JPS6340017B2 - - Google Patents

Info

Publication number
JPS6340017B2
JPS6340017B2 JP57044077A JP4407782A JPS6340017B2 JP S6340017 B2 JPS6340017 B2 JP S6340017B2 JP 57044077 A JP57044077 A JP 57044077A JP 4407782 A JP4407782 A JP 4407782A JP S6340017 B2 JPS6340017 B2 JP S6340017B2
Authority
JP
Japan
Prior art keywords
emitter
voltage
extraction
power supply
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044077A
Other languages
Japanese (ja)
Other versions
JPS58161234A (en
Inventor
Ryuzo Aihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP4407782A priority Critical patent/JPS58161234A/en
Publication of JPS58161234A publication Critical patent/JPS58161234A/en
Publication of JPS6340017B2 publication Critical patent/JPS6340017B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/241High voltage power supply or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

【発明の詳細な説明】 本発明は、電界放出型電子銃等の高加速電圧の
電子銃、又はイオン銃等のエミツタを真空放電か
ら保護する電界放出型エミツタ保護回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field emission type emitter protection circuit for protecting an emitter of a high acceleration voltage electron gun such as a field emission type electron gun or an ion gun from vacuum discharge.

従来の電界放出型電子銃の構成を第1図に示
す。図において、1は真空に保たれた電子銃室を
表しており、該室内には加熱用フイラメント2に
取り付けられたエミツタ3と、該エミツタ3の先
端に強電界を与えるための引出し電極4、及び接
地電位に保たれた陽極5等が収納されている。こ
れら各電極は、電源筐10と絶縁ケーブル6によ
つて接続されている。電源筐10にはエミツタ3
に(−)数+KV程度の高電位を与えるための加
速電源7、エミツタ3と引出し電極4の間に電界
放出を行うための数+KV程度の電位差を与える
引出し電源8、及びフイラメント加熱用電源9が
設けられている。
The configuration of a conventional field emission type electron gun is shown in FIG. In the figure, reference numeral 1 represents an electron gun chamber kept in a vacuum, and the chamber includes an emitter 3 attached to a heating filament 2, an extraction electrode 4 for applying a strong electric field to the tip of the emitter 3, and an anode 5 kept at ground potential. Each of these electrodes is connected to a power supply case 10 by an insulated cable 6. Emitter 3 is installed in the power supply cabinet 10.
an accelerating power supply 7 for applying a high potential of about (-) + KV to the emitter 3, an extraction power supply 8 for providing a potential difference of about +KV for emitting a field between the emitter 3 and the extraction electrode 4, and a filament heating power supply 9. is provided.

以上の構成において、通常のオペレーテイング
はエミツタ3と引出し電極4の間に電界放出を行
うために数+KVの引出し電圧が印加され、又エ
ミツタ3と陽極(接地電極)5の間には、電界放
出された電子線を加速するための加速電圧として
(−)数+KVの電圧が印加されて運転される。
一方、運転中に何らかの原因、例えば電子銃室1
の真空度の低下、又は各電極の微小突起、あるい
は電子銃室内の残留微小粒子等による真空絶縁破
壊が発生する場合である。この真空絶縁破壊は、
引出し電圧(例えば5KV)に比べ加速電圧(例
えば50KV)が高いため、高電圧が印加されてい
る引出し電極4と陽極5の間に多く発生する。こ
の引出し電極4と、陽極5の間で真空絶縁破壊が
起り真空放電すると、引出し電極4は瞬間的に接
地電位となり、引出し電源8が内部インピーダン
スを有するために、エミツタ3と引出し電極4の
間に、加速電圧である数+KVの高電圧が過渡的
に印加されることとなり、エミツタ3と引出し電
極4の間に許容値を越す過大電圧が印加される。
ところで、前記エミツタ3の先端の曲率半径は約
1000Åと極微小であるために、この過大電圧によ
つてエミツタ3からのエミツシヨン電流が増大
し、ジユール発熱によつてエミツタ3の先端が蒸
発し、アーク放電を起し先端径10μm程度に変形
し、再び電界放出型エミツタとして使用不能とな
る。
In the above configuration, in normal operation, an extraction voltage of several +KV is applied between the emitter 3 and the extraction electrode 4 to perform field emission, and an electric field is applied between the emitter 3 and the anode (grounded electrode) 5. The device is operated by applying a voltage of (-) + KV as an accelerating voltage to accelerate the emitted electron beam.
On the other hand, for some reason during operation, for example, the electron gun chamber 1
This is a case in which vacuum dielectric breakdown occurs due to a decrease in the degree of vacuum, microprotrusions on each electrode, microparticles remaining in the electron gun chamber, etc. This vacuum breakdown is
Since the accelerating voltage (for example, 50 KV) is higher than the extraction voltage (for example, 5 KV), many occurrences occur between the extraction electrode 4 and the anode 5 to which a high voltage is applied. When vacuum dielectric breakdown occurs between the extraction electrode 4 and the anode 5 and a vacuum discharge occurs, the extraction electrode 4 momentarily becomes the ground potential, and since the extraction power source 8 has internal impedance, the difference between the emitter 3 and the extraction electrode 4 Then, a high voltage of several +KV, which is an accelerating voltage, is applied transiently, and an excessive voltage exceeding the allowable value is applied between the emitter 3 and the extraction electrode 4.
By the way, the radius of curvature of the tip of the emitter 3 is approximately
Since it is extremely small at 1000 Å, the emission current from the emitter 3 increases due to this excessive voltage, and the tip of the emitter 3 evaporates due to the Joule heat generation, causing an arc discharge and deforming the tip to a diameter of about 10 μm. , it becomes unusable as a field emission type emitter again.

本発明はこのような点に鑑みてなされたもの
で、エミツタと該エミツタの先端近傍に荷電粒子
の電界放出を行うに必要な強電界を形成するため
の引出し電極と、該エミツタから放出された荷電
粒子を加速するための加速電極と、該エミツタと
引出し電極間に引出し電圧を供給する引出し電源
と、該エミツタと加速電極との間に加速電圧を供
給する加速電源を有する装置において、上記加速
電源が持つ対地静電容量より可成小さい容量のコ
ンデンサと抵抗を並列に繋いだ回路とダイオード
との直列回路を上記引出し電源に並列に接続する
事によつて、真空放電した場合でもエミツタの損
傷を防止することを実現したものである。
The present invention has been made in view of these points, and includes an emitter, an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter, and an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter, and a In an apparatus having an accelerating electrode for accelerating charged particles, an extraction power source for supplying an extraction voltage between the emitter and the extraction electrode, and an acceleration power source for supplying the accelerating voltage between the emitter and the accelerating electrode, the acceleration By connecting a series circuit with a diode and a circuit in which a capacitor with a capacitance considerably smaller than the ground capacitance of the power supply is connected in parallel with a diode to the above-mentioned lead-out power supply, damage to the emitter can be prevented even in the case of vacuum discharge. This has been achieved to prevent this.

以下図面を参照して本発明を詳細に説明する。 The present invention will be described in detail below with reference to the drawings.

第2図は、本発明の一実施例を示す概略図であ
る。第1図と同一部分には、同一番号を付してそ
の説明を省略する。図において、電源筐10、つ
まり高圧電源側に、コンデンサー11と抵抗13
を並列に繋いだ回路とダイオード12との直列回
路が引出し電源8に並列に接続されている。該コ
ンデンサー11としては、加速電源7が持つ対地
容量より可成大きい容量のものが選択される。
FIG. 2 is a schematic diagram showing an embodiment of the present invention. Components that are the same as those in FIG. 1 are given the same numbers and their explanations will be omitted. In the figure, a capacitor 11 and a resistor 13 are placed on the power supply cabinet 10, that is, on the high-voltage power supply side.
A series circuit consisting of a circuit in which these are connected in parallel and a diode 12 is connected in parallel to the extraction power source 8. As the capacitor 11, a capacitor having a considerably larger capacitance than the ground capacitance of the accelerating power source 7 is selected.

所で、今、エミツタ3と引出し電極4の間に引
出し電圧が印加され電子線が発生している動作状
態を想定し、コンデンサー11はダイオード12
を通じて引出し電圧と等しい電圧まで充電されて
いるとする。又抵抗13はダイオード12を順方
向に導通させ過大電圧が襲来し、これによる充電
電流が急増する際の蓄積キヤリアによるダイオー
ド動作の遅れを補償すると同時に、引出し電圧が
ある動作電圧より低下したとき、コンデンサー1
1の端子電圧をこの抵抗13によつて下げ追随さ
せるものである。
By the way, assuming an operating state in which an extraction voltage is applied between the emitter 3 and the extraction electrode 4 and an electron beam is generated, the capacitor 11 is connected to the diode 12.
Assume that the battery is charged to a voltage equal to the extraction voltage through the battery. Further, the resistor 13 makes the diode 12 conductive in the forward direction, and compensates for the delay in diode operation due to the accumulated carrier when an excessive voltage occurs and the charging current increases rapidly. capacitor 1
The terminal voltage of 1 is lowered by this resistor 13 to follow the same.

ここで、加速電源7が持つ対地静電容量をCs、
加速電圧をV、コンデンサー11の容量をCo、
エミツタの動作電圧(引出し電圧)をVeとし、
引出し電極4と陽極5の間に真空放電が発生する
場合を考えると、第2図を第3図に示す如き等価
回路に置換える事が出来る。図において、通常に
運転時、即ち、引出し電極4と陽極間に真空放電
が発生していない時は、スイツチSWはOFFの状
態、引出し電極4と陽極間に真空放電が発生した
時には、スイツチSWはONの状態と考える事が
出来る。従つて、引出し電極4と陽極間に真空放
電が発生していない時は、該引出し電極4とエミ
ツタ3間には引出し電圧Veのみ印加されている
が、引出し電極4と陽極間に真空放電が発生して
いる時は、該引出し電極4とエミツタ3間には引
出し電圧Veと、加速電圧Vを加速電源7が持つ
対地静電容量Csとコンデンサー11の容量Coに
よつて分割した電圧との和に対応した電圧Vs(下
記(1)式)が印加される。
Here, the ground capacitance of the acceleration power source 7 is Cs,
The accelerating voltage is V, the capacitance of capacitor 11 is Co,
The operating voltage (drawing voltage) of the emitter is Ve,
Considering the case where a vacuum discharge occurs between the extraction electrode 4 and the anode 5, FIG. 2 can be replaced with an equivalent circuit as shown in FIG. 3. In the figure, during normal operation, that is, when no vacuum discharge occurs between the extraction electrode 4 and the anode, the switch SW is in the OFF state, and when a vacuum discharge occurs between the extraction electrode 4 and the anode, the switch SW is in the OFF state. can be considered as an ON state. Therefore, when no vacuum discharge is generated between the extraction electrode 4 and the anode, only the extraction voltage Ve is applied between the extraction electrode 4 and the emitter 3, but when no vacuum discharge is generated between the extraction electrode 4 and the anode. When the voltage is generated, the voltage between the extraction electrode 4 and the emitter 3 is an extraction voltage Ve, and a voltage obtained by dividing the acceleration voltage V by the ground capacitance Cs of the acceleration power source 7 and the capacitance Co of the capacitor 11. A voltage Vs (formula (1) below) corresponding to the sum is applied.

Vs=Cs/Co+CsV+Ve ……(1) 但し、上記した様に、コンデンサー11の容量
Coは、加速電源7が持つ対地容量Csより可成大
きい容量のものが選択されるので(Cs≪Co)、該
式において、Co+Cs≒Coと考える事が出来、該
(1)式は次の式に置換える事が出来る。
Vs=Cs/Co+CsV+Ve...(1) However, as mentioned above, the capacitance of capacitor 11
Since Co has a considerably larger capacity than the ground capacitance Cs of the accelerating power source 7 (Cs≪Co), it can be considered that Co+Cs≒Co in this equation, and the
Equation (1) can be replaced with the following equation.

Vs=Cs/CoV+Ve ……(2) ここで、例えば、加速電圧(V)を50KV、エ
ミツタの動作電圧(引出し電圧)(Ve)を3KV、
コンデンサー11の容量(Co)を0.1μF、加速電
源7が持つ対地静電容量(Cs)を100PFとすれ
ば、上記(2)式から、 Vs=0.5KV+3KV =3.5KV の電圧が印加される。
Vs=Cs/CoV+Ve......(2) Here, for example, the acceleration voltage (V) is 50KV, the emitter operating voltage (extraction voltage) (Ve) is 3KV,
If the capacitance (Co) of the capacitor 11 is 0.1 μF and the ground capacitance (Cs) of the acceleration power source 7 is 100PF, then from the above equation (2), a voltage of Vs = 0.5KV + 3KV = 3.5KV is applied.

故に引出し電極4と陽極5の間で真空放電が起
こつたとしても、エミツタ3と引出し電極4間に
は前記の例では3.5KV位まで上昇するがエミツタ
を破壊するまでには至らない。又加速電圧が高い
場合にも、前記の関係からコンデンサー容量Co
を適当に選択することにより、同様な効果を得る
ことができる。斯様にして、引出し電極4、陽極
5の間の真空放電時にエミツタ3と引出し電極5
の間に過大な電圧が印加される事は抑制できるが
コンデンサーCoを大きくするとエミツタ、引出
し電極間のエミツタ以外のエミツタ電位の構造物
と引出し電極を絶縁し機械的にエミツタを保持す
る絶縁碍子(図示せず)の沿面放電や、エミツタ
電位の構造と引出し電極間の真空放電の際はコン
デンサーCoの蓄積された全電荷が放電に寄与す
る為に、エミツタを取り巻く真空が悪くなり電界
放出エミツタの先端が陽イオンで取り巻れエミツ
タ先端の電界強度が上昇し、エミツタが真空放電
を起し破壊されてしまう。この為、第2図の様に
ダイオード12をコンデンサー11と直列にして
おけば、エミツタ3と引出し電極4間の放電に於
ては、コンデンサー11の蓄積された電荷はダイ
オード12があるために、電子銃室内には流入し
得なくなり、本発明の目的とする引出し電極4と
陽極5の間の真空絶縁破壊時に、エミツタ3と引
出し電極4間への過大な電圧印加を抑制すること
ができ、更にエミツタ3と引出し電極4間の真空
放電時に、いたずらに真空を悪くすることなくエ
ミツタの真空放電による破損を防止することがで
きる。
Therefore, even if a vacuum discharge occurs between the extraction electrode 4 and the anode 5, the voltage between the emitter 3 and the extraction electrode 4 will rise to about 3.5 KV in the above example, but it will not reach the level of destroying the emitter. Also, when the accelerating voltage is high, the capacitor capacity Co
A similar effect can be obtained by appropriately selecting . In this way, the emitter 3 and the extraction electrode 5 are connected during vacuum discharge between the extraction electrode 4 and the anode 5.
Although it is possible to suppress the application of excessive voltage between the emitter and the extractor, if the capacitor Co is made large, an insulator (which insulates the extractor from structures with an emitter potential other than the emitter between the emitter and extractor electrodes and mechanically holds the emitter) During creeping discharge (not shown) or vacuum discharge between the emitter potential structure and extraction electrode, the total charge accumulated in the capacitor Co contributes to the discharge, so the vacuum surrounding the emitter deteriorates and the field emission emitter The tip is surrounded by positive ions, and the electric field strength at the tip of the emitter increases, causing vacuum discharge and destruction of the emitter. Therefore, if the diode 12 is connected in series with the capacitor 11 as shown in FIG. It is no longer possible to flow into the electron gun chamber, and it is possible to suppress excessive voltage application between the emitter 3 and the extraction electrode 4 at the time of vacuum dielectric breakdown between the extraction electrode 4 and the anode 5, which is the object of the present invention. Furthermore, when a vacuum discharge occurs between the emitter 3 and the extraction electrode 4, damage to the emitter due to the vacuum discharge can be prevented without unduly worsening the vacuum.

尚本発明は、以上の実施例装置に限定されるも
のではなく、例えば先端や鋭くされたエミツタに
イオン化物質を供給し、強電界によつてイオンを
発生させるようにした各種イオン源にも本回路を
適用し得る。
The present invention is not limited to the above-described embodiments, but can also be applied to various ion sources in which, for example, an ionized substance is supplied to a tip or a sharpened emitter, and ions are generated by a strong electric field. circuit can be applied.

本発明は、加速電源が持つ対地静電容量より可
成小さい容量のコンデンサと抵抗を並列に繋いだ
回路とダイオードとの直列回路を引出し電源に並
列に接続したので、引出し電極と陽極の間に真空
放電が発生しても、エミツタと該引出し電極との
間には、引出し電圧に、加速電圧がまともに加わ
ること無く、加速電圧を加速電源が持つ対地静電
容量と上記コンデンサーの容量によつて分割した
小さな電圧が加わつた程度の電圧しか掛からず、
又、上記ダイオードにより上記コンデンサに蓄積
された荷電が電子銃室内に流入せず、更に、上記
抵抗により該ダイオードの動作の遅れを補償す様
にしているので、エミツタの損傷を防止すること
が出来る。
In the present invention, a series circuit consisting of a diode and a circuit in which a capacitor and a resistor with a capacitance considerably smaller than the ground capacitance of the accelerating power source are connected in parallel is connected to the lead power source in parallel, so that there is no connection between the lead electrode and the anode. Even if a vacuum discharge occurs, the accelerating voltage is not properly added to the extracting voltage between the emitter and the extracting electrode, and the accelerating voltage is applied by the ground capacitance of the accelerating power source and the capacitance of the capacitor. The voltage applied is only the same as the small voltage divided by the voltage applied.
Furthermore, the diode prevents the charge accumulated in the capacitor from flowing into the electron gun chamber, and the resistor compensates for the delay in the operation of the diode, making it possible to prevent damage to the emitter. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電界放出型電子銃の構成を示
す説明図、第2図は本発明の一実施例を示す構成
図、第3図は本発明を説明するための等価回路図
である。 1:電子銃室、2:加熱用フイラメント、3:
エミツタ、4:引出し電極、5:陽極、6:絶縁
ケーブル、7:加速電源、8:引出し電源、9:
フイラメント加熱用電源、10:電源筐、11:
コンデンサー、12:ダイオード、13:抵抗。
FIG. 1 is an explanatory diagram showing the configuration of a conventional field emission type electron gun, FIG. 2 is a configuration diagram showing an embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram for explaining the present invention. . 1: Electron gun chamber, 2: Heating filament, 3:
Emitter, 4: Extraction electrode, 5: Anode, 6: Insulated cable, 7: Acceleration power supply, 8: Extraction power supply, 9:
Power supply for filament heating, 10: Power supply case, 11:
Capacitor, 12: Diode, 13: Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 エミツタと該エミツタの先端近傍に荷電粒子
の電界放出を行うに必要な強電界を形成するため
の引出し電極と、該エミツタから放出された荷電
粒子を加速するための加速電極と、該エミツタと
引出し電極間に引出し電圧を供給する引出し電源
と、該エミツタと加速電極との間に加速電圧を供
給する加速電源を有する装置において、加速電源
が持つ対地静電容量より可成小さい容量のコンデ
ンサと抵抗を並列に繋いだ回路とダイオードとの
直列回路を上記引出し電源に並列に接続した電界
放出型荷電粒子発生回路。
1 An emitter, an extraction electrode for forming a strong electric field necessary for field emission of charged particles near the tip of the emitter, an accelerating electrode for accelerating the charged particles emitted from the emitter, and an emitter In a device having an extraction power supply that supplies an extraction voltage between extraction electrodes and an acceleration power supply that supplies an acceleration voltage between the emitter and the acceleration electrode, a capacitor having a capacitance considerably smaller than the ground capacitance of the acceleration power supply is provided. A field emission type charged particle generation circuit in which a series circuit of a resistor connected in parallel and a diode is connected in parallel to the above-mentioned extraction power source.
JP4407782A 1982-03-19 1982-03-19 Field emission type charged particle generator Granted JPS58161234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4407782A JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4407782A JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Publications (2)

Publication Number Publication Date
JPS58161234A JPS58161234A (en) 1983-09-24
JPS6340017B2 true JPS6340017B2 (en) 1988-08-09

Family

ID=12681556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4407782A Granted JPS58161234A (en) 1982-03-19 1982-03-19 Field emission type charged particle generator

Country Status (1)

Country Link
JP (1) JPS58161234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876268B2 (en) 2016-11-16 2020-12-29 Solar Pile International (Hk) Ltd Screw pile and drive tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876755B1 (en) * 2004-10-20 2007-01-26 Pcm Pompes Sa PUMPING DEVICE WITH PROGRESSIVE CAVITY PUMP
JP2008226683A (en) 2007-03-14 2008-09-25 Hitachi High-Technologies Corp Charged particle beam device
DE102018200593B4 (en) * 2018-01-15 2019-08-08 Carl Zeiss Microscopy Gmbh Plug connection unit, particle beam generator with a plug connection unit and particle beam device with a particle beam generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940058A (en) * 1972-08-17 1974-04-15
JPS4940664A (en) * 1972-08-24 1974-04-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940058A (en) * 1972-08-17 1974-04-15
JPS4940664A (en) * 1972-08-24 1974-04-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876268B2 (en) 2016-11-16 2020-12-29 Solar Pile International (Hk) Ltd Screw pile and drive tool

Also Published As

Publication number Publication date
JPS58161234A (en) 1983-09-24

Similar Documents

Publication Publication Date Title
KR100679593B1 (en) High-voltage generator and accelerator using same
JP2008226683A (en) Charged particle beam device
US4760262A (en) Ion source
JPS6340017B2 (en)
EP0095311B1 (en) Ion source apparatus
KR101584411B1 (en) X-ray tube
RU2654494C1 (en) Vacuum spark discharger
US3938001A (en) Protection circuit for electron gun
JPS5916698B2 (en) Cathode ray tube spotting method
US3731095A (en) Electron gun device of field emission type
KR100549432B1 (en) Negative ion generating and Electron Collecting system
JPH01319235A (en) Electron beam generator
US1550203A (en) Mercury-vapor apparatus
JPS6328516Y2 (en)
JPH0615388Y2 (en) Electron beam generator
JP4260036B2 (en) High voltage generator
JP2757963B2 (en) Ion source accelerating electrode
JPH03133040A (en) High voltage electron gun apparatus
JPH05135899A (en) Accelerating tube for direct-current voltage type accelerator
RU2654493C1 (en) Vacuum arrester
US4628226A (en) Method and arrangement for preventing cathode damage when switching on field emission electron guns
JP3766571B2 (en) Thin film forming apparatus and shunting arc discharge electrode apparatus
SU702938A1 (en) Collective ion accelerator
JPS593040B2 (en) charged particle device
JPH0212374B2 (en)