JPS58161234A - Field emission type charged particle generator - Google Patents

Field emission type charged particle generator

Info

Publication number
JPS58161234A
JPS58161234A JP4407782A JP4407782A JPS58161234A JP S58161234 A JPS58161234 A JP S58161234A JP 4407782 A JP4407782 A JP 4407782A JP 4407782 A JP4407782 A JP 4407782A JP S58161234 A JPS58161234 A JP S58161234A
Authority
JP
Japan
Prior art keywords
emitter
electrode
voltage
extraction
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4407782A
Other languages
Japanese (ja)
Other versions
JPS6340017B2 (en
Inventor
Ryuzo Aihara
相原 龍三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP4407782A priority Critical patent/JPS58161234A/en
Publication of JPS58161234A publication Critical patent/JPS58161234A/en
Publication of JPS6340017B2 publication Critical patent/JPS6340017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Abstract

PURPOSE:To prevent an emitter electrode from damaging attributable to an accident by vacuum discharge, by adding in parallel with a pickup electrode the parallel circuit of a resistor and a condenser connected to a diode in series, between the emitter electrode and the pickup electrode. CONSTITUTION:A condenser 11, a diode 12 and a resistor 13 are connected to the side of a high tension power source, while a circuit connecting the condenser 11 to the resistor 13 in parallel is connected to between an emitter 3 and a pickup electrode 4 by connecting the diode 12 in series. With this, in time of vacuum dielectric breakdown between the pickup electrode 4 and an anode 5, excessive voltage being impressed to between the emitter 3 and the pickup electrode 4 can be checked, and likewise in time of vacuum discharge between the emitter 3 and the pickup electrode 4, damage by the vacuum discharge of the emitter can be prevented without degrading a vacuum in vain.

Description

【発明の詳細な説明】 本発明は、電界放出型電子銃等の高加速電圧の電子銃、
又はイオン銃等のエミッタを真空放電から保護する電界
放出型エミッタ保護回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a high acceleration voltage electron gun such as a field emission type electron gun,
The present invention also relates to a field emission type emitter protection circuit that protects an emitter of an ion gun or the like from vacuum discharge.

従来の電界放出型電子銃の構成を第1図に示す。The configuration of a conventional field emission type electron gun is shown in FIG.

図において、1は真空に保たれた電子銃室を表しており
、該室内には加熱用フィラメント2に取り付けられたエ
ミッタ3と、該エミッタ3の先端に強電界を与えるため
の引出し電極4、及び接地電位に保たれた陽極5等が収
納されている。これら各電極は、電源部10と絶縁ケー
ブル6によって接続されている。電源部10にはエミッ
タ3に(−)数+KV程度の高電位を与えるための加速
電源7、エミッタ3と引出し電極4の間に電界放出を行
うための数十KV程度の電位差を与える引出し電源8、
及びフィラメント加熱用電源9が設けられている。
In the figure, reference numeral 1 represents an electron gun chamber kept in vacuum, and the chamber includes an emitter 3 attached to a heating filament 2, an extraction electrode 4 for applying a strong electric field to the tip of the emitter 3, and an anode 5 kept at ground potential. Each of these electrodes is connected to a power supply section 10 by an insulated cable 6. The power supply section 10 includes an accelerating power supply 7 for applying a high potential of about (-) several + KV to the emitter 3, and an extraction power supply for providing a potential difference of about several tens of KV to perform field emission between the emitter 3 and the extraction electrode 4. 8,
and a filament heating power source 9.

以上の構成において、通常のオペレーティングはエミッ
タ3と引出し電tfi4の間に電界放出を行うために数
十KVの引出し電圧が印加され、又エミッタ3とwiA
極(接地電極)5の間には、電界放出された電子線を加
速するための加速電圧として(−)数十KVの電圧が印
加されて運転される。
In the above configuration, in normal operation, an extraction voltage of several tens of KV is applied between the emitter 3 and the extraction voltage tfi4 to perform field emission, and also between the emitter 3 and the extraction voltage tfi4.
A voltage of several tens of kilovolts (-) is applied between the poles (ground electrodes) 5 as an accelerating voltage for accelerating the field-emitted electron beam.

一方、運転中に何らかの原因、例えば電子銃室1の貞空
度の低下、又は各電極の微小突起、あるいは電子銃室内
の残留微小粒子等にJ:る真空絶縁破壊が発生Jる場合
である。この真空絶縁破壊は、引出し電圧(例えば5K
V)に比べ加速電圧(例えば50KV)が高いため、高
電圧が印加されている引出し電極4と陽極5の間に多く
発生する。
On the other hand, vacuum dielectric breakdown may occur due to some reason during operation, such as a decrease in the vacancy of the electron gun chamber 1, minute protrusions on each electrode, or residual minute particles in the electron gun chamber. . This vacuum breakdown is caused by the extraction voltage (e.g. 5K
Since the accelerating voltage (for example, 50 KV) is higher than V), a large amount of oxidation occurs between the extraction electrode 4 and the anode 5 to which a high voltage is applied.

この引出し電極4と、陽極5の間で真空絶縁破壊が起り
真空放電すると、引出し電極4は瞬間的に接地電位とな
り、引出し電源8が内部インピーダンスを有するために
、エミッタ3と引出し電極4の間に、加速電圧である数
十KVの高電圧が過渡的に印加されることとなり、エミ
ッタ3と引出し電極4の間に許容値を越す過大電圧が印
加される。
When vacuum dielectric breakdown occurs between the extraction electrode 4 and the anode 5 and a vacuum discharge occurs, the extraction electrode 4 momentarily becomes ground potential, and since the extraction power source 8 has internal impedance, there is a gap between the emitter 3 and the extraction electrode 4. Then, a high voltage of several tens of kilovolts, which is an accelerating voltage, is applied transiently, and an excessive voltage that exceeds the allowable value is applied between the emitter 3 and the extraction electrode 4.

ところで、前記エミッタ3の先端の曲率半径は約100
0人と極微小であるために、この過大電圧によってエミ
ッタ3からのエミッション電流が増大し、ジコール発熱
によってエミッタ3の先端が蒸発し、アーク放電を起し
先端径10μm程度に変形し、再び電界放出型エミッタ
として使用不能となる。
By the way, the radius of curvature of the tip of the emitter 3 is approximately 100
Since the emitter 3 is extremely small, this excessive voltage increases the emission current from the emitter 3, and the tip of the emitter 3 evaporates due to dicol heat generation, causing an arc discharge and deforming the tip to a diameter of about 10 μm, which causes the electric field to rise again. It becomes unusable as a emission type emitter.

本発明はこのような点に鑑みてなされたもので、エミッ
タと該エミッタの先端近傍に荷電粒子の電界放出を行う
に必要な強電界を形成するための引出し電極と、該エミ
ッタから放出された荷電粒子を加速するための加速電極
と、該エミッタと引出し電l!i間に引出し電圧を供給
する引t11シ電源と、該エミッタと加速電極との間に
加速電圧を供給する加速電源を有する装置において、ダ
イオードに直列に接続された抵抗と、コンデンサーの並
列回路を該引出し電源に並列に付加でることによって、
真空放電した場合でもエミッタの損傷を防止することを
実現したものである。
The present invention was made in view of these points, and includes an emitter, an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter, and an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter, An accelerating electrode for accelerating charged particles, the emitter and an extraction electric current l! In a device having an acceleration power source that supplies an extraction voltage between I and an acceleration power source that supplies an acceleration voltage between the emitter and the acceleration electrode, a parallel circuit of a resistor connected in series with a diode and a capacitor is used. By adding it in parallel to the extraction power supply,
This prevents damage to the emitter even in the case of vacuum discharge.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例を示す概略図である。第1
図と同一部分には、同一番号を付してその説明を省略す
る。図において、電mff10、つまり高圧電源側には
コンデンサー11、ダイオード12、抵抗13がダイオ
ード12に直列にコンデンサー11と抵抗13を並列に
接続した回路を接続して、エミッタ3ど引出し電極4の
間に挿入されている。ところで、今エミッタ3ど引出し
電極4の間に引出し電圧が印加され電子線が発生し3− でいる動作状態を想定し、コンデンサー11はダイオー
ド12を通じて引出し電圧と等しい電圧まで充電されて
いるとする。又抵抗13はダイオード12を順方向に導
通させ過大電圧が襲来し、これによる充電電流が急増す
る際の蓄積キャリアによるダイオード動作の遅れを補償
すると同時に、引出し電圧がある動作電圧より低下した
とき、コンデンサー11の端子電圧をこの抵抗13によ
って下げ追随させるものである。ここで加速電m7がも
つ対地静電容量をO3とし加速電圧をVその内部抵抗を
R1、コンデンサー11の容量をCo。
FIG. 2 is a schematic diagram showing an embodiment of the present invention. 1st
Components that are the same as those in the figures are given the same numbers and their explanations will be omitted. In the figure, a capacitor 11, a diode 12, and a resistor 13 are connected to the electric mff10, that is, the high-voltage power supply side, and a circuit in which the capacitor 11 and the resistor 13 are connected in parallel to the diode 12 is connected between the emitter 3 and the extraction electrode 4. is inserted into. By the way, suppose that an extraction voltage is applied between the emitter 3 and the extraction electrode 4, an electron beam is generated, and the operating state is 3-, and the capacitor 11 is charged through the diode 12 to a voltage equal to the extraction voltage. . Further, the resistor 13 makes the diode 12 conductive in the forward direction, and compensates for the delay in diode operation due to accumulated carriers when an excessive voltage occurs and the charging current increases rapidly.At the same time, when the extraction voltage drops below a certain operating voltage, The terminal voltage of the capacitor 11 is lowered by this resistor 13 to follow it. Here, the ground capacitance of the accelerating voltage m7 is O3, the accelerating voltage is V, its internal resistance is R1, and the capacitance of the capacitor 11 is Co.

エミッタの動作電圧(引出し電圧)をVeとし更にその
内部抵抗をRoとした場合で、今引出し電極4、接地さ
れた陽極5間で真空放電が発生する場合を考えると、第
2図は第3図の等価回路として置き変えることができる
。図において通常の運転時スイッチ(SW)はOFF状
態であり、引出し電極4と陽極5の間で真空放電が発生
した場合はSWはON状態として考えることができる。
If the operating voltage (extraction voltage) of the emitter is Ve and its internal resistance is Ro, and if we consider the case where a vacuum discharge occurs between the extraction electrode 4 and the grounded anode 5, then FIG. It can be replaced as the equivalent circuit shown in the figure. In the figure, the switch (SW) is in the OFF state during normal operation, and when vacuum discharge occurs between the extraction electrode 4 and the anode 5, the SW can be considered to be in the ON state.

ここで加速電圧Vを50KV、エミッタの動作電圧4− Veを3KV、 コンデンサー11(Co)の容量を0
.1μF1加速電源Vがもつ対地静電容量C3は一般に
100PF位であるから真空放電状態(SWがON状態
)では、次式で示される電圧VSがエミッタ3と引出し
電極4の間に印加されることになる。
Here, the acceleration voltage V is 50KV, the emitter operating voltage 4-Ve is 3KV, and the capacitance of capacitor 11 (Co) is 0.
.. Since the ground capacitance C3 of the 1μF1 acceleration power supply V is generally about 100PF, in a vacuum discharge state (SW is ON), a voltage VS expressed by the following equation is applied between the emitter 3 and the extraction electrode 4. become.

であるから Vs  =0.  5KV  + 3KV=3.  5
KV故に引出し電極4と陽極5の間で真空放電が起こっ
たとしても、エミッタ3と引出し電極4間には前記の例
では3.5KV位まで上昇するがエミッタを破壊するま
でには至らない、。又加速電圧が高い場合にも、前記の
関係からコンデンサー容量COを適当に選択することに
より、同様な効果を得ることができる。斯様にして、引
出し電極4、陽極5の間の真空放電時にエミッタ3と引
出し電極5の間に過大な電圧が印加される事は抑制でき
るがコンデンサー〇〇を大きくするとエミッタ、引出し
電極間のエミッタ以外のエミッタ電位の構漬物と引出し
電極を絶縁し機械的にエミッタを保持する絶縁碍子(図
示せず)の沿面放電や、エミッタ電位の構造と引出し電
極間の真空放電の際はコンデンサー〇〇の蓄積された全
電荷が放電に寄与する為に、エミッタを取り巻く真空が
悪くなり、電界放出エミッタの先端が陽イオーンで取り
巻れエミッタ先端の電界強度が上昇し、エミッタが真空
放電を起し破壊ざねてしまう。この為、第2図の様にダ
イオード12をコンデンサ−11と直列にしてお【プば
、エミッタ3と引出し電極4間の放電に於ては、コンデ
ンサー11の蓄積された電荷はダイオード12があるた
めに、電子銃室内には流入し得なくなり、本発明の目的
とする引出し電極4ど陽極5の間の真空絶縁破壊時に、
エミッタ3と引出し電極4間への過大な電圧印加を抑制
することができ、更にエミッタ3と引出し電極4間の真
空放電時に、いたずらに真空を悪くすることなくエミッ
タの真空放電による破損を防止することができる。
Therefore, Vs =0. 5KV + 3KV=3. 5
Even if a vacuum discharge occurs between the extraction electrode 4 and the anode 5 due to KV, the voltage between the emitter 3 and the extraction electrode 4 will rise to about 3.5KV in the above example, but it will not reach the level of destroying the emitter. . Further, even when the accelerating voltage is high, the same effect can be obtained by appropriately selecting the capacitor capacitance CO based on the above relationship. In this way, it is possible to suppress excessive voltage from being applied between the emitter 3 and the extraction electrode 5 during vacuum discharge between the extraction electrode 4 and the anode 5, but if the capacitor 〇〇 is made large, the voltage between the emitter and the extraction electrode In the case of creeping discharge of an insulator (not shown) that insulates the extraction electrode from the structure of the emitter potential other than the emitter and mechanically holding the emitter, or vacuum discharge between the emitter potential structure and the extraction electrode, use a capacitor〇〇 Since the total accumulated charge contributes to the discharge, the vacuum surrounding the emitter worsens, and the tip of the field emitter is surrounded by positive ions, increasing the electric field strength at the emitter tip, causing the emitter to generate a vacuum discharge. It will be destroyed. For this reason, if the diode 12 is connected in series with the capacitor 11 as shown in Fig. 2, in the discharge between the emitter 3 and the extraction electrode 4, the charge accumulated in the capacitor 11 will be transferred to the diode 12. Therefore, the electrons cannot flow into the electron gun chamber, and when the vacuum dielectric breakdown between the extraction electrode 4 and the anode 5 occurs, which is the object of the present invention,
Excessive voltage application between the emitter 3 and the extraction electrode 4 can be suppressed, and furthermore, damage to the emitter due to vacuum discharge can be prevented without unnecessarily worsening the vacuum during vacuum discharge between the emitter 3 and the extraction electrode 4. be able to.

尚本発明は、以上の実施例装置に限定されるものではな
く、例えば先端が鋭くされたエミッタにイオン化物質を
供給し、強電界によってイオンを発生させるJ:うにし
た各種イオン源にも本回路を適用し得る。
It should be noted that the present invention is not limited to the above-described embodiments; for example, the present invention can be applied to various ion sources that supply ionized substances to an emitter with a sharp tip and generate ions using a strong electric field. can be applied.

以上、本発明を詳述したが本発明によればエミッタ電極
と引出し電極の間に、ダイオードに直列に接続された抵
抗と]ンテンサーの並列回路を引出し電源と並列に付加
することによって、引出し電極と陽極との間の真空放電
にJこる事故からエミッタ損傷を防止することが出来る
The present invention has been described in detail above, and according to the present invention, a parallel circuit consisting of a resistor connected in series with a diode and a tensor is added between the emitter electrode and the extractor electrode in parallel with the extractor power supply. Damage to the emitter can be prevented from occurring due to vacuum discharge between the electrode and the anode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の電界放出型電子銃の構成を示す説明図
、第2図は本発明の一実施例を示す構成図、第3図は本
発明を説明するための等価回路図である。 1:電子銃室、2:加熱用フィラメント、3:エミッタ
、4:引出し電極、5:陽極、6:絶縁ケーブル、7:
加速電源、8:引出し電源、9:フィラメント加熱用電
源、10:電源部、11:コンデンサー、12:ダイオ
ード、13:抵抗。 第1図
FIG. 1 is an explanatory diagram showing the configuration of a conventional field emission type electron gun, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram for explaining the present invention. . 1: Electron gun chamber, 2: Heating filament, 3: Emitter, 4: Extraction electrode, 5: Anode, 6: Insulated cable, 7:
Acceleration power supply, 8: Extraction power supply, 9: Filament heating power supply, 10: Power supply section, 11: Capacitor, 12: Diode, 13: Resistor. Figure 1

Claims (1)

【特許請求の範囲】[Claims] エミッタと該エミッタの先端近傍に荷電粒子の電界放出
を行うに必要な強電界を形成するための引出し電極と、
該エミッタから放出された荷電粒子を加速するための加
速電極と、該エミッタと引出し電極間に引出し電圧を供
給する引出し電源と、該エミッタと加速電極との間に加
速電圧を供給する加速電源を有する装置において、ダイ
オードに直列に接続された抵抗と、コンデンサーの並列
回路を該引出し電源に並列に付加した電界放出型荷電粒
子発生装置。
an emitter and an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter;
an acceleration electrode for accelerating charged particles emitted from the emitter; an extraction power source for supplying an extraction voltage between the emitter and the extraction electrode; and an acceleration power source for supplying the acceleration voltage between the emitter and the acceleration electrode. A field emission charged particle generator comprising a resistor connected in series with a diode and a parallel circuit of a capacitor added in parallel to the extraction power source.
JP4407782A 1982-03-19 1982-03-19 Field emission type charged particle generator Granted JPS58161234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4407782A JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4407782A JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Publications (2)

Publication Number Publication Date
JPS58161234A true JPS58161234A (en) 1983-09-24
JPS6340017B2 JPS6340017B2 (en) 1988-08-09

Family

ID=12681556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4407782A Granted JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Country Status (1)

Country Link
JP (1) JPS58161234A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118504A (en) * 2004-10-20 2006-05-11 Pcm Pompes Pumping system with progressive cavity pump
US7777194B2 (en) 2007-03-14 2010-08-17 Hitachi High-Technologies Corporation Charged particle beam apparatus
DE102018200593A1 (en) * 2018-01-15 2019-07-18 Carl Zeiss Microscopy Gmbh Plug connection unit, particle beam generator with a plug connection unit and particle beam device with a particle beam generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3081102A1 (en) 2016-11-16 2018-05-24 Solar Pile International (Hk) Ltd Screw pile and drive tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940058A (en) * 1972-08-17 1974-04-15
JPS4940664A (en) * 1972-08-24 1974-04-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940058A (en) * 1972-08-17 1974-04-15
JPS4940664A (en) * 1972-08-24 1974-04-16

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118504A (en) * 2004-10-20 2006-05-11 Pcm Pompes Pumping system with progressive cavity pump
US7777194B2 (en) 2007-03-14 2010-08-17 Hitachi High-Technologies Corporation Charged particle beam apparatus
DE102018200593A1 (en) * 2018-01-15 2019-07-18 Carl Zeiss Microscopy Gmbh Plug connection unit, particle beam generator with a plug connection unit and particle beam device with a particle beam generator
DE102018200593B4 (en) 2018-01-15 2019-08-08 Carl Zeiss Microscopy Gmbh Plug connection unit, particle beam generator with a plug connection unit and particle beam device with a particle beam generator

Also Published As

Publication number Publication date
JPS6340017B2 (en) 1988-08-09

Similar Documents

Publication Publication Date Title
JP2008226683A (en) Charged particle beam device
US4760262A (en) Ion source
JPS58161234A (en) Field emission type charged particle generator
JP3156763B2 (en) Electrode voltage application method and apparatus for cold cathode mounted electron tube
JPH0213900A (en) Sealed high beam flux neutron tube
JP2010015818A (en) Electron source device and ion system
US7573046B1 (en) Thermal field emission electron gun with reduced arcing
US3731095A (en) Electron gun device of field emission type
KR100549432B1 (en) Negative ion generating and Electron Collecting system
US3360663A (en) High-voltage generator
Hurley et al. Vacuum breakdown from electroluminescent impurities on metallic cathode surfaces
US5159196A (en) Apparatus and method for discharging a specimen disposed in an evacuated chamber
US1550203A (en) Mercury-vapor apparatus
JPH01319235A (en) Electron beam generator
JP2002313269A (en) Field-emission type electron gun
JP2757963B2 (en) Ion source accelerating electrode
JP4260036B2 (en) High voltage generator
SU702938A1 (en) Collective ion accelerator
JPH05135899A (en) Accelerating tube for direct-current voltage type accelerator
JPS593040B2 (en) charged particle device
JPH03133040A (en) High voltage electron gun apparatus
JP3265987B2 (en) Ion irradiation equipment
JPS5913143B2 (en) charged particle device
JPS6328516Y2 (en)
JPS5960853A (en) Electron gun assembly