JPH0469183B2 - - Google Patents

Info

Publication number
JPH0469183B2
JPH0469183B2 JP59018417A JP1841784A JPH0469183B2 JP H0469183 B2 JPH0469183 B2 JP H0469183B2 JP 59018417 A JP59018417 A JP 59018417A JP 1841784 A JP1841784 A JP 1841784A JP H0469183 B2 JPH0469183 B2 JP H0469183B2
Authority
JP
Japan
Prior art keywords
rubber
tread
tire
sulfur
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59018417A
Other languages
Japanese (ja)
Other versions
JPS60163708A (en
Inventor
Michitaka Takeshita
Yoshuki Morimoto
Sho Yamazaki
Isamu Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59018417A priority Critical patent/JPS60163708A/en
Publication of JPS60163708A publication Critical patent/JPS60163708A/en
Publication of JPH0469183B2 publication Critical patent/JPH0469183B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の関連する技術分野 この発明は改良されたラジアルタイヤとくに偏
摩耗性とリブ引裂き抵抗性の改良された重車両用
ラジアルタイヤに関する。 従来技術 従来、重車両用ラジアルタイヤのトレツドゴム
としては低発熱性、破壊強度およびリブ引裂き抵
抗性等が優れているという理由で天然ゴム系配合
が用いられたが、高速長距離走行が盛んとなるに
つれてトレツド接地部においてレールウエイ摩
耗、すなわち周方向ジグザグ状主溝の両側に沿つ
てリブ縁部に起こる異常摩耗等の偏摩耗の発生が
顕著となりその解決が強く望まれた。 これに関して、トレツドゴムとして天然ゴム
(NR)とスチレンブタジエンゴム(SBR)をブ
レンド配合したゴムを用いた場合、前記レールウ
エイ摩耗を著しく改善し得ることを特開昭58−
161605号公報は示している。 しかしながら、天然ゴム配合系の天然ゴムの代
りに単に前記のようなNR・SBRブレンドゴムを
用いた場合はラジアルタイヤとくに重車両用ラジ
アルタイヤのトレツド接地部として必要な別の特
性であるリブ引裂き抵抗性等が著しく損なわれる
ので到底実用に供し得なかつた。これはNR・
SBRブレンド配合系はミクロなNR相とSBR相と
からなり、混練、加硫等の加工条件下での硫黄の
前記両相に対する分配比率がNR相に高い比率と
なるので両相の架橋密度を最適化し得ないことも
原因であると考えられる。 一方、特開昭57−170939号公報にポリスルフイ
ドポリマー単独またはこれと硫黄とを併用して加
硫ゴムの耐熱老化性と耐屈曲き裂性とを向上させ
うることが示されているが、ブレンドゴムに対す
るこの加硫剤の使用については何ら明らかにせ
ず、硫黄との併用を示す実施例においてもポリス
ルフイドポリマーに含有される硫黄の量(SP)と
硫黄量(SE)との合計がゴム成分100重量部に対
し11.6、SP対SEの比が0.08である場合が示される
のみであるから、この加硫系をラジアルタイヤと
くに重車両用ラジアルタイヤのトレツド部の接地
部の耐偏摩耗性とリブ引き裂き抵抗性の両方を改
良することと関連させることは到底できない。 発明の開示 発明者らはラジアルタイヤとくに重車両用ラジ
アルタイヤのトレツド部の接地部の偏摩耗性を他
の必要な特性とくに必要なリブ引裂き抵抗性を保
ちながら改良するべく鋭意研究を重ねた結果、意
外にも天然ゴムおよびスチレンブタジエンゴムの
ブレンドゴムに対しポリスルフイドポリマーおよ
び硫黄を特定の範囲内で配合した場合初めて上記
目的に添い得ることを確かめてこの発明を達成す
るに到つた。 すなわちこの発明は、トレツド部と、このトレ
ツド部の両肩でトレツド部に連なる一対のサイド
部と、サイド部の内周にそれぞれ形成した一対の
ビード部をそなえ、タイヤ周方向に対し実質上
90゜にコードを配列してなるカーカスおよびこの
カーカスを取巻き、コード方向がタイヤ周方向に
対し比較的小さな角度をなし、且つ互いに交差す
る層以上のコード層よりなるベルトにより補強し
たラジアルタイヤにおいて、 前記トレツド部の接地部を、天然ゴム、イソプ
レンゴムおよび両者のブレンドゴムよりなる群の
中から選ばれたポリイソプレン構造ゴム(A)ならび
にスチレンブタジエンゴム(B)からなり、且つA対
Bの重量比が80/20〜50/50の範囲内であるゴム
成分に、式 〔―(CH2CH2−O)―nCH2CH2−Sx〕―o (式中のxは3〜6、nは10〜300、mは1〜
3の値を示す) で表わされるポリエーテル結合を有するポリスル
フイドポリマーおよび硫黄を該ポリスルフイドポ
リマーに含有される硫黄の量(SP)と硫黄量
(SE)との合計が該ゴム成分100重量部に対し0.5
〜3.5重量部の範囲内であり、且つSP対SEの比が
0.4〜2.5の範囲内であるように配合したゴム組成
物から構成した改良されたラジアルタイヤであ
る。 この発明においてポリイソプレン構造ゴム(A)の
うちイソプレンゴム(IR)とはイソプレンのゴ
ム状合成重合体をいい、分子構造、加工性、加硫
性、物性などで天然ゴムとほぼ同様のものであ
る。スチレンブタジエンゴム(B)はタイヤトレツド
ゴムに通常用いられるゴムでよい。ポリイソプレ
ン構造ゴム(A)対スチレンブタジエンゴム(B)の重量
比A/Bが80/20〜50/50であることが必要であ
り、この比が80/20より大になると耐偏摩耗性が
悪化し、50/50より小さくなるとリブ引裂き抵抗
性が劣るようになるのでこの発明の目的を達する
ことができない。また上記比50/50より小さい場
合タイヤの発熱性も悪化する。 この発明において用いるポリスルフイドポリマ
ーは前記式で表わされる物質である。このポリ
スルフイドポリマーは例えば特開昭57−170939号
公報記載のように適当なポリエーテル結合を有す
るヂチオールと塩化硫黄とを反応させて調製し得
るが特にこの製造法に限定されるものではない。
この発明のポリスルフイドポリマーは通常オイル
状であつてゴムと容易に混合することができる。
ポリスルフイドポリマーとしてm=2、n=10〜
100、x=3〜6のものが加工性、加硫ゴムの物
性とくにこの発明の目的であるリブ引裂き抵抗性
と耐偏摩耗性を達成する上でとくに好ましい。 ポリスルフイドポリマーに含有される硫黄の量
(SP)とこれとの併用で硫黄そのものとして加え
る硫黄の量(SE)との合計SP+SEはゴム成分A+
B100重量部に対して0.5〜3.5重量部の範囲内であ
り、0.5重量部未満では充分な加硫を行なうこと
ができず、3.5重量部を越えるとリブ引裂き抵抗
性が悪くなる。またSP/SE比が0.4より小さいと
リブ引裂き抵抗性が劣り2.5より大きい場合は耐
摩耗性が悪くなる。 前記のようにポリイソプレン構造ゴム(A)とスチ
レンブタジエンゴム(B)とのブレンド配合系におけ
る硫黄(SE)の分配比率はA相に高い比率になつ
ているが、ポリスルフイドポリマーを用いた場合
はSPの分配比率が反対にB相に高くなることを確
かめた。従つてポリスルフイドポリマーと硫黄を
前記SP+SE、SP/SE比の範囲内で併用することに
より加硫剤のAおよびB相における分配比をコン
トロールし、両相の架橋密度をこの発明の目的に
添うように最適化することができる。 ポリスルフイドポリマーはエーテル結合を含む
柔軟性のある架橋を形成する利点を有する半面、
これを単独で使用した場合は架橋密度が低く、モ
ジユラスが低い欠点を有するが、これを硫黄と併
用することによりモジユラスを同一硫黄量で硫黄
単独使用時以上にすることができる。なお、この
発明のポリスルフイドポリマーはオイル状である
ので、加工時においてゴム配合物の粘度を低下さ
せ加工性を改良する効果もある。 この発明においてトレツド部の接地部を構成す
るゴム組成物には、前記のようにAおよびBから
なるゴム成分に前記併用加硫剤を配合する他通常
のラジアルタイヤトレツド接地部に用いるカーボ
ンブラツク、ゴム薬品を配合することは言うまで
もなく、例えばゴム薬品としてN−シクロヘキシ
ル−2−ベンゾチアゾールスルフエンアミド、ジ
フエニルグアニジンなどのような各種加硫促進
剤、亜鉛華、ステアリン酸のような各種促進助
剤、アミン系老化防止剤のような各種老化防止剤
を使用する。 前記カーボンブラツクは通常ゴム100重量部に
対して30〜90重量部配合し、ASTMD−3037記
載の窒素吸着比表面積が65m2/g以上、
JISK6221に示されるDBP値が80ml/100g以上
の範囲のものが耐摩耗性の上から好ましい。窒素
吸着比表面積およびDBP値にとくに上限はない
が通常それぞれ150m2/g、125ml/100g程度が
限度でありこの範囲が好適に使用される。このよ
うな好ましいカーボンブラツクの例としてISAF、
N110(SAF)、N220(ISAF−HM)、N339等が挙
げられる。なおN110、N220、N339はASTMタ
イプ名である。 ラジアルタイヤのトレツド部全体がこの発明の
トレツド接地部と同一の配合のゴム組成物である
場合もこの発明に含まれる。 発明の実施例 次に、実施例および比較例によつてこの発明を
さらに詳細に説明する。 実施例1〜6,比較例1〜9 タイヤサイズ10.00R20、14プライの周方向に
走る3本溝トレツドパターンのトラツク・バス用
ラジアルタイヤのトレツド部の接地部すなわちキ
ヤツプトレツドの配合のみ表1および表2に示す
ように変更した15種のタイヤを製造してタイヤ性
能評価を行なつた。 供試タイヤは、(3+9+15)×0.175mm+1×
0.15mmのスチールコードを、8本/25mmの打込み
密度にてラジアル配列とした、1プライのカーカ
ス構造であり、またこのカーカスのクラウン部を
取巻いて、合計4層のベルト各層には3×0.20mm
+9×0.38mmのスチールコードを、第1層に9
本/25mm、第2,3および4層に14本/25mmの打
込み密度をそれぞれ適用して、タイヤの周方向に
対し第1層は50゜右上り、第2,3および4層の
各層は何れも20゜をそれぞれ石上り、左上り、左
上りとなるコード配列とした。 タイヤ性能評価試験において、前記試験タイヤ
について標準の空気詰込み圧力にて、毎時60Kmの
速度で定格荷重の85%における馴らし運転を3時
間行なつた後、定格荷重まで荷重を増加させて以
下の試験を行なつた。 耐摩耗性評価;一般路60%と高速路40%で構成
される道路を5万Km走行させた。走行後タイヤの
偏摩耗未発生部の残溝を測定し、比較例10のタイ
ヤを100として指数で耐摩耗性を評価した。従つ
てこの値が大きい程耐摩耗性が良好であることを
示す。 耐偏摩耗性;上記による走行後のタイヤについ
てトレツド接地面におけるレールウエイ摩耗発生
度合を測定し評価した。レールウエイ摩耗発生度
合は第1図で示す主溝1のタイヤ半径方向断面に
みられるレールウエイ摩耗の起らないトレツド面
2との段差のついた摩耗の度合、すなわち図の段
差(h)とレールウエイ摩耗幅(w)とで評価され、次式
のように指数化できる。 h×w/hp×wp×100 hp,wp:それぞれ比較例10タイヤの段差および
レールウエイ摩耗幅 h,w:それぞれ供試タイヤの段差およびレール
ウエイ摩耗幅 このようにして得られた指数について80以下を
A、0より大90以下をB、0より大110以下をC、
110より大をDとして表1および2に示した。指
数が小さい程、すなわちD、C、B、Aの順に耐
偏摩耗性が良好である。 リブ引裂き抵抗性;試験タイヤのリブ溝底のク
ラツク発生状況を観察した。リブ引裂きは、その
タイヤがセメント製の歩道へり石のごとき角の鋭
利な物体に打当てられた場合にトレツドの主本体
から引裂き離れるトレツドの部分の傾向を定義す
るのに使用される術語である。トレツドがリブの
引裂きを生ずる傾向は重荷重のトラツクタイヤで
はとくに甚だしい。リブ引裂きに対する各種のト
レツドの抵抗の値を求めるため、複後輪上にテス
トタイヤを装備された重荷重トラツクが小さい斜
角をなしたセメント製へり石上を前後に繰返して
駆動されるテストを用いた。 結果を表1および表2に示す。
TECHNICAL FIELD The present invention relates to an improved radial tire, particularly a radial tire for heavy vehicles with improved uneven wear resistance and rib tear resistance. Conventional technology Traditionally, natural rubber compounds have been used as tread rubber for radial tires for heavy vehicles due to their low heat build-up, fracture strength, and rib tear resistance, but as they become more popular for high-speed long-distance running. As a result, railway wear, that is, uneven wear such as abnormal wear occurring at the rib edges along both sides of the circumferential zigzag main groove, has become noticeable at the tread contact area, and a solution to this problem has been strongly desired. Regarding this, it was reported in Japanese Patent Laid-Open No. 58-117 that the railway wear can be significantly improved when a rubber made of a blend of natural rubber (NR) and styrene-butadiene rubber (SBR) is used as the tread rubber.
Publication No. 161605 shows. However, when the above-mentioned NR/SBR blend rubber is simply used instead of the natural rubber compounded natural rubber, rib tear resistance, which is another property required for the tread contact area of radial tires, especially radial tires for heavy vehicles, is reduced. It could not be put to practical use at all because the properties and other characteristics were significantly impaired. This is NR・
The SBR blend system consists of a micro NR phase and an SBR phase, and the distribution ratio of sulfur to both phases is high in the NR phase under processing conditions such as kneading and vulcanization, so the crosslinking density of both phases is reduced. This is also thought to be due to the fact that it cannot be optimized. On the other hand, JP-A-57-170939 discloses that the heat aging resistance and flex cracking resistance of vulcanized rubber can be improved by using a polysulfide polymer alone or in combination with sulfur. , did not disclose anything about the use of this vulcanizing agent for blended rubber, and even in the examples showing its use in combination with sulfur, the amount of sulfur (S P ) and amount of sulfur (S E ) contained in the polysulfide polymer was not disclosed. Since it is only shown that the sum of 11.6 and the ratio of S P to S E is 0.08 per 100 parts by weight of the rubber component, this vulcanization system can be used for contacting the ground at the tread part of radial tires, especially radial tires for heavy vehicles. It is absolutely impossible to relate this to improving both the uneven wear resistance of the part and the rib tear resistance. DISCLOSURE OF THE INVENTION The inventors have conducted intensive research to improve the uneven wear resistance of the ground contact area of the tread of radial tires, especially radial tires for heavy vehicles, while maintaining other necessary properties, especially the necessary rib tear resistance. Surprisingly, the present invention was achieved by confirming that the above object can be achieved only when polysulfide polymer and sulfur are blended within a specific range into a blended rubber of natural rubber and styrene-butadiene rubber. That is, the present invention includes a tread portion, a pair of side portions that are connected to the tread portion at both shoulders of the tread portion, and a pair of bead portions formed on the inner periphery of the side portions, so that the tread portion substantially extends in the tire circumferential direction.
In a radial tire reinforced with a carcass having cords arranged at 90 degrees and a belt surrounding the carcass, the cord direction forming a relatively small angle with respect to the tire circumferential direction, and having more than one cord layer intersecting with each other, The grounding part of the tread part is made of polyisoprene structural rubber (A) and styrene-butadiene rubber (B) selected from the group consisting of natural rubber, isoprene rubber, and blended rubbers of both, and the weight ratio of A to B is For the rubber component whose ratio is within the range of 80/20 to 50/50, the formula [-(CH 2 CH 2 -O)- n CH 2 CH 2 -S x ]- o (x in the formula is 3 to 6 , n is 10 to 300, m is 1 to
The sum of the amount of sulfur contained in the polysulfide polymer (S P ) and the amount of sulfur (S E ) contained in the polysulfide polymer is 0.5 per 100 parts by weight of ingredients
~3.5 parts by weight, and the ratio of S P to S E is within the range of
An improved radial tire constructed from a rubber composition formulated within the range of 0.4 to 2.5. In this invention, isoprene rubber (IR) of the polyisoprene structural rubber (A) refers to a rubber-like synthetic polymer of isoprene, which is almost similar to natural rubber in terms of molecular structure, processability, vulcanizability, physical properties, etc. be. The styrene-butadiene rubber (B) may be a rubber commonly used for tire tread rubber. It is necessary that the weight ratio A/B of polyisoprene structural rubber (A) to styrene butadiene rubber (B) is 80/20 to 50/50, and if this ratio is greater than 80/20, uneven wear resistance will be reduced. If the ratio becomes worse and becomes smaller than 50/50, the rib tear resistance becomes poor and the object of the present invention cannot be achieved. Furthermore, if the above ratio is smaller than 50/50, the heat generation property of the tire will also deteriorate. The polysulfide polymer used in this invention is a substance represented by the above formula. This polysulfide polymer can be prepared, for example, by reacting a dithiol having a suitable polyether bond with sulfur chloride as described in JP-A-57-170939, but it is not particularly limited to this production method. .
The polysulfide polymers of this invention are typically oily and can be easily mixed with rubber.
As a polysulfide polymer, m=2, n=10~
100, x=3 to 6 is particularly preferred in terms of processability and physical properties of the vulcanized rubber, particularly in achieving rib tear resistance and uneven abrasion resistance, which are the objectives of this invention. The sum of the amount of sulfur contained in the polysulfide polymer (S P ) and the amount of sulfur added as sulfur itself (S E ) in combination with this S P +S E is the rubber component A+
The amount is within the range of 0.5 to 3.5 parts by weight based on 100 parts by weight of B. If it is less than 0.5 parts by weight, sufficient vulcanization cannot be achieved, and if it exceeds 3.5 parts by weight, rib tear resistance will deteriorate. Furthermore, if the S P /S E ratio is smaller than 0.4, the rib tear resistance will be poor, and if it is larger than 2.5, the wear resistance will be poor. As mentioned above, the distribution ratio of sulfur (S E ) in the blend system of polyisoprene structural rubber (A) and styrene-butadiene rubber (B) is high in the A phase. It was confirmed that, on the contrary, the distribution ratio of S P becomes higher in the B phase. Therefore, by using polysulfide polymer and sulfur together within the range of S P + S E and S P /S E ratio, the distribution ratio of the vulcanizing agent in the A and B phases can be controlled, and the crosslinking density of both phases can be controlled. It can be optimized to meet the purpose of this invention. While polysulfide polymers have the advantage of forming flexible crosslinks containing ether bonds,
When it is used alone, it has the disadvantage of low crosslinking density and low modulus, but by using it in combination with sulfur, the modulus can be made higher than when sulfur is used alone with the same amount of sulfur. In addition, since the polysulfide polymer of this invention is in the form of an oil, it also has the effect of lowering the viscosity of the rubber compound during processing and improving processability. In the present invention, the rubber composition constituting the ground contact part of the tread part contains the above-mentioned combination vulcanizing agent in the rubber component consisting of A and B as described above, as well as carbon black used in the ground contact part of a normal radial tire tread. It goes without saying that rubber chemicals are blended, for example, various vulcanization accelerators such as N-cyclohexyl-2-benzothiazolesulfenamide, diphenylguanidine, etc., various accelerators such as zinc white, stearic acid, etc. Auxiliary agents and various anti-aging agents such as amine-based anti-aging agents are used. The carbon black is usually blended in 30 to 90 parts by weight per 100 parts by weight of rubber, and has a nitrogen adsorption specific surface area of 65 m 2 /g or more according to ASTM D-3037.
From the viewpoint of wear resistance, it is preferable that the DBP value shown in JISK6221 is in the range of 80 ml/100 g or more. Although there is no particular upper limit to the nitrogen adsorption specific surface area and DBP value, the limits are usually about 150 m 2 /g and 125 ml/100 g, respectively, and these ranges are preferably used. Examples of such preferred carbon blacks include ISAF,
Examples include N110 (SAF), N220 (ISAF-HM), and N339. Note that N110, N220, and N339 are ASTM type names. The present invention also includes cases where the entire tread portion of the radial tire is made of the same rubber composition as the tread contact portion of the present invention. EXAMPLES OF THE INVENTION Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Examples 1 to 6, Comparative Examples 1 to 9 Tire size 10.00R20, 14-ply, three-groove tread pattern running in the circumferential direction of a truck/bus radial tire.Only the formulation of the ground contact area of the tread, that is, the cap tread, was as shown in Table 1. Fifteen types of tires were manufactured with the changes shown in Table 2, and tire performance was evaluated. The test tire is (3+9+15)×0.175mm+1×
It has a one-ply carcass structure with 0.15mm steel cords arranged in a radial arrangement at a driving density of 8 cords/25mm.The crown of this carcass is surrounded by a total of 4 layers of belts, each layer having 3× 0.20mm
+9 x 0.38mm steel cord in the first layer
A driving density of 14 lines/25mm is applied to the second, third and fourth layers, and the first layer is 50 degrees upward to the right in the circumferential direction of the tire, and each of the second, third and fourth layers is In each case, the chord arrangement was set at 20 degrees with stone up, left up, and left up, respectively. In the tire performance evaluation test, the test tire was run-in for 3 hours at 85% of the rated load at a speed of 60 km/h at standard air pressure, and then the load was increased to the rated load and the following conditions were applied: I conducted a test. Wear resistance evaluation: The vehicle was driven for 50,000 km on a road consisting of 60% ordinary roads and 40% highways. After running, the remaining grooves of the tire in areas where uneven wear did not occur were measured, and the wear resistance was evaluated using an index, with the tire of Comparative Example 10 set as 100. Therefore, the larger this value is, the better the wear resistance is. Uneven wear resistance: After running the tires as described above, the degree of railway wear on the tread contact surface was measured and evaluated. The degree of occurrence of railway wear is determined by the degree of wear with a step between the main groove 1 and the tread surface 2, where no railway wear occurs, as shown in Fig. 1 in the radial cross section of the tire, i.e., the step (h) in the figure. It is evaluated based on the railway wear width (w) and can be expressed as an index using the following formula. h×w/h p ×w p ×100 h p , w p : Step difference and railway wear width of Comparative Example 10 tire, respectively h, w : Step difference and railway wear width of test tire, respectively For the index, 80 or less is A, greater than 0 and less than 90 is B, greater than 0 and less than 110 is C,
Those larger than 110 are shown as D in Tables 1 and 2. The smaller the index, that is, the better the uneven wear resistance in the order of D, C, B, and A. Rib tear resistance: The occurrence of cracks at the bottom of the rib grooves of the test tires was observed. Rib tear is a term used to define the tendency of the portion of the tread to tear away from the main body of the tread when the tire is struck by a sharp object such as a cement pavement edge stone. . The tendency of treads to cause rib tearing is especially severe in heavily loaded truck tires. To determine the resistance of various treads to rib tearing, a test was used in which a heavily loaded truck, equipped with test tires on dual rear wheels, was driven repeatedly back and forth over a cement heel at a small angle. there was. The results are shown in Tables 1 and 2.

【表】【table】

【表】【table】

【表】【table】

【表】 表1および表2から、A/B80/20〜50/50、
SP+SE0.5〜3.5重量部、SP/SE比0.4〜2.5の範囲
内(実施例1〜6)においてのみリブ引裂き抵抗
性を満足な範囲に保ちながら耐偏摩耗性を改善す
ることができ、A/Bが上記比より大(比較例
2)、上記比より小(比較例3)、AまたはB単独
(比較例10,1,4)のいずれによつても前記二
つの特性の両立が図れず、SP/SE比が上記範囲よ
り小(比較例6)または硫黄単独(比較例5)の
場合も前記二つの特性の両立が図れないことがわ
かる。SP/SE比が上記範囲より大(比較例8)ま
たはポリスルフイドポリマー単独(比較例9)の
場合は上記二つの特性は良好であるが耐摩耗性の
低下が著しくなる。またSP+SEが3.5重量部を超
えると(比較例7)前記二つの特性が両立しな
い。 発明の効果 以上実施例および比較例で説明したように、こ
の発明はラジアルタイヤにおいて、トレツドの接
地部を、ポリイソプレン構造ゴム(A)ならびにスチ
レンブタジエンゴム(B)からなり、且つA/Bの重
量比が80/20〜50/50のゴム成分に式で表わさ
れるポリエーテル結合を有するポリスルフイドポ
リマーおよび硫黄を前記SP+SEおよびSP/SE比が
特定範囲内であるように配合したゴム組成物から
構成することによつて、ラジアルタイヤとくに重
車両用ラジアルタイヤにおいて長い間解決できな
かつたリブ引裂き抵抗性を犠牲にしない偏摩耗性
の改良に初めて成功したものでありトレツドゴム
として必要な他の諸特性、例えばタイヤ摩耗性を
損なうこともない。
[Table] From Tables 1 and 2, A/B80/20~50/50,
Improving uneven wear resistance while keeping rib tear resistance within a satisfactory range only within the range of S P + S E 0.5 to 3.5 parts by weight and S P /S E ratio of 0.4 to 2.5 (Examples 1 to 6). The above two characteristics can be achieved by A/B being larger than the above ratio (Comparative Example 2), smaller than the above ratio (Comparative Example 3), or A or B alone (Comparative Examples 10, 1, 4). It can be seen that the above two properties cannot be achieved at the same time, and also when the S P /S E ratio is smaller than the above range (Comparative Example 6) or when sulfur is used alone (Comparative Example 5). When the S P /S E ratio is larger than the above range (Comparative Example 8) or when polysulfide polymer is used alone (Comparative Example 9), the above two properties are good, but the wear resistance is significantly deteriorated. Moreover, when S P +S E exceeds 3.5 parts by weight (Comparative Example 7), the above two properties are not compatible. Effects of the Invention As explained above in the Examples and Comparative Examples, the present invention provides a radial tire in which the ground contact portion of the tread is made of polyisoprene structural rubber (A) and styrene-butadiene rubber (B), and the A/B ratio is A polysulfide polymer having a polyether bond represented by the formula and sulfur are added to the rubber component in a weight ratio of 80/20 to 50/50 such that the S P + S E and S P /S E ratios are within a specific range. By constructing a compounded rubber composition, it was the first time that we succeeded in improving the uneven wear resistance of radial tires, especially radial tires for heavy vehicles, without sacrificing rib tear resistance, which had not been solved for a long time. Other necessary properties, such as tire wear resistance, are not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は主溝のタイヤ半径方向断面図である。 1……主溝、2……レールウエイ摩耗の起らな
いトレツド面。
FIG. 1 is a cross-sectional view of the main groove in the tire radial direction. 1...Main groove, 2...Tread surface that does not cause railway wear.

Claims (1)

【特許請求の範囲】 1 トレツド部と、このトレツド部の両肩でトレ
ツド部に連なる一対のサイド部と、サイド部の内
周にそれぞれ形成した一対のビード部をそなえ、
タイヤ周方向に対し実質上90゜にコードを配列し
てなるカーカスおよびこのカーカスを取巻き、コ
ード方向がタイヤ周方向に対し比較的小さな角度
をなし、且つ互いに交差する2層以上のコード層
よりなるベルトにより補強したラジアルタイヤに
おいて、 前記トレツド部の接地部を、天然ゴム、イソプ
レンゴムおよび両者のブレンドゴムよりなる群の
中から選ばれたポリイソプレン構造ゴム(A)ならび
にスチレンブタジエンゴム(B)からなり、且つA対
Bの重量比が80/20〜50/50の範囲内であるゴム
成分に、式 〔―(CH2CH2−O)―nCH2CH2−Sx〕―o (式中のxは3〜6、nは10〜300、mは1〜
3の値を示す) で表わされるポリエーテル結合を有するポリスル
フイドポリマーおよび硫黄を該ポリスルフイドポ
リマーに含有される硫黄の量(SP)と硫黄量
(SE)との合計が該ゴム成分100重量部に対し0.5
〜3.5重量部の範囲内であり、且つSP対SEの比が
0.4〜2.5の範囲内であるように配合したゴム組成
物から構成したことを特徴とする改良されたラジ
アルタイヤ。
[Scope of Claims] 1. A tread portion, a pair of side portions connected to the tread portion at both shoulders of the tread portion, and a pair of bead portions each formed on the inner periphery of the side portion,
A carcass consisting of cords arranged substantially at 90 degrees to the tire circumferential direction, and two or more cord layers surrounding the carcass, the cord directions making a relatively small angle to the tire circumferential direction, and intersecting each other. In a radial tire reinforced with a belt, the ground contact part of the tread part is made of polyisoprene structural rubber (A) selected from the group consisting of natural rubber, isoprene rubber, and blended rubbers of both, and styrene-butadiene rubber (B). and the weight ratio of A to B is within the range of 80/20 to 50/50, the formula [-(CH 2 CH 2 -O)- n CH 2 CH 2 -S x ]- o ( In the formula, x is 3 to 6, n is 10 to 300, and m is 1 to
The sum of the amount of sulfur contained in the polysulfide polymer (S P ) and the amount of sulfur (S E ) contained in the polysulfide polymer is 0.5 per 100 parts by weight of ingredients
~3.5 parts by weight, and the ratio of S P to S E is within the range of
An improved radial tire comprising a rubber composition blended within the range of 0.4 to 2.5.
JP59018417A 1984-02-06 1984-02-06 Improved radial tire Granted JPS60163708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59018417A JPS60163708A (en) 1984-02-06 1984-02-06 Improved radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59018417A JPS60163708A (en) 1984-02-06 1984-02-06 Improved radial tire

Publications (2)

Publication Number Publication Date
JPS60163708A JPS60163708A (en) 1985-08-26
JPH0469183B2 true JPH0469183B2 (en) 1992-11-05

Family

ID=11971078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59018417A Granted JPS60163708A (en) 1984-02-06 1984-02-06 Improved radial tire

Country Status (1)

Country Link
JP (1) JPS60163708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032480A (en) * 2010-09-21 2011-02-17 Sumitomo Rubber Ind Ltd Studless tire for automobile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2311437A1 (en) * 1999-08-17 2001-02-17 Marc Jules Alexis Henoumont Pneumatic tire having a rubber component containing a liquid polysulfide compound
JP4566888B2 (en) * 2005-01-28 2010-10-20 住友ゴム工業株式会社 Rubber composition and tire having tread using the same
JP4421547B2 (en) * 2005-02-10 2010-02-24 住友ゴム工業株式会社 Rubber composition and tire having tread using the same
JP5117035B2 (en) * 2005-12-01 2013-01-09 住友ゴム工業株式会社 Rubber composition for tire and tire having tread using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032480A (en) * 2010-09-21 2011-02-17 Sumitomo Rubber Ind Ltd Studless tire for automobile

Also Published As

Publication number Publication date
JPS60163708A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
EP1033265B1 (en) Tire with reinforced rubber sidewall
US6761198B2 (en) Pneumatic tire having lug and groove configuration extending from tread over at least 30% of sidewall
EP0989161B1 (en) Tire with silica reinforced tread and/or sidewall components
EP2990227B1 (en) Tire with rubber tread of intermedial and lateral zones with path of least electrical resistance
EP1897703A1 (en) Tire with tread having a transition layer containing depolymerized rubber, pre-cured rubber or coal dust
US6723777B2 (en) Tire with minimal-marking tread and skid steering, fixed axle, tire/wheel or vehicular track assembly where said tire or track has a minimal-marking tread
CA2209575A1 (en) Silica reinforced rubber composition and use in tires
EP1431334B1 (en) Tire with rubber composition
JPH11165502A (en) Pneumatic tire for heavy load
JP3384774B2 (en) Rubber composition for tire tread
EP0538723B1 (en) Tire with dual cap tread
JPH0469183B2 (en)
US6011093A (en) Tire tread rubber containing uintahite
EP2379349B1 (en) Tire for vehicle wheels provided with tread band protected against groove anomalies
EP2379350B1 (en) Tire for vehicle wheels provided with tread band showing improved fatigue resistance
JP3320127B2 (en) Tread rubber composition for retreaded tire
JP3676545B2 (en) Rubber composition and heavy duty pneumatic tire using the same
KR100449888B1 (en) Capply Cord Sheet for Wrapping Steel Cord near located by Belt Edge with Incresed durability for Tire
JPH0514642B2 (en)
JP7348491B2 (en) Pneumatic tires for heavy loads
JP7393622B2 (en) Pneumatic tires for heavy loads
JPH1077364A (en) Pneumatic tire
US20130112331A1 (en) Off-the-road tire with silica reinforced sidewall
JPS6150803A (en) Air tire
JPH07109381A (en) Rubber composition for heavy-duty radial tire tread