JPS58161382A - Manufacture of photoconductive film - Google Patents

Manufacture of photoconductive film

Info

Publication number
JPS58161382A
JPS58161382A JP57042813A JP4281382A JPS58161382A JP S58161382 A JPS58161382 A JP S58161382A JP 57042813 A JP57042813 A JP 57042813A JP 4281382 A JP4281382 A JP 4281382A JP S58161382 A JPS58161382 A JP S58161382A
Authority
JP
Japan
Prior art keywords
photoconductive film
photoconductive
film
heat treatment
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57042813A
Other languages
Japanese (ja)
Inventor
Michiya Kobayashi
道哉 小林
Nobuki Ibaraki
伸樹 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57042813A priority Critical patent/JPS58161382A/en
Publication of JPS58161382A publication Critical patent/JPS58161382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Abstract

PURPOSE:To obtain a photoconductive film having uniform photoconductive characteristics, by performing a heat treatment by inclining a photoconductive film so that the flow of sintering gas flow strikes the surface of the photoconductive film. CONSTITUTION:The photoconductive film wherein Cd selenide or Cd sulfide is the composition is heat-treated for a fixed time in an atmosphere constituted of the vapor of selenium or sulfur and inert gas, or in an atmosphere constituted of the vapor of selenium or sulfur, oxygen and inert gas. Next, it is heat- treated for a fixed time in a mixed gas flow constituted of oxygen and inert gas. The heat treatment is performed by inclining a photoconductive film so that this mixed gas flow strikes the surface of the photoconductive film. Thereby, regions wherein the uniform characteristics is obtained increase, and accordingly a photoconductive film of large area and uniform characteristics can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、セレン化カドきラム(CdSe )もしくは
硫化カドミウム(CdS )を組成とする光導電膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a photoconductive film whose composition is cadmium selenide (CdSe 2 ) or cadmium sulfide (CdS 2 ).

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、Cd8eもしくはCdSを組成とする光導電膜
は光導電率(σp)が大きく、かつ光導電率(σp)と
暗導電率(Cd)の比(σp/6d)が大きいため、光
検出素子材料として多用される。通常、このような光検
出素子用の光導電膜は、CdSeもしくはCdSを真空
蒸着法、スパッタリング法等の薄膜形成技術により基板
上に堆積させ、然る後適当な熱処理を施すことにより、
所望の光導電特性を得ている。真空蒸着等で形成した直
後の上記薄膜は、結晶粒の小さい多結晶であり、これを
熱処理することにより結晶性の向上を図るのである。
In general, a photoconductive film having a composition of Cd8e or CdS has a large photoconductivity (σp) and a large ratio of photoconductivity (σp) to dark conductivity (Cd) (σp/6d), so it can be used as a photodetector element. Often used as a material. Usually, such a photoconductive film for a photodetecting element is produced by depositing CdSe or CdS on a substrate using a thin film forming technique such as vacuum evaporation or sputtering, and then subjecting it to an appropriate heat treatment.
The desired photoconductive properties are obtained. The thin film immediately after being formed by vacuum evaporation or the like is polycrystalline with small crystal grains, and its crystallinity is improved by heat-treating it.

しかし、CdSeもしくはCdSを組成とする光導電膜
においては、結晶性の悪さ、或いはセレン(Se )空
孔またはイオウ(S)空孔によりCdが大きくなること
、またカドミウム(Cd )空孔によりσpが犬きくな
ることはよく知られており、良好な光導電特性つまりC
dが小さくσ、の大きな膜を得るために、従来次のよう
な熱処理工程をとるのが一般的である。即ち、熱処理に
際しては、SeまたはSが膜から抜出やすく、Se空孔
またはS空孔となるため、これを防ぐだめに、まずSe
蒸気またはS蒸気を含む雰囲気中で熱処理を施す。ひ自
続き酸素(02)および不活性ガスから成る混合ガス流
中で熱処理を行なう。これは、光導電膜中のCdと02
との反応により酸化カドミウム(CdO)を生成させ、
膜内にCd空孔を生じせしめることにより、σpを増加
するものであり、同時にガス流により上記Se蒸気また
けS蒸気を処理管外へ排出させ、冷却時の光導電模上に
SeまたはSが堆積することを防ぐ。
However, in photoconductive films composed of CdSe or CdS, Cd increases due to poor crystallinity, selenium (Se ) vacancies or sulfur (S) vacancies, and σp increases due to cadmium (Cd) vacancies. It is well known that C
In order to obtain a film with a small d and a large σ, it is common to use the following heat treatment process. That is, during heat treatment, Se or S is easily extracted from the film and becomes Se vacancies or S vacancies, so in order to prevent this, first Se
Heat treatment is performed in an atmosphere containing steam or S steam. The heat treatment is carried out in a continuous gas stream consisting of oxygen (02) and an inert gas. This is due to the Cd and 02 in the photoconductive film.
Cadmium oxide (CdO) is produced by reaction with
By creating Cd vacancies in the film, σp is increased, and at the same time, the above Se vapor and S vapor are discharged to the outside of the processing tube by the gas flow, and Se or S vapor is deposited on the photoconductive pattern during cooling. Prevents the accumulation of

ところで、上述の光導電膜の製造方法においては、この
光導電膜のσpは主に混合ガス流中の処理により決定さ
れるが、この工程での反応管内のSeまたはSと02の
濃度分布を見た場合、混合ガス噴出口側では02濃度が
高(、Seまたは89度が低くなり、ガス排出口側では
この逆になる。従って、光導電膜の光導゛醒特性は、ガ
ス噴出口側ではσ、が大きいき同時にCdが大きくなり
、排出口側ではσ。
By the way, in the above-mentioned method for producing a photoconductive film, the σp of the photoconductive film is mainly determined by the treatment in the mixed gas flow, but the concentration distribution of Se or S and 02 in the reaction tube in this step is When viewed, the 02 concentration is high (and Se or 89 degrees is low) on the side of the mixed gas outlet, and the opposite is true on the gas outlet side. Therefore, the photoconductive properties of the photoconductive film are As σ becomes larger, Cd also becomes larger, and σ on the discharge port side.

が小さくなるといった不均一性が現われるきいう問題が
ある。
There is a problem in that non-uniformity appears, such as a decrease in

〔発明の目的〕[Purpose of the invention]

本発明は、上述の問題点を解消するためになされたもの
であり、 Cd8eもしくはCdSを組成とする光導電
膜において、均一な光導電特性を有する光導電膜の製造
方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a photoconductive film having uniform photoconductive properties in a photoconductive film whose composition is Cd8e or CdS. shall be.

〔発明の概要〕[Summary of the invention]

本発明による光導電膜の製造方法は以下のとおりである
。真空蒸着等の薄膜形成技術により基板上に形成されだ
Cd8e又はCd8を組成とする光導電膜を、Se又は
S蒸気及び不活性ガスから成る雰囲気中あるいは、8e
又はS蒸気及び02及び不活性ガスから成る雰囲気中に
て一定時間熱処理する工程と、これにひき続き02およ
び不活性ガスから成る混合ガス流(以下焼成ガス流と記
す)中にて一定時間熱処理する工程とを含む光導電膜の
製造方法において、少なくとも後の工程では該焼成ガス
流の流れが光導電膜の面に当たるように核光導電膜を傾
けて熱処理するものである。
The method for manufacturing a photoconductive film according to the present invention is as follows. A photoconductive film having a composition of Cd8e or Cd8 formed on a substrate by a thin film forming technique such as vacuum evaporation is exposed to an atmosphere consisting of Se or S vapor and an inert gas, or
or heat treatment for a certain period of time in an atmosphere consisting of S steam, 02, and inert gas, followed by heat treatment for a certain period of time in a mixed gas flow (hereinafter referred to as sintering gas flow) consisting of 02 and inert gas. In the method for producing a photoconductive film, at least in the subsequent step, the nuclear photoconductive film is heat-treated by tilting the core photoconductive film so that the flow of the firing gas hits the surface of the photoconductive film.

〔発明の効果〕〔Effect of the invention〕

本発明では、焼成ガスの流れが光導電膜の面に当たるよ
うに光導′シ膜を傾けた状態で焼成ガス流による熱処理
を行なうので、均一な特性の得られる領域が増し、大面
積で特性の均一な光導電膜が得られる効果がある。
In the present invention, the heat treatment using the firing gas flow is performed with the light guide film tilted so that the flow of firing gas hits the surface of the photoconductive film, so the area where uniform characteristics can be obtained increases, and the characteristics can be improved over a large area. This has the effect of providing a uniform photoconductive film.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参考にして説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は光導電膜熱処理装置である。円筒状の石英処理
管(11とその外周に電気炉(2)が備えられており、
処理管(1)の両端には、それぞれガス噴出口(3)、
ガス排出口(4)がある。ガス噴出口(3)側にはバル
ブ(5)が設けられている。(6a)、(6b)は流量
計、(7a) 、 (7b)はそれぞれN2ガスボンベ
、02ガスボンベである。基板(8)上に形成した光導
電膜(9)を処理管(1)内に置いて熱処理を行なう。
FIG. 1 shows a photoconductive film heat treatment apparatus. A cylindrical quartz processing tube (11) is equipped with an electric furnace (2) on its outer periphery,
At both ends of the processing tube (1), there are gas jet ports (3),
There is a gas outlet (4). A valve (5) is provided on the gas outlet (3) side. (6a) and (6b) are flow meters, and (7a) and (7b) are N2 gas cylinders and 02 gas cylinders, respectively. The photoconductive film (9) formed on the substrate (8) is placed in the processing tube (1) and subjected to heat treatment.

ここでは、一実施例として光導電膜材料としてCd8e
を用いた場合について記す。まず、edgeを真空蒸着
によりガラス基板上に形成する。ガラス基板には、耐熱
ガラスCpYrex :商品名)を用い230X2.5
−の長尺基板とした。Cd8e膜厚は約1μmである。
Here, as an example, Cd8e is used as a photoconductive film material.
The following describes the case where . First, an edge is formed on a glass substrate by vacuum deposition. The glass substrate is made of heat-resistant glass CpYrex (product name), 230×2.5
- long substrate. The Cd8e film thickness is approximately 1 μm.

このedge膜(9)付基板(8)を処理管(1)内に
配置し同時に図示しないSe粒を処理管(1)内に置く
。ガスホンへ(7a)(もしくはガX M:J ヘ(7
a) 訃よび(7b))からN2(もしくはN2および
02)ガスを流量計(6a)(もしくは流量計(6a)
および(6b) )にて流量調整を行ない、バルブ(5
)を通し処理管(1)に導入し、内部の空気を置換する
。この後バルブ(5)を閉じ電気炉(2)にて所定の温
度に一定時間保ち熱処理を施す。ここではこの熱処理を
約600℃で閏分間行なっている。続けて流量計(6a
)、 (6b)にてそれぞれ流量調整されたN2.02
ガスをバルブ(5)を開いて処理管(1)に流入させ、
所定時間の熱処理を行なった後、処理管(1)を電気炉
(2)より取り出し冷却する。
This substrate (8) with the edge film (9) is placed in the processing tube (1), and at the same time Se particles (not shown) are placed in the processing tube (1). To gas phone (7a) (or gas X M:J to (7
a) Transfer N2 (or N2 and 02) gas from N2 (7b)) to flowmeter (6a) (or flowmeter (6a)
and (6b) ) to adjust the flow rate.
) into the processing tube (1) to replace the air inside. Thereafter, the valve (5) is closed and heat treatment is performed by keeping the temperature at a predetermined temperature for a certain period of time in an electric furnace (2). Here, this heat treatment is performed at about 600° C. for a leap period. Next, check the flow meter (6a
), N2.02 whose flow rate was adjusted in (6b), respectively.
opening the valve (5) to allow gas to flow into the processing tube (1);
After performing the heat treatment for a predetermined time, the treatment tube (1) is taken out from the electric furnace (2) and cooled.

製造されたCdSe光導電膜について、入射光量的4 
X 1013photons /cII−secの緑色
(波長555nm)光下の光導電率り、並びに暗導電率
σdを測定した。
Regarding the manufactured CdSe photoconductive film, the amount of incident light was 4.
The photoconductivity under green (wavelength 555 nm) light of X 1013 photons/cII-sec and the dark conductivity σd were measured.

本願発明と対比する為に、基板を処理管の中心軸と平行
に設置した従来の光導電膜製造方法について述べる。こ
のときの光導電特性の一例は第2図に示す如くである。
In order to compare with the present invention, a conventional photoconductive film manufacturing method in which a substrate is placed parallel to the central axis of a processing tube will be described. An example of the photoconductive characteristics at this time is as shown in FIG.

第2図は上記230 X25−のガラス基板の長手方向
において6カ所光導電特性(σ、釦よびσd)を測定し
、その分布を示したものである。ガス噴出口側(第2図
の右側)にては、σ2.σdとも大きく、またガス排出
口側では両者とも小さいという明らかな傾向が見られる
。この場合のσ、のバラツキは±60Ll)である。
FIG. 2 shows the distribution of the photoconductive characteristics (σ, button and σd) measured at six locations in the longitudinal direction of the 230×25− glass substrate. On the gas outlet side (right side in Figure 2), σ2. There is a clear tendency that both σd are large and both are small on the gas discharge port side. In this case, the variation in σ is ±60Ll).

このバラツキは、焼成ガス流の流速分布に起因したもの
であり、処理管内で02の供給と8e蒸気の除去とが不
均一になるためである。即ち、焼成ガス流が基板近傍を
流れる際、基板表面に形成される流体力学にいう境界管
の厚さがガス噴出口と排出口側で異なるため、噴出口側
の基板近傍では02供給が過大であると共にSe蒸気は
速やかに除去され、排出口に近づくにつれ02供給が不
足し且つSe蒸気が除去されにくいことになり、光導電
特性に不均一性が現われるのである。
This variation is due to the flow velocity distribution of the firing gas flow, and is because the supply of 02 and the removal of 8e vapor become non-uniform within the processing tube. In other words, when the firing gas flow flows near the substrate, the thickness of the boundary tube in fluid dynamics formed on the substrate surface is different between the gas outlet and the discharge port, so 02 supply is excessive near the substrate on the outlet side. At the same time, Se vapor is quickly removed, and as the outlet approaches, O2 supply becomes insufficient and Se vapor becomes difficult to remove, resulting in non-uniformity in photoconductive properties.

これを実証するため、第3図の挿入図に示すように基板
(8)に形成された光導電膜(9)上約2cm離れた位
置に直径8ml+のガラス棒Qlを設け、上述の熱処理
を行なったところ、ガラス棒直下の位置のσ、。
In order to demonstrate this, a glass rod Ql with a diameter of 8 ml+ was placed approximately 2 cm above the photoconductive film (9) formed on the substrate (8) as shown in the inset of FIG. When I did this, I found σ at the position directly below the glass rod.

σdは他の位置での値より大きいという結果、即ち第3
図に示す特性分布が得られた。上記熱処理系のレイノル
ズ数はたかだか10〜20程度であシ、焼成ガス流に乱
流は発生せず粘性流である。流体力学でよく知られるよ
うに、一様な粘性流中に丸棒を流れと垂直に置いた場合
、丸棒近傍で流れの速度分布が変化する。従ってこの付
近において、02供給と8e蒸気除去が特異となり、第
3図のような特性分布が現われたのである。なお、不活
性ガス流のみで同様の処理をした場合、σ、は2桁小さ
いがほぼ均一であった。以上のことにより、02を含ん
だガス流の速度分布によりCd8eの光導電特性が敏感
に影響を受けることがわかる。
The result is that σd is larger than the value at other positions, i.e. the third
The characteristic distribution shown in the figure was obtained. The Reynolds number of the heat treatment system is about 10 to 20 at most, and the firing gas flow does not generate turbulence and is a viscous flow. As is well known in fluid mechanics, when a round rod is placed perpendicular to the flow in a uniform viscous flow, the velocity distribution of the flow changes near the rod. Therefore, in this vicinity, 02 supply and 8e vapor removal became peculiar, and a characteristic distribution as shown in FIG. 3 appeared. Note that when the same treatment was performed using only an inert gas flow, σ was two orders of magnitude smaller but almost uniform. From the above, it can be seen that the photoconductive properties of Cd8e are sensitively affected by the velocity distribution of the gas flow containing 02.

上記に基き、焼成ガス流の速度分布の不均一性を除く方
法として流れ方向に対し基板を傾けて熱処理を行なう実
験を試みた。σ、およびσdの値は焼成ガス流速基板の
傾き角に依存するが、−一例として、前述と同様の焼成
ガス流で傾き角5°とした場合における。 CdSe光
導電膜長手方向の光導電特性分布を第4図に示した。特
性のバラツキは±】0チであり、長尺の光検出素子に適
用できる十分な値が得られた。従来の傾き角OOの場合
に比し、本方法は著しい効果がある。更に傾き角が12
°にてはバラツキ±5チの光導電膜が得られている。
Based on the above, we attempted an experiment in which heat treatment was performed with the substrate tilted with respect to the flow direction as a method of eliminating nonuniformity in the velocity distribution of the firing gas flow. The values of σ and σd depend on the firing gas flow rate and the tilt angle of the substrate; for example, when the firing gas flow is the same as described above and the tilt angle is 5°. FIG. 4 shows the distribution of photoconductive properties in the longitudinal direction of the CdSe photoconductive film. The variation in characteristics was ±]0, and a value sufficient to be applicable to a long photodetector element was obtained. Compared to the conventional case of tilt angle OO, this method has a significant effect. Furthermore, the tilt angle is 12
A photoconductive film was obtained with a variation of ±5 degrees.

〔発明の他の実施例〕[Other embodiments of the invention]

−F記実施例では長尺の基板上に形成したCd8e光導
電膜について記したが、本発明は、これに限定されるも
のではない。長尺基板に用い得ることは均一な特性の得
られる領域が増えたことを意味し小基板であれば、1回
の熱処理での処理枚数を増やすことができる。つまり、
量産性が高められることとなる。この実施例として直径
17 Imの円形ガラス基板上に形成したCd8e膜を
処理管長手方向に14枚並べ上述の傾き角5°での処理
を行ない、各試料の特性を評価したところ、上記実施例
と同様、各試料間での特性のバラツキは±1(lであっ
た。
-F Example describes a Cd8e photoconductive film formed on a long substrate, but the present invention is not limited thereto. The fact that it can be used for long substrates means that the area where uniform characteristics can be obtained has increased, and for small substrates, the number of substrates that can be treated in one heat treatment can be increased. In other words,
Mass productivity will be improved. In this example, 14 Cd8e films formed on circular glass substrates with a diameter of 17 Im were arranged in the longitudinal direction of the processing tube and processed at the above-mentioned inclination angle of 5°, and the characteristics of each sample were evaluated. Similarly, the variation in characteristics between each sample was ±1 (l).

また他の実施例として、ガラス基板上にCd8を形成し
S雰囲気を用いて上記熱処理を施した結果はぼ同様の効
果が得られた。
As another example, Cd8 was formed on a glass substrate and the above heat treatment was performed using an S atmosphere, and almost the same effect was obtained.

尚、本発明における光導電膜の最適な傾きは、混合ガス
の流速等により変わるが、通常の場合、数度から30°
位が適当である。
The optimal inclination of the photoconductive film in the present invention varies depending on the flow rate of the mixed gas, etc., but is usually between several degrees and 30 degrees.
The position is appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光導電膜の製造に用いる熱処理装置の構成図、
第2図は従来の光導電膜を焼成ガス流に平行に配置した
場合に得られる光導電膜の光導電特性分布、第3図は光
導電膜近傍にガラス棒を配置した説明図及びこの場合の
光導電特性分布、第4図は本発明の一実施例の場合に得
られた光導電膜の光導電特性分布である。 1・・・処理管、 2・・・電気炉、  3・・・ガス
噴出口。 4・・・ガス排出口、 5・・・パルプ、 6・・・流
量計、7・・・ガスボンベ、  8・・・基板、  9
・・・光導電膜、10・・・ガラス棒。 代理人 弁理士  則 近 憲 佑 (ほか1名) 第  3  図 ?:3Dmm 第  4  図 一? Zj(1mm
Figure 1 is a configuration diagram of a heat treatment apparatus used for manufacturing a photoconductive film;
Figure 2 shows the photoconductive property distribution of a conventional photoconductive film obtained when the film is placed parallel to the firing gas flow, and Figure 3 is an explanatory diagram showing a glass rod placed near the photoconductive film, and in this case. Figure 4 shows the photoconductive property distribution of the photoconductive film obtained in one embodiment of the present invention. 1... Processing pipe, 2... Electric furnace, 3... Gas spout. 4... Gas discharge port, 5... Pulp, 6... Flow meter, 7... Gas cylinder, 8... Board, 9
...Photoconductive film, 10...Glass rod. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 3? :3Dmm No. 4 Figure 1? Zj (1mm

Claims (1)

【特許請求の範囲】[Claims] セレン化カドミウム又は硫化カドミウムを組成とする光
導電膜を、セレン又はイオウ蒸気及び不活性ガスから成
る雰囲気中、あるいはセレン又はイオウ蒸気及び酸素及
び不活性ガスから成る雰囲気中にて一定時間熱処理する
工程と、この工程にひき続き酸素及び不活性ガスから成
る混合ガス流中にて一定時間熱処理する工程とを有する
光導電膜の製造方法において、少なくとも前記混合ガス
流中にて熱処理する工程ではこの混合ガスの流しが前記
光導電膜の面に当たるようにこの光導電膜を傾けて熱処
理を行なうことを特徴とする光導電膜の製造方法。
A process of heat-treating a photoconductive film composed of cadmium selenide or cadmium sulfide for a certain period of time in an atmosphere consisting of selenium or sulfur vapor and an inert gas, or in an atmosphere consisting of selenium or sulfur vapor, oxygen and an inert gas. and, following this step, a step of heat-treating for a certain period of time in a mixed gas flow consisting of oxygen and an inert gas, at least in the step of heat-treating in the mixed gas flow, this mixture A method for producing a photoconductive film, characterized in that heat treatment is performed by tilting the photoconductive film so that a gas flow hits the surface of the photoconductive film.
JP57042813A 1982-03-19 1982-03-19 Manufacture of photoconductive film Pending JPS58161382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042813A JPS58161382A (en) 1982-03-19 1982-03-19 Manufacture of photoconductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042813A JPS58161382A (en) 1982-03-19 1982-03-19 Manufacture of photoconductive film

Publications (1)

Publication Number Publication Date
JPS58161382A true JPS58161382A (en) 1983-09-24

Family

ID=12646387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042813A Pending JPS58161382A (en) 1982-03-19 1982-03-19 Manufacture of photoconductive film

Country Status (1)

Country Link
JP (1) JPS58161382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406180B2 (en) 2003-09-12 2008-07-29 Sennheiser Electronic Gmbh & Co. Kg Headphone with behind-the-head headband

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144376A (en) * 1974-10-15 1976-04-15 Chiyoda Chem Eng Construct Co Rokashujinki narabini rokatogyakusensochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144376A (en) * 1974-10-15 1976-04-15 Chiyoda Chem Eng Construct Co Rokashujinki narabini rokatogyakusensochi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406180B2 (en) 2003-09-12 2008-07-29 Sennheiser Electronic Gmbh & Co. Kg Headphone with behind-the-head headband

Similar Documents

Publication Publication Date Title
EP1022614B1 (en) Photomask blank, photomask, methods of manufacturing the same, and method of forming micropattern
CA1047850A (en) System and process for deposition of polycrystalline silicon with silane in vacuum
US7151054B2 (en) Semiconductor processing methods of forming and utilizing antireflective material layers, and methods of forming transistor gate stacks
US5919310A (en) Continuously film-forming apparatus provided with improved gas gate means
US5360484A (en) Microwave plasma CVD apparatus provided with a microwave transmissive window made of specific ceramics for the formation of a functional deposited film
JPH05175135A (en) Optical cvd apparatus
DE3209055A1 (en) METHOD FOR PRODUCING A PHOTO-CONDUCTIVE ELEMENT
GB1602386A (en) Method of manufacturing semiconductor devices
US3413145A (en) Method of forming a crystalline semiconductor layer on an alumina substrate
JPS58161382A (en) Manufacture of photoconductive film
JPH08134638A (en) Formation of titanium oxide film
WO2005072302A2 (en) Method for depositing high-quality microcrystalline semiconductor materials
JPS58202452A (en) Preparation of photoconductive film
JPS62146268A (en) Apparatus for producing thin film
JPS6244573A (en) Production of film containing silicon dioxide
JPH05311425A (en) Device for producing semiconductor device
JPH02281614A (en) Manufacture of polycrystalline silicon thin film
JPS61161727A (en) Method and apparatus for preventing warpage of silicon wafer
JPH05198512A (en) Optical cvd device
JPH0645883B2 (en) Deposited film formation method
JPS6296675A (en) Formation of deposited film
JPS58216246A (en) Continuous formation of oxide film
JPS62146266A (en) Deposited film forming device
JP2534080Y2 (en) Artificial diamond deposition equipment
JPH06240440A (en) Device for forming thin compound film, device for forming thin oxide film and formation of optical multilayer film