちストレート溝に近い形
状にする方法、特開昭52−44904号明細書に記載
されているようにトレッド溝から独立した細い応力緩和
溝5を第2図に示すように周方向リブに設ける方法、あ
るいは特開昭53−128807号明細書に記載されて
いるように周方向リブの張出し凸部の頂へ付近に、第3
図に示すようにその頂点付近のリブ稜線と実質上平行な
分離溝6を隔てて周方向リブとともに踏面の部分全形成
する応力緩和リブ7を付設する方法とがある。
For example, a method of reducing the amplitude and circumferential pitch of the main grooves arranged in a zigzag manner in the circumferential direction of the tire, that is, reducing the shape of the main grooves to be close to straight grooves, is a method for treading as described in Japanese Patent Application Laid-Open No. 52-44904. A method of providing a thin stress relaxation groove 5 independent of the groove in the circumferential rib as shown in FIG. Nearby, the third
As shown in the figure, there is a method of attaching a stress relieving rib 7 that forms the entire part of the tread together with the circumferential rib across a separation groove 6 that is substantially parallel to the rib ridgeline near the apex.

しかしなから応力緩和溝5および応力緩和リブ7の如き
トレッドパターン形状の改良のみではレールウェイ摩耗
全軽減することはできず、またストレート溝に近い形状
にすればレールウェイ摩耗は改善できるが、タイヤの最
も重要な要求特性の1つであるウェット性能が低下する
ため実施できないのが現状である。
However, improving the tread pattern shape such as the stress relief grooves 5 and the stress relief ribs 7 alone cannot completely reduce railway wear.Also, railway wear can be improved by making the tread pattern closer to a straight groove shape, but the tire At present, this method cannot be implemented because the wet performance, which is one of the most important required characteristics, deteriorates.

かかる現況に鑑み、本発明者らは重荷重用ラジアルタイ
ヤのウェット性能全犠牲にすることるべく、配合面、ト
レッドパターン面両方から詳細研究した結果、天然ゴム
系配合組成物ヲトレッドゴムに適用した場合はトレッド
パターン形状(ストレート溝以外のジグザグ形状にて)
にかかわらずレールウェイ摩耗は発生するが、SBRブ
レンド配合組成物では一定のトレッドパターン形状範囲
内で有効にレールウェイ摩耗を防止することができ、本
発明の目的を有利に達成し得ること七見い出した。
In view of the current situation, the present inventors conducted detailed research from both the compounding and tread pattern aspects in order to completely sacrifice the wet performance of heavy-duty radial tires, and found that when a natural rubber compound composition is applied to tread rubber. Tread pattern shape (zigzag shape other than straight groove)
Although railway wear occurs regardless of the conditions, the SBR blend composition can effectively prevent railway wear within a certain tread pattern shape range, and the object of the present invention can be advantageously achieved. Ta.

即ち本発明の1荷重用空気入りラジアルタイヤは、タイ
ヤ周方向に対し比較的小さな角度で互いに交叉する少な
くとも2層のブレーカ一層る少なくとも1層のカーカス
層によシ補強されたラジアルタイヤに於いて、該プレー
カ一層の外側に配置されるトレッドゴム層が2層からな
り、クラウン部外側に配置されるキャップトレッド部は
その踏面にタイヤ周方向に連続するジグザグ状の少なく
とも1本の主溝會もち、第4図に示すように該主溝の溝
幅9がタイヤトレッド幅の2〜10チで、振幅10が該
主溝幅9の15〜50%で、かつピッチ長さ11が該主
溝幅9の60〜220%の範囲であり、該キャップトレ
ッド部にそのゴム成分100重量部のうちスチレン−ブ
タジェン共重合体が30〜70重量部であり、抽出量が
10重量%以下で、100℃における破断時最太伸びが
490%以上であるゴム組成物を配置し、キャップトレ
ッド部の内側のベースゴム部に該キャップトレッドゴム
に比して損失玉切の低い組成物、好ましくは70%以下
の損失玉切を有する組成物を該ブレーカ一層のタイヤ半
径方向外方の全幅を覆うように配置し、さらに該ブレー
カ一層を構成するゴム層より損失玉切の低いクッション
ゴム、好ましくは50%以下の損失玉切を有するクッシ
ョンゴムを配置してなることを特徴とする。
That is, the single-load pneumatic radial tire of the present invention is a radial tire reinforced with at least two layers of breakers and at least one carcass layer that intersect with each other at a relatively small angle with respect to the tire circumferential direction. , the tread rubber layer disposed outside the one layer of the player is composed of two layers, and the cap tread section disposed outside the crown section has at least one zigzag-shaped main groove continuous in the tire circumferential direction on its tread surface. As shown in FIG. 4, the groove width 9 of the main groove is 2 to 10 inches of the tire tread width, the amplitude 10 is 15 to 50% of the main groove width 9, and the pitch length 11 is 2 to 10 inches of the tire tread width. The width is in the range of 60 to 220% of the width 9, and the cap tread portion contains 30 to 70 parts by weight of the styrene-butadiene copolymer out of 100 parts by weight of the rubber component, and the extracted amount is 10% by weight or less. A rubber composition having a maximum elongation at break at ℃ of 490% or more is disposed, and a composition having a lower breakage loss than the cap tread rubber, preferably 70%, is placed in the base rubber part inside the cap tread part. A composition having the following loss cut-off is arranged so as to cover the entire outer width of the breaker layer in the tire radial direction, and a cushion rubber having a loss cut-off lower than that of the rubber layer constituting the breaker layer, preferably 50% It is characterized by arranging cushion rubber having the following loss cut.

さらにキャップトレッドゴム部の配合組成として、ゴム
成分100N量部のうちスチレン−ブタジェン共重合体
が40〜60重量部であり加硫ゴムの抽出量が8重量−
以下で、100℃における破断時最大伸ひが510%以
上であることがより好ましい。
Furthermore, as the compounding composition of the cap tread rubber part, the styrene-butadiene copolymer is 40 to 60 parts by weight out of 100N parts of the rubber component, and the extracted amount of vulcanized rubber is 8 parts by weight.
In the following, it is more preferable that the maximum elongation at break at 100° C. is 510% or more.

従来1車両用ラジアルタイヤのトレッドゴムとして専ら
適用されている天然ゴム系配合のかワリに天然ゴム(N
R)とスチレン−ブタジェン共’!!合体ゴム(SBR
)ブレンド配合にてSBRをゴム成分1001量部に対
し、30重量部以上にすると、レールウェイ摩耗性が著
しく改善されるのである。しかもこの効果は天然ゴムの
一部または全て會他のジエン系ゴム、例えばポリブタジ
ェンゴム、ポリイソフレンゴム、ブチルゴム、ハロゲン
化ブチルゴムおよびエチレン・プロピレン・ジエン三元
共重合体の群から選ばれた1種または2種以上に置換し
ても発揮できる。このSBRが30重量部以上(以下S
BRブレンド配合組成物という)なるとレールウェイ摩
耗が急激に改善される理由は明らかではないが、ゴム中
でのSBHの分散状態が変イビすることも1因であろう
。尚SBHの配合量は、後述するが発熱性を押えるため
70重量部以下とする。
Natural rubber (N
R) and styrene-butadiene! ! Combined rubber (SBR
) When the amount of SBR in the blend is 30 parts by weight or more based on 1001 parts of the rubber component, railway abrasion properties are significantly improved. Moreover, this effect can be achieved by using some or all of natural rubber or other diene rubbers such as polybutadiene rubber, polyisofrene rubber, butyl rubber, halogenated butyl rubber, and ethylene-propylene-diene terpolymer copolymers. The effect can also be achieved by substituting one or more types. This SBR is 30 parts by weight or more (hereinafter referred to as S
Although it is not clear why railway wear is rapidly improved when using a BR blend composition, one factor may be that the state of dispersion of SBH in the rubber changes. The amount of SBH to be blended is 70 parts by weight or less in order to suppress heat generation, which will be described later.

またキャップトレッドゴムの抽出量を押えることも同時
にレールウェイ摩耗改善に寄与する。
In addition, suppressing the amount of cap tread rubber extracted also contributes to improving railway wear.

ただし抽出量を10重量−以下にすることにより得られ
るレールウェイ摩耗改良効果は上記のように5BRkブ
レンドした場合のみに発揮される。本発明においてキャ
ップトレッドに使用さねるカーボンブラックはlA30
(q/f)、DBP100 (m//100 f )以
上のファーネスブラック−が好ましく、IAが120(
■/f)以上であれはさらに好ましい。
However, the railway wear improvement effect obtained by reducing the extraction amount to 10% by weight or less is exhibited only when 5BRk is blended as described above. In the present invention, the carbon black used for the cap tread is lA30.
(q/f), a furnace black with a DBP of 100 (m//100 f) or more is preferable, and an IA of 120 (
(2)/f) or more is even more preferable.

以下トレッドゴムにSBRフレンド配合組成物を適用し
た場合のトレッド主溝1の溝幅9、振幅10、ピッチ長
さ11について詳述する。
The groove width 9, amplitude 10, and pitch length 11 of the tread main groove 1 when the SBR Friend blended composition is applied to the tread rubber will be described in detail below.

溝幅9は、トレッド幅の2%未満ではウェット時の排水
が困難となり、10%?越えると主溝に面したリブ端部
とリブ中央部での接地圧の不均一が生じ、他の偏摩耗音
引き起こし、さらには耐摩耗性においても低下してしま
うのでトレッド幅の2〜10%、より好ましくはトレン
ド幅の4〜8チ以内とする。
If the groove width 9 is less than 2% of the tread width, it will be difficult to drain water when wet, and it will be 10%? If it exceeds 2 to 10% of the tread width, uneven ground pressure will occur between the rib end facing the main groove and the center of the rib, causing uneven wear noise and further reducing wear resistance. , more preferably within 4 to 8 inches of the trend width.

次に振幅10とピッチ長さ11も重畳で、振幅10が主
溝幅9の15%未満であったり、ピッチ長さ11が主溝
幅の220%を越えると主溝がストレート溝に近い形状
となりウェット時のトラクション、ブレーキ性能を低下
する。−万振幅lOが主溝幅9の50%を越えたり、ピ
ッチ長さ11が主溝幅の60%未満となるとSBRブレ
ンド配合組成物適用時でももはやレールウェイ摩耗は避
けられない、従って不発明においては振幅を主溝幅の1
5〜50%、ピッチ長さを60〜220%とする。更に
主溝幅9がタイヤトレッド幅の4〜8%で、振幅10が
該主溝9の25〜40悌であり、かつピッチ長さが該主
溝幅の100〜180チであれば車両の走行速度が特に
高い場合でも、レールウェイ摩耗全防止できさらに有−
利である。前記主溝間や主溝とト前記主溝に実質的に平
行な細溝全1不以上配置すれば、タイヤのウェット性能
が改良さnるので主溝本数の削減が可能になる。
Next, amplitude 10 and pitch length 11 are also superimposed, and if amplitude 10 is less than 15% of main groove width 9 or pitch length 11 exceeds 220% of main groove width, the main groove will have a shape close to a straight groove. This reduces traction and braking performance in wet conditions. - If the universal amplitude lO exceeds 50% of the main groove width 9 or the pitch length 11 becomes less than 60% of the main groove width, railway wear is no longer avoidable even when an SBR blend composition is applied, and therefore it is not an invention. In this case, the amplitude is set to 1 of the main groove width.
5 to 50%, and the pitch length to 60 to 220%. Furthermore, if the main groove width 9 is 4 to 8% of the tire tread width, the amplitude 10 is 25 to 40 inches of the main groove 9, and the pitch length is 100 to 180 inches of the main groove width, the vehicle Even at particularly high running speeds, railway wear can be completely prevented, making it even more useful.
It is advantageous. By arranging one or more narrow grooves between the main grooves or substantially parallel to the main grooves, the wet performance of the tire is improved and the number of main grooves can be reduced.

以上のような不発明の構成を1車両用ラジアルタイヤに
適用する際、高速走行に制えうるタイヤであるためにキ
ャップトレッド部の内側のベースゴム部に該キャップト
レッドゴムに比して損失圧切の低い組成物を該ブレーカ
一層のタイヤ半径方向外方の全幅を覆うように配置し、
かつ該ブレーカ一層上構成するゴム層より損失圧切の低
いクッションゴム奮配置することが必要である。
When applying the above-mentioned uninvented configuration to a radial tire for a single vehicle, the base rubber inside the cap tread part has a pressure loss cutoff compared to the cap tread rubber, so that the tire can handle high speed running. A composition with a low
Moreover, it is necessary to arrange a cushion rubber having a lower pressure loss than the rubber layer that is formed above the breaker.

これはSBRブレンド配合配合組成物シトレッド用する
と天然ゴム系配合に比べ発熱性の截で劣り、ヒート−セ
パレージ冒ン発生の懸念が起こるので発熱性全押えこれ
t防止する友めに上記2景件が必要となる。
This is because when using the SBR blend compound composition Citred, it is inferior in heat generation compared to natural rubber compound, and there is a concern that heat-separation may occur. Therefore, it is necessary to prevent heat generation completely. Is required.

上記に多わせてSBRブレンド配付組成物の5BR1r
r70!量部以下に押えることも発熱性を押える意味で
1景である、 さらにキャップトレッドに適用するSBRブレンド配合
組成物に単純に5BR1k増加させると高温破断時最大
伸ひが低下し、上記本発明におけるトレッドパターン形
状範囲内においては悪路走行などによ′るリフティア−
(リブもけ現象)の発生も起こり得るので、キャップト
レッドに使用するSBRブレンド配合組成物の100℃
における破断時最太伸び’t49096以上好ましくは
510%以上とすることも肝要である。この最大伸びt
高くする手法としては(1)硫黄量全通常の使用量より
若干減じる、(2)軟化剤・樹脂類會添力口する、(3
1S B R倉のうち一部會低分子量(粘度平均分子j
・5. (10(1〜200.(100,l5BHに置
換する、岬かお2−1゜ 以下実施例によりさらに詳述する。
In addition to the above, 5BR1r of SBR blend distribution composition
r70! In addition, simply adding 1k of 5BR to the SBR blend composition applied to the cap tread lowers the maximum elongation at break at high temperature, and the above-mentioned in the present invention Within the range of the tread pattern, lift may occur due to driving on rough roads, etc.
(rib melting phenomenon) may occur, so the temperature of the SBR blend composition used for the cap tread should be
It is also important that the maximum elongation at break 't is 49096 or more, preferably 510% or more. This maximum elongation t
Methods to increase the amount of sulfur include (1) slightly reducing the amount of sulfur than the amount normally used, (2) adding softeners and resins, and (3)
Some of the 1S B R warehouses have low molecular weight (viscosity average molecular
・5. (10(1-200.(100, substituted with 15BH, Misaki Kao 2-1°) This will be explained in more detail with reference to Examples below.

]」11 キャップトレッドゴムの配合組成として第1表の9種、
ブレーカ一層のコーティングゴム及びブレーカ一層間ゴ
ムとして第2表のゴム組成物AIO、ベーストレッドゴ
ム、クッションゴムの配合組成として第3表の4種を用
いて第4表に示す各種タイヤ’kE作した。ペースゴム
はブレーカ一層のタイヤ半径方向外方の全幅を覆うよう
に配置した。
]”11 The 9 types in Table 1 as compounding compositions of cap tread rubber,
Various tires shown in Table 4 were made using the rubber composition AIO shown in Table 2 as the coating rubber for the breaker layer and the rubber between the breaker layers, and the 4 types shown in Table 3 as the compounding compositions of the base tread rubber and cushion rubber. . The pace rubber was arranged so as to cover the entire width of the breaker layer outward in the tire radial direction.

いづね、のタイヤもサイズ10.00R2014PRタ
イヤ幅180−の第5図に示すリブタイプスチールラジ
アルタイヤである、これ等のタイヤにつキ性能試験全行
い得た結果を第4表に示す。
The tires are rib-type steel radial tires shown in FIG. 5 with size 10.00R2014PR tire width 180-.Table 4 shows the results of all performance tests performed on these tires.

第1〜第3表に使用したカーボンブラックHAFのIA
は80(q/f)、DBPは104(d/10(1) 
テある。ここでIAとはカーボンブラックのヨウ素吸着
量(単位yny/l)kさし、測定′法はJIiSK6
221による。DBPとはASTM  D−2424に
記載された方法に従って測定されたカーボンブラックの
フタル酸ジプチル(DBP)吸収値(単位−71009
)である。
IA of carbon black HAF used in Tables 1 to 3
is 80(q/f), DBP is 104(d/10(1)
There is. Here, IA refers to the amount of iodine adsorbed by carbon black (unit: yny/l), and the measurement method is JIiSK6.
According to 221. DBP is the carbon black diptyl phthalate (DBP) absorption value (unit: -71009) measured according to the method described in ASTM D-2424.
).

第1表〜第4表に記載した評価項目の測定方法は次の通
りである。
The measurement methods for the evaluation items listed in Tables 1 to 4 are as follows.

〈抽出量〉 トレッドゴムt1辺略1−の立方体に細切したのち、略
19精秤したもの囚ヲソックスレー抽出器により24時
間連続アセトン抽出し、得た抽出物のN jt(B)よ
υB/AX100(!量チ)として算出した。
<Extracted amount> The tread rubber was cut into cubes of approximately 1 side and weighed approximately 19 cm, and then extracted with acetone continuously for 24 hours using a Soxhlet extractor. /AX100 (! quantity chi).

〈破壊時最大伸ひ〉 トレッドゴムを厚み略2■にスライスしたのちDIN−
3号の形状に打ち抜き、インストロン型引張試験機にて
100℃雰囲気で引張試験全実施し、破壊時最大伸び金
「チ」表示にて得た、〈損失圧切〉 トレッドゴム全厚さ略2簡にスライスしたもの、あるい
はフレーカ一層間ゴム切り出し厚さ略2■のシート状に
したもの全長さ20−1幅5−に打抜き、作製した試験
片を用いて粘弾性スペクトロメーター(岩不製作所製V
iscoelasticSpectrometer T
ype VESA77239)により、試験条件:初期
歪み5%、動的振幅2%、周波数50Hz、25℃で測
定した。
<Maximum elongation at break> After slicing the tread rubber into approximately 2cm thick, DIN-
It was punched into the shape of No. 3, and all tensile tests were carried out in an atmosphere of 100℃ using an Instron type tensile tester, and the maximum elongation at failure was indicated as "chi". A viscoelastic spectrometer (manufactured by Iwafu Seisakusho) was prepared by simply slicing or punching out a sheet with a thickness of about 2 cm by cutting out the rubber between each layer of the flake, and then punching it into a total length of 20 mm and width of 5 mm. V
iscoelastic Spectrometer T
ype VESA77239) under test conditions: initial strain of 5%, dynamic amplitude of 2%, frequency of 50 Hz, and 25°C.

く耐ウェツト性〉 供試タイヤに7.25Ky/lr?の内圧全光てんして
大型トラックに装着し輪重が2,425に4となるよう
に荷重調整したのち、アスファルト舗装路上に1〜2m
mの水膜ができる量の散水を施し、その上を速度80 
Km/Hで急制動を加え車両が停止するまでの距離、即
ち制動距離を測定した。
Wet resistance> 7.25Ky/lr for the test tire? After setting the internal pressure at full strength and installing it on a large truck and adjusting the load so that the wheel load is 2,425 to 4, it is placed on an asphalt pavement for 1 to 2 m.
Sprinkle water in an amount that creates a water film of 500 m, and then
Sudden braking was applied at a speed of Km/H, and the distance until the vehicle stopped, ie, the braking distance, was measured.

次式により指数表示とした。指数値大なる程良好 供試タイヤの制動距離 〈レールウニイル摩耗度〉 供試タイヤに7.25Ky/lr?の内圧を充てんして
大型トラックの前輪に装着し、荷重・定積載とし、高速
路70%、一般路30%の路線で、高速路ではg OK
m/H、一般路では40 Km/Hの車速で4万Krn
走行させた後、レールウェイ摩耗発生度合全測定した。
It was expressed as an index using the following formula. The higher the index value, the better the braking distance of the test tire (Rail Uniel Wear) 7.25Ky/lr for the test tire? Filled with the internal pressure of
m/h, 40,000 Krn at a vehicle speed of 40 km/h on general roads.
After running, the degree of railway wear was completely measured.

なおタイヤは5,000Km走行毎に左右位置交換を実
施した。レールウェイ摩耗発生#@は第6図のような段
差偽)とレールウェイ摩耗幅(ロ)とで評価されるが、
次式のように指数表示とした。指数値小なる程良好であ
る。
The left and right positions of the tires were changed every 5,000 km. Railway wear occurrence #@ is evaluated by the difference in level (false) as shown in Figure 6) and the railway wear width (b).
It was expressed as an index as shown in the following formula. The smaller the index value, the better.

hO:タイヤA1の段差 WO:タイヤ扁1のレールウェイ摩耗幅h:供試タイヤ
の段差 W:供試タイヤのレールウェイ摩耗幅 〈耐発熱性〉 供試タイヤ及びタイヤA1を実車にて発熱的に厳しい走
行条件(内圧7,25Ky/cd、荷@ 2,425初
+30%)で、10万Km走行させた後、解剖し、ベル
ト端亀裂を比較した。
hO: Step difference WO of tire A1: Railway wear width of tire flat 1 h: Step W of test tire: Railway wear width of test tire (heat resistance) After running for 100,000 km under severe running conditions (internal pressure 7,25 Ky/cd, load @ 2,425 initial +30%), the belt was dissected and cracks at the belt edges were compared.

結果は次式により指数を算出した。The index of the results was calculated using the following formula.

ここで指数の大きい万が良好である。Here, the larger the index, the better.

供試タイヤのベルト端亀裂の長さ 第  3  表 第4表により不発明の構成とするノくターン形状とSB
Rブレンド配合組成物範囲によりはじめてレールウェイ
摩耗軽減相乗効果が発揮されることが理解できる。
Table 3 Length of belt end cracks in test tires Table 4 Knotted shape and SB with non-inventive configuration
It can be understood that the synergistic effect in reducing railway wear is exhibited only by changing the R blend composition range.

パターン形状の改良のみではレー、ルウエイ摩耗軽減効
果が僅かであるが、SBRブレンド配合組成物と組み合
わせると効果が飛躍的に高まる。(タイヤ屋1.2.3
.5.径間) SBRブレンド配合組成物もキャップトレッドに適用し
ても、主溝幅、振幅を大きく、ピッチ長さを短かくする
と、トレッドゴムへの力学的入力が大きく変化するため
SBRゴムの効果が減少踵主溝幅、振幅を小さく、ピッ
チ長さを長くすると耐ウェツト・スキツド性が損われる
。(タイヤ扁1゜4、5.6.参照) タイヤA7〜12ゲ見れば、耐レールウェイ摩耗性と耐
ウェツト性、耐発熱性との両立のためにはSBR配@債
が30〜7ON量部であると確認できる。
Improving the pattern shape alone has little effect on reducing Lewey wear, but when combined with an SBR blend composition, the effect increases dramatically. (Tire shop 1.2.3
.. 5. Even if the SBR blend composition is applied to the cap tread, increasing the main groove width and amplitude and shortening the pitch length will greatly change the mechanical input to the tread rubber, which will reduce the effectiveness of the SBR rubber. If the heel groove width is decreased, the amplitude is decreased, and the pitch length is increased, the wet skid resistance will be impaired. (Tire width 1°4, see 5.6.) Looking at tires A7 to A12, in order to achieve both railway wear resistance, wet resistance, and heat resistance, the SBR distribution @bond amount is 30 to 7ON. It can be confirmed that this is the department.

タイヤ& 9.13.17の例にキャップトレッドがS
BRブレンド配合組成物である場合において、抽出量の
レール、7エイ摩耗に寄与する効果が無視できないもの
であることを示している。
Tire & Cap tread is S in the example of 9.13.17
This shows that in the case of a BR blend composition, the effect of the amount of extraction contributing to rail and 7-ray wear cannot be ignored.

次にタイヤA9.10.11.12.17の5稲のタイ
ヤ全各々7.25 Kg/crlの内圧を充てんして大
型トラックに装着し輪重が2,425に9になるように
荷重調整後、準悪路を5万に9m%供試タイヤを走行さ
せた後、タイヤトレッド部リブに発生した亀裂の大きさ
、リブのもげ状態を観察しりブチイア−耐久性を確認シ
タ。結果はトレッド部リブに生じた亀裂の長さで評価し
た。
Next, fill each of the five tires (Tire A9.10.11.12.17) with an internal pressure of 7.25 Kg/crl, install them on a large truck, and adjust the load so that the wheel weight is 2,425 to 9. After running the test tire at 50,000 m on a semi-rough road, we observed the size of cracks that occurred in the ribs of the tire tread and the condition of the ribs to confirm the durability. The results were evaluated based on the length of cracks that occurred in the tread ribs.

100℃における破壊時最大伸びが高いタイヤjp6.
9.10.17.の3種のタイヤは亀裂が全く発生せず
、タイヤA 11も亀裂長さ平均51111とわずかで
あったが、タイヤ屋12は平均40+mもの亀裂が発生
し、一部ではリブもげも起こった。
Tires with high maximum elongation at break at 100°C jp6.
9.10.17. The three types of tires had no cracks at all, and Tire A 11 also had a small average crack length of 51,111 mm, but Tire Shop 12 had cracks with an average length of 40+ m, and some ribs were peeled off.

タイヤ扁9.10.11.17.のように高温破壊時最
大伸びを490%以上にしてはじめてレールウェイ摩耗
耐久性の優f1.fc高速用リブ型ラジアルタイヤが他
の性能を犠牲にすることなく得られるのである。
Tire flatness 9.10.11.17. Excellent railway abrasion durability can be achieved only when the maximum elongation at high temperature fracture is 490% or more, such as f1. An FC high-speed rib type radial tire can be obtained without sacrificing other performance.

以上本発明によってはじめて、従来困難と見られていた
レールウェイ摩耗の飛躍的な改良が達成された。
As described above, by the present invention, for the first time, a dramatic improvement in railway wear, which was considered difficult in the past, has been achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の1車両用空気入りラジアルリブタイヤの
部分平面図、 第2図a −dは夫々タイヤのトレッドにジグザグに配
置さt″した主溝から独立した応力緩和溝の説明図、 第3図はタイヤのトレッド溝から独立した分離溝および
応力緩和リブの説明図、 第4図は不発明のタイヤのトレンド溝を説明するための
タイヤの部分平面図、 第5図は不発明のm個タイヤの左側半分の断面図、 第6図はレールウェイ摩耗発生一度合の説明図である。 1・・・トレッド主溝  2・・・周方向リブ3・・・
張出し凸部   4・・・隅部5・・・応力緩和溝  
 6・・・分離溝7・・・応力緩和リブ  8・・・細
溝9・・・主溝幅    10・・・振幅11・・・ピ
ッチ長さ   12−ベーストレッドゴム13・・・ク
ッションゴム 14・・・ブレーカ一層15・・・ブレ
ーカ一層間ゴム h・・・段差       W・・・レールウェイ摩耗
幅特許出願人 ブリデストンタイヤ株式会社代理人弁理
士  久 米 英 − 代理人弁理士  鈴 木 悦 部 第1図 第2図 a      b      c      d第3図 第4図 第5図 4
Fig. 1 is a partial plan view of a conventional pneumatic radial rib tire for one vehicle; Figs. 2 a - d are explanatory views of stress relief grooves independent from the main grooves arranged in a zigzag pattern on the tread of the tire; Fig. 3 is an explanatory diagram of separation grooves and stress relief ribs independent of the tread grooves of the tire, Fig. 4 is a partial plan view of the tire to explain the trend grooves of the uninvented tire, and Fig. 5 is an illustration of the uninvented tire's trend grooves. A cross-sectional view of the left half of m tires, and Fig. 6 is an explanatory diagram of one occasion when railway wear occurs. 1... Tread main groove 2... Circumferential rib 3...
Overhanging convex portion 4... Corner 5... Stress relaxation groove
6... Separation groove 7... Stress relaxation rib 8... Narrow groove 9... Main groove width 10... Amplitude 11... Pitch length 12-Base tread rubber 13... Cushion rubber 14 ...One layer of breaker 15...Rubber between one layer of breaker h...Step W...Railway wear width Patent applicant Brideston Tire Co., Ltd. Representative Patent Attorney Hide Kume - Representative Patent Attorney Etsu Suzuki Figure 1 Figure 2 a b c d Figure 3 Figure 4 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】 1、 タイヤ周方向に対し比較的小さな角度で互いに交
叉する少なくとも2層のブレーカ一層及びタイヤ周方向
に対し実質上90°で配置される少なくとも1層のカー
カス層により補強されたラジアルタイヤに於いて、 該ブレーカ一層の外側に配置されるトレッドゴム層が2
層からなり、クラウン部外側に配置されるキャップトレ
ッド部はその踏面にタイヤ周方向に連続するジクザグ状
の少なくとも1本の主溝會もち、該主溝の溝幅がタイヤ
トレッド幅の2〜10%で、振幅が該主溝幅の15〜5
0%で、かつピッチ長さが該主溝幅の60〜220%の
範囲でめシ、 該キャップトレンド部にそのゴム成分100重量部のう
ちスチレン−ブタジェン共重合体が30〜701量部で
あシ、抽出量が101量チ以下で、100℃における破
断時最大伸びが490%以上であるゴム組成物を配置し
、キャップトレッド部の内側のベースゴム部に該キャッ
プトレッドゴムに比して損失圧切の低い組成物會該ブレ
ーカ一層のタイヤ半径方向外方の全幅を覆うよう配置し
、 さらに該ブレーカ一層を構成するゴム層より損失圧切の
低いクッションゴムを配置してなることを特徴とする1
車両用空気入りラジアルタイヤ。 2 前記キャップトレッドゴム部にそのゴム成分100
ii歇部のうちスチレン−ブタジェン共N@体が40〜
60]ii量部であり、抽出量が8重量%以下で、10
0℃における破断時最犬伸びが510%以上であるゴム
組成物全配置し、かつ前記ブレーカ一層両側端部會包囲
するゴム層としt前記ブレーカ一層を構成するゴム層に
比して50%以下の損失圧切を有するゴム層を配置した
ことを特徴とする特許請求の範囲第1項記載の1車両用
窒気入りタイヤ。 3. 前記主溝間及び/または主溝とトレッド縁部間に
、負荷転勤時には互いに接触する溝幅でかつ前記主溝に
実質上平行な細溝を少なくとも1本配置したことを特徴
とする特許請求の範囲第1項記載の1車両用空気入りタ
イヤ。
[Claims] 1. Reinforced by at least two breaker layers intersecting each other at a relatively small angle to the tire circumferential direction and at least one carcass layer disposed at substantially 90° to the tire circumferential direction. In a radial tire, there are two tread rubber layers arranged outside the one layer of the breaker.
The cap tread portion, which is arranged on the outside of the crown portion, has at least one zigzag-shaped main groove continuous in the tire circumferential direction on its tread surface, and the groove width of the main groove is 2 to 10 times the width of the tire tread. %, and the amplitude is 15 to 5 of the main groove width.
0% and the pitch length is in the range of 60 to 220% of the main groove width, and the cap trend portion contains 30 to 701 parts by weight of the styrene-butadiene copolymer out of 100 parts by weight of the rubber component. A rubber composition having an extraction amount of 101% or less and a maximum elongation at break of 490% or more at 100°C is placed on the base rubber part inside the cap tread part compared to the cap tread rubber. The breaker layer is composed of a composition having a low pressure loss and is arranged so as to cover the entire outer width in the radial direction of the tire, and a cushion rubber having a pressure loss that is lower than that of the rubber layer constituting the breaker layer is further arranged. 1
Pneumatic radial tires for vehicles. 2. Apply 100% of the rubber component to the cap tread rubber part.
ii The styrene-butadiene co-N@ body is 40~
60]ii parts, the extraction amount is 8% by weight or less, and 10
A rubber composition having a maximum elongation at break of 510% or more at 0° C. is entirely disposed, and the rubber layer surrounding both end portions of the breaker is 50% or less compared to the rubber layer constituting the breaker. A nitrogen-filled tire for a vehicle according to claim 1, characterized in that a rubber layer having a pressure loss of . 3. At least one narrow groove is disposed between the main grooves and/or between the main groove and the tread edge, the groove width being such that the grooves come into contact with each other during load transfer and being substantially parallel to the main groove. A pneumatic tire for a vehicle as described in Scope 1.
JP57041562A 1982-03-16 1982-03-16 Radial tire for heavy vehicle Granted JPS58161605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041562A JPS58161605A (en) 1982-03-16 1982-03-16 Radial tire for heavy vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041562A JPS58161605A (en) 1982-03-16 1982-03-16 Radial tire for heavy vehicle

Publications (2)

Publication Number Publication Date
JPS58161605A true JPS58161605A (en) 1983-09-26
JPH0514642B2 JPH0514642B2 (en) 1993-02-25

Family

ID=12611874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041562A Granted JPS58161605A (en) 1982-03-16 1982-03-16 Radial tire for heavy vehicle

Country Status (1)

Country Link
JP (1) JPS58161605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345988A (en) * 1992-05-27 1994-09-13 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for heavy loads
JPH09109616A (en) * 1995-10-13 1997-04-28 Bridgestone Corp Pneumatic tire
JP2007314029A (en) * 2006-05-25 2007-12-06 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2009051097A1 (en) 2007-10-16 2009-04-23 Bridgestone Corporation Rubber composition and pneumatic radial tire for high load employing the same
JP2014141253A (en) * 2014-03-31 2014-08-07 Bridgestone Corp Pneumatic tire for heavy load

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136002A (en) * 1978-04-08 1979-10-22 Bridgestone Corp Pneumatic radial tire for heavy car running on good highway at high speed
JPS5639904A (en) * 1979-09-01 1981-04-15 Bridgestone Corp Radial tire for passenger car with low rolling resistance
JPS5647306A (en) * 1979-09-28 1981-04-30 Yokohama Rubber Co Ltd:The Radial pneumatic tire for heavy vehicle
JPS56131640A (en) * 1980-03-18 1981-10-15 Bridgestone Corp Tire tread rubber composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136002A (en) * 1978-04-08 1979-10-22 Bridgestone Corp Pneumatic radial tire for heavy car running on good highway at high speed
JPS5639904A (en) * 1979-09-01 1981-04-15 Bridgestone Corp Radial tire for passenger car with low rolling resistance
JPS5647306A (en) * 1979-09-28 1981-04-30 Yokohama Rubber Co Ltd:The Radial pneumatic tire for heavy vehicle
JPS56131640A (en) * 1980-03-18 1981-10-15 Bridgestone Corp Tire tread rubber composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345988A (en) * 1992-05-27 1994-09-13 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for heavy loads
JPH09109616A (en) * 1995-10-13 1997-04-28 Bridgestone Corp Pneumatic tire
JP2007314029A (en) * 2006-05-25 2007-12-06 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2009051097A1 (en) 2007-10-16 2009-04-23 Bridgestone Corporation Rubber composition and pneumatic radial tire for high load employing the same
JP2014141253A (en) * 2014-03-31 2014-08-07 Bridgestone Corp Pneumatic tire for heavy load

Also Published As

Publication number Publication date
JPH0514642B2 (en) 1993-02-25

Similar Documents

Publication Publication Date Title
US4381810A (en) Tire with dual tread compound
JP6190354B2 (en) Heavy-duty vehicle tire tread
JPH10175403A (en) Pneumatic tire
EP0600404B1 (en) Pneumatic tire with improved snow and ice traction
CA1141276A (en) Pneumatic radial tire having a reduced rolling resistance
US20180244104A1 (en) Passenger vehicle pneumatic tire
JP5655092B2 (en) Tire with improved tread
US4429728A (en) Tire having an asymmetrical tread profile
JPS6210530B2 (en)
JP2014520031A (en) Tire with improved tread
WO2017043008A1 (en) Pneumatic tire
JPS602201B2 (en) steel radial tire
US10710414B2 (en) Tire comprising an improved tread
JPS6339015B2 (en)
US5026762A (en) Rubber composition for all-weather tires
JP4578842B2 (en) Pneumatic tire
JPS58161605A (en) Radial tire for heavy vehicle
JPS60135309A (en) Pneumatic tyre
JP2541919B2 (en) Pneumatic tire
CN102264559B (en) Tire for vehicle wheels provided with tread band showing improved fatigue resistance
EP0209125A2 (en) Pneumatic tire having radially varying tread composition
EP2379349B1 (en) Tire for vehicle wheels provided with tread band protected against groove anomalies
JPS6354564B2 (en)
KR100451860B1 (en) Pneumatic tire with multi tread rubber composition
JPH0469183B2 (en)