JPS5816037A - Refining method for high chromium alloy - Google Patents

Refining method for high chromium alloy

Info

Publication number
JPS5816037A
JPS5816037A JP56114176A JP11417681A JPS5816037A JP S5816037 A JPS5816037 A JP S5816037A JP 56114176 A JP56114176 A JP 56114176A JP 11417681 A JP11417681 A JP 11417681A JP S5816037 A JPS5816037 A JP S5816037A
Authority
JP
Japan
Prior art keywords
slag
chromium
furnace
plasma torch
torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56114176A
Other languages
Japanese (ja)
Inventor
Hideki Ishikawa
英毅 石川
Hiroyuki Katayama
裕之 片山
Tsutomu Saito
力 斎藤
Masatoshi Kuwabara
桑原 正年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56114176A priority Critical patent/JPS5816037A/en
Publication of JPS5816037A publication Critical patent/JPS5816037A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To save the consumption of electric power and to enhance the recovering yield of Cr by refining a solid contg. Cr as a starting material in a shaft type reaction furnace provided with a plasma torch. CONSTITUTION:A solid contg. Cr such as Cr ore pellets A, lime and coke are semicontinuously charged into a shaft type reaction furnace 1 provided with a plasma torch 2. Air or oxygen enriched air heated to a high temp. is fed from a tuyere 3, and Ar, H2, natural gas, etc. are blown from the torch 2 as working gases. The resulting plasma flame has a high temp. and reducing power, and by blowing the flame into molten slag, Cr oxide remaining in the slag is advantageously reduced to lower the Cr content of the slag. When a melt 4 gathers on the bottom of the furnace, the tap hole 5 is opened to discharge the melt.

Description

【発明の詳細な説明】 本発明は、従来、電気炉(アーク炉)で製造されている
高クロム合金を、電力に依存する比率を小さくして経済
的に、かつクロムの回収歩留を高くして得るための方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to reduce the dependence on electric power on high chromium alloys conventionally produced in electric furnaces (arc furnaces), thereby making them economical and increasing the recovery yield of chromium. About how to get it.

本発明で言う「クロムを含有する固体原料」とは、クロ
ム鉱石、クロム鉱石を固相還元して得られる半還元物(
通常、半還元クロムペレットと呼ばれる)、フェロクロ
ムあるいはステンレス鋼スクラ、プなどを指している。
In the present invention, the "chromium-containing solid raw material" refers to chromium ore, a semi-reduced product obtained by solid-phase reduction of chromium ore (
Usually referred to as semi-reduced chromium pellets), ferrochrome or stainless steel scraps, etc.

また、r高クロム含金」とは、クロムおよび鉄を主成分
として、他に不純物として、c、st、p、s’eどを
含有するもので、主としてステンレス鋼などの高り■ム
鋼製造時の合金剤(通常、)、諺クロムと呼とれる)あ
ゐいは高クロム鋼の中間成品を意味してお)、り四ム含
有量が17〜25−の範囲の4のである。
In addition, "high chromium-containing metal" refers to a material whose main components are chromium and iron, and which also contains impurities such as c, st, p, and s'e, and is mainly used for high-chromium steel such as stainless steel. The alloying agent (usually referred to as chromium) during manufacture (which means an intermediate product of high chromium steel) has a chromium content in the range of 17 to 25.

これらの高クロム含金は、従来、電気工ネルイーを用い
て、溶融・還元を行9て製造されてt九。
These high chromium-containing metals have conventionally been manufactured by melting and reducing using an electrician.

しかし、電力はエネルギーとして状高価なものであるか
ら、極力、電力に依存する度合を減少し、出来れば一部
エネルギーを直接用いる仁とが望ましい、しかし1.高
りpム金金の製造にをいては、0)  (4IK、=炭
素飽和物の)融点が高い。
However, since electricity is an expensive form of energy, it is desirable to reduce the degree of dependence on electricity as much as possible, and if possible, use some of the energy directly. In the production of high PM gold, the melting point (4IK, = carbon saturated material) is high.

(1)  り四五分の還元回収率を高めるには還元−高
温の条件が必要である。
(1) Reduction-high temperature conditions are necessary to increase the reduction recovery rate.

表どが問題である。これらは、高クロム含金中のクロム
憾が高いはどきびしくなゐ・ −次エネルギーを熱効率高く溶融・還元に用いるには一
般にシャフト型の炉が適していることはよく知られてい
る。りν五合金についても高炉を用いる方式が過去に試
みられたことがToゐが、上述の(+) 、 (1)の
制約から、クロム1411以下でのみr−夕が報告され
ている。
The problem is the front. It is well known that shaft-type furnaces are generally suitable for using secondary energy for melting and reduction with high thermal efficiency. However, due to the above-mentioned constraints (+) and (1), r-2 has been reported only for chromium 1411 and below.

以上のような事情に鎌み、本発明紘よりりpム含有量の
高いりpム合金を、シャツ)It反応炉で主として一部
エネルーーを用いることKよりて製造することを目標に
して種々検討の結果得られたものであり、その要旨は高
クロム合金の溶製を、クロムを含有する固体を原料とし
てプラズマトーチを設置したシャフト型反応炉で行うこ
とを特徴とする高クロム合金溶製方法である。
In view of the above circumstances, the present invention aims to produce a PM alloy with a higher PM content than that of Hiro, using mainly a part of the energy in a reactor. This was obtained as a result of the study, and its gist is that high chromium alloy melting is performed using a solid containing chromium as a raw material in a shaft-type reactor equipped with a plasma torch. It's a method.

以下、具体的な実施例によりて詳細に説明する・原料は
さきに定義したような種々の「り四ムを含有する固体原
料」であるが、本発明で使用するシャフト型反応炉では
特に順調袋連続装入や荷下シが行いやすいクロム鉱石イ
レットあるいは炭素分を配合してペレットにしたものを
固相還元した半還元ペレットを中心として述べる。ペレ
ットのサイズは径が7〜15−のものが重量比で709
6以上を占°めることか望ましい。
The following is a detailed explanation using specific examples.The raw materials are various "solid raw materials containing lithium" as defined earlier, but the shaft type reactor used in the present invention is particularly suitable. We will mainly discuss semi-reduced pellets, which are made by solid phase reduction of chromium ore islets or pellets mixed with carbon, which are easy to carry out continuous bag charging and unloading. The size of the pellets is 7 to 15- in diameter, and the weight ratio is 709.
It is desirable to have a score of 6 or more.

第1図は本発明を実施する丸めに用いる設備の1例を示
す。シャフト炉lは上部からクロムを含有する固体原料
(例えばりpム鉱石ペレット)、造滓剤としての石灰お
よび炭素質固体(例えばコークス)を半連続的に供給す
る。炉体の中央部よりも下部の□ところに酸素を含有す
るガス(空気あるい−は酸素富化空気)を吹込むための
羽口3がある。この羽口の前方で上部から供給した炭素
質固体の一部が燃焼して高温にな)装入物の溶融・還元
がおこる。この羽口から燃料、例えば微粉脚を供給して
、羽口3・を111のバーナーとして使うことも可能で
ある0以上は通常の高炉法と原理的に紘同じであるが、
本発明ではその下部にプラズマトーチ2を設けているこ
とを特色としている・プラズマはムr a Hlあるい
は炭化水素、COガスなどを作動ガスとしてお夛、溶融
スラグを主とする相の中に吹き込まれる。プラズマトー
チのタイプとしては、非移行型の方が操業しやすいが、
炉底にたまった溶融高り買ム合金を対極とする移行型の
方が熱効率が高い点で有利である。fラズマフレーム拡
高温・還元性で、溶融スラグの中に吹き込まれることか
ら、スラグ中に残留するり四ム酸化物を平衡的にも速度
的にも有利に還元し、スラグ中のクロム含有量を低下す
ることができる。炉底に溶融物4(溶融りpム合金と溶
融スラグ戸所定量たまるとタッグホール5をあけて炉外
に排出する。
FIG. 1 shows an example of equipment used for rounding in accordance with the present invention. The shaft furnace 1 is semi-continuously supplied with chromium-containing solid raw materials (for example, PM ore pellets), lime as a slag-forming agent, and carbonaceous solids (for example, coke) from the top. A tuyere 3 for blowing oxygen-containing gas (air or oxygen-enriched air) is located below the center of the furnace body. In front of this tuyere, a portion of the carbonaceous solids supplied from the top burns to a high temperature) and melts and reduces the charge. It is also possible to supply fuel, for example, fine powder, from this tuyere and use the tuyere 3 as a burner for 111.
The present invention is characterized in that a plasma torch 2 is provided at the bottom of the plasma torch 2.The plasma uses hydrogen chloride, hydrocarbons, CO gas, etc. as a working gas, and is blown into a phase mainly composed of molten slag. It will be done. As for the type of plasma torch, the non-transfer type is easier to operate, but
The transition type, in which the molten high-purity alloy accumulated at the bottom of the furnace is used as the opposite electrode, is advantageous in that it has higher thermal efficiency. f Plasma flame is blown into the molten slag with its high temperature and reducing properties, so it reduces the remaining chromium oxides in the slag in an advantageous manner both in terms of equilibrium and speed, reducing the chromium content in the slag. can be lowered. When a predetermined amount of molten material 4 (molten PM alloy and molten slag) accumulates at the bottom of the furnace, a tag hole 5 is opened and the molten slag is discharged from the furnace.

炉外に排出するりpム合金中のcnは、炉上部から供給
するコークス、羽口3から供給する酸素量、做粉体など
の燃料の量などを調整することによって、飽和型から不
飽和型まで変化させることができる。不飽和型のうち、
C:3憾前後のものは特に溶融点が低いので、操業温度
を低下できるという特長がある。
The CN in the PM alloy discharged outside the furnace can be changed from saturated to unsaturated by adjusting the coke supplied from the upper part of the furnace, the amount of oxygen supplied from the tuyere 3, the amount of fuel such as powder, etc. Even the type can be changed. Among unsaturated types,
Since the melting point of C: around 3 is particularly low, it has the advantage that the operating temperature can be lowered.

本発明の特徴は特に高りpム合金を製造するために、通
常のシャフト型1元炉とは異なり、酸素含有ガス供給用
羽口の下方にプラズマトーチを設 ″置し、高温・強還
元の領域を作ったととKある。
The feature of the present invention is that, in order to produce high-PM alloys, a plasma torch is installed below the tuyere for supplying oxygen-containing gas, unlike a normal shaft-type single-source furnace, to produce a high-temperature, strong reduction furnace. It is said that K created the area of .

したかっで本発明の方法は従来法ではスラグ中のクロム
含有量が高目になりがちカ辰素不飽和型の合金を製造す
るのに適していると言える。
Therefore, it can be said that the method of the present invention is suitable for producing chlorine-unsaturated alloys, which tend to have a high chromium content in slag using conventional methods.

実施例 第1図に示したシャフト炉(炉外径、Max 5.8餌
、高さ15鯛)で、炉上部から次の条件で原料の装入を
行う。
Example In the shaft furnace shown in FIG. 1 (furnace outer diameter, Max 5.8 bait, height 15 sea bream), raw materials were charged from the top of the furnace under the following conditions.

羽口3は10本で100CK予熱した空気20000 
Ntm”/’krに酸素4000−シロ加えたものを炉
内に吹込む、プラズマトーチは非移行型、1000kW
のものが4木取〕付けられており、天然ガスを各30 
Nws”/by O速度で吹き込む。
There are 10 tuyeres 3 and 100CK preheated air 20000
The plasma torch is a non-transfer type, 1000 kW, which injects Ntm''/'kr plus 4000 kg of oxygen into the furnace.
4 pieces of wood are attached, each containing 30 pieces of natural gas.
Blow in at a speed of Nws”/by O.

出湯は4時間に1回の割合で行う、メタルおよびスラグ
の成分、量、温度紘次の通夛である。
Hot water is tapped once every four hours, and the composition, amount, and temperature of metal and slag are carefully monitored.

メタル:25t/タツプ 1610℃ スラグ: 30 t/夕、7’   1650℃以工の
ように、本発明はグッズットーチを設けたシャフト型反
応炉と高クロム合金の溶製を組み合せることによって、
従来の緒矛盾を解決して、エネルギーの大半は一部エネ
ルギーに変えながら、高クロム合金をクロム歩wi高く
、かつ必要に応じて炭素不飽和型のtのも製造できるよ
うにした点で、工業的な効果は大きい。
Metal: 25t/tap 1610℃ Slag: 30t/night, 7' As in the process above 1650℃, the present invention combines a shaft type reactor equipped with a good torch and melting of high chromium alloy.
By resolving the conventional contradictions and converting most of the energy into energy, we have made it possible to produce high chromium alloys with a high chromium content and, if necessary, carbon-unsaturated alloys. The industrial effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するOK用いるシャフト型反応炉
の1例を示す。 A:りoム鉱石4レット、半還元り四ムペレ。 ト、石灰、コークス B:空気、酸素、微粉員 手続補正書(自発) 昭和57年2月10日 特許庁長官 島 1)春 積数 1、 事件の表示 昭和56年特許願第114176号 2、 発明の名称 高り冒ム合金溶製方法 3、 補正をする者 事件との関係 特許出願人 代表者  武  1)   豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 6、 補正の対象 (IJ明細書2頁4行「クロム含有量が17〜25囁」
ヲ「クロム含有量が17〜65幡」に補正する。
FIG. 1 shows an example of a shaft-type reactor using OK for carrying out the present invention. A: 4 rets of rim ore, 4 semi-reduced mpele. Lime, Coke B: Air, Oxygen, Fine Dust Officer Procedural Amendment (Voluntary) February 10, 1980 Director General of the Patent Office Shima 1) Spring Product Number 1, Indication of Case Patent Application No. 114176 No. 114176 of 1988 2, Name of the Invention - Process for Producing Alloys 3, Relationship with the Amendment Case Patent Applicant Representative Takeshi 1) Yutaka 4, Agent 2-4-1-6 Marunouchi, Chiyoda-ku, Tokyo 100, Amended (IJ specification, page 2, line 4 "Chromium content is 17-25%")
Correct the chromium content to 17 to 65.

Claims (1)

【特許請求の範囲】[Claims] 高クロム合金の溶製を、クロムを含有する固体を原料と
してプラズマトーチを設置したシャフト型反応炉で行う
ことを特徴とする高クロム合金溶製方法。
A high chromium alloy melting method characterized in that high chromium alloy is melted using a chromium-containing solid as a raw material in a shaft-type reactor equipped with a plasma torch.
JP56114176A 1981-07-21 1981-07-21 Refining method for high chromium alloy Pending JPS5816037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114176A JPS5816037A (en) 1981-07-21 1981-07-21 Refining method for high chromium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114176A JPS5816037A (en) 1981-07-21 1981-07-21 Refining method for high chromium alloy

Publications (1)

Publication Number Publication Date
JPS5816037A true JPS5816037A (en) 1983-01-29

Family

ID=14631075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114176A Pending JPS5816037A (en) 1981-07-21 1981-07-21 Refining method for high chromium alloy

Country Status (1)

Country Link
JP (1) JPS5816037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159857U (en) * 1985-03-22 1986-10-03
JPS61254003A (en) * 1985-05-02 1986-11-11 Yasuhiro Nakamura Electric motor vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159857U (en) * 1985-03-22 1986-10-03
JPH0453172Y2 (en) * 1985-03-22 1992-12-14
JPS61254003A (en) * 1985-05-02 1986-11-11 Yasuhiro Nakamura Electric motor vehicle

Similar Documents

Publication Publication Date Title
EP0474703B1 (en) Manufacture of ferroalloys using a molten bath reactor
KR100242565B1 (en) Process for production of iron
US4340420A (en) Method of manufacturing stainless steel
CA1150518A (en) Recovering non-volatile metals from dust containing metal oxides
US4551172A (en) Process of producing liquid carbon-containing iron
US5654976A (en) Method for melting ferrous scrap metal and chromite in a submerged arc furnace to produce a chromium containing iron
US4526612A (en) Method of manufacturing ferrosilicon
GB2126570A (en) Method of manufacturing calcium carbide from powdered lime/limestone
JPS5816037A (en) Refining method for high chromium alloy
JP2938535B2 (en) Manufacturing process of chromium-containing molten steel
JPS5976836A (en) Manufacture of aluminum-silicon alloy
JPH08188811A (en) Method for melting scrap
US4061492A (en) Method of ore reduction with an arc heater
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
AU5720199A (en) Method for reprocessing steel slags and ferriferous materials
CN110904331A (en) Process for producing high-carbon ferrochrome by coal synthesis gas
RU2167944C2 (en) Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel
JP2837282B2 (en) Production method of chromium-containing hot metal
JPS6216243B2 (en)
CN111020095A (en) Process for producing stainless steel semi-molten steel by coal synthesis gas
JP2023007272A (en) Manufacturing method of very low carbon ferromanganese and its manufacturing apparatus as well as manufacturing method of manganese-based alloy and its manufacturing apparatus
JPS62167808A (en) Production of molten chromium iron
vonBogdandy et al. The Bottom Blown Oxygen Reactor
JPS6342351A (en) Manufacture of chromium-containing molten iron