RU2167944C2 - Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel - Google Patents

Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel Download PDF

Info

Publication number
RU2167944C2
RU2167944C2 RU98115858A RU98115858A RU2167944C2 RU 2167944 C2 RU2167944 C2 RU 2167944C2 RU 98115858 A RU98115858 A RU 98115858A RU 98115858 A RU98115858 A RU 98115858A RU 2167944 C2 RU2167944 C2 RU 2167944C2
Authority
RU
Russia
Prior art keywords
vanadium
furnace
steel
pellets
raw materials
Prior art date
Application number
RU98115858A
Other languages
Russian (ru)
Other versions
RU98115858A (en
Inventor
В.Г. Лисиенко
В.А. Роменец
А.Е. Пареньков
Л.И. Леонтьев
Л.А. Смирнов
Ю.С. Карабасов
Ю.С. Юсфин
В.П. Чистов
Е.М. Малитиков
О.Г. Дружинина
В.М. Шариков
С.Л. Пареньков
Original Assignee
Региональное Уральское отделение Академии инженерных наук Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Региональное Уральское отделение Академии инженерных наук Российской Федерации filed Critical Региональное Уральское отделение Академии инженерных наук Российской Федерации
Priority to RU98115858A priority Critical patent/RU2167944C2/en
Publication of RU98115858A publication Critical patent/RU98115858A/en
Application granted granted Critical
Publication of RU2167944C2 publication Critical patent/RU2167944C2/en

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

FIELD: metallurgy, particularly, processes of prereduction and electric furnace steel making. SUBSTANCE: method includes charging of vanadium-containing ore material, for example, pellets into shaft furnace, pellets prereduction with their subsequent melting in electric arc furnace. Used for process of prereduction of vanadium-containing ore material in the form, for example, of pellets in shaft furnace are hot reducing gases produced in gasifier with liquid bath. Vanadium-containing semifinished product and slag produced also in gasifier are used as additional iron charge for melting process. EFFECT: low-cost production of steel alloyed with vanadium, increased concentration of vanadium in steel with the same relative consumption of vanadium containing materials. 3 cl, 1 dwg

Description

Изобретение относится к области металлургии, в частности к процессам металлизации и электросталеплавильному производству. The invention relates to the field of metallurgy, in particular to metallization processes and electric steel production.

Известны способы выплавки ванадиевых сталей [1, с. 15,16], при котором используется схема: доменная печь - конвертер с получением конвертерного ванадиевого шлака, химическая переработка ванадиевого шлака с получением 60-70% оксида ванадия V2O5 - ферросплавное производство с получением железованадиевого сплава FeV, выплавка стали в электропечи с использованием феррованадия. Однако этот процесс очень энергоемкий - он включает такие энергоемкие процессы, как доменный и химическую переработку ванадиевого шлака, кроме того, потери ванадия в данной, очень длинной цепочке составляют 68-70%.Known methods of smelting vanadium steels [1, p. 15,16], in which the scheme is used: a blast furnace - a converter to produce converter vanadium slag, chemical processing of vanadium slag to produce 60-70% vanadium oxide V 2 O 5 - ferroalloy production to produce FeV iron-vanadium alloy, steel smelting in an electric furnace with using ferrovanadium. However, this process is very energy-intensive - it includes such energy-intensive processes as blast furnace and chemical processing of vanadium slag, in addition, the loss of vanadium in this very long chain is 68-70%.

Известен способ выплавки ванадиевой стали [1, с. 20, 2, с. 223], при котором производятся металлизованные ванадиевые окатыши с содержанием ванадия около 0,4- 0,42% с последующим их использованием в электропечи и получением легированной ванадием стали. Однако в этом случае для процесса металлизации применяют восстановительные газы, полученные за счет конверсии дорогостоящего высококалорийного топлива - природного газа, а также в металлошихте используют не содержащие ванадия стальной скрап и чугун, что снижает концентрацию ванадия в стали. A known method of smelting vanadium steel [1, p. 20, 2, p. 223], in which metallized vanadium pellets are produced with a vanadium content of about 0.4-0.42%, followed by their use in an electric furnace and the production of vanadium alloyed steel. However, in this case, reducing gases are used for the metallization process, obtained from the conversion of expensive high-calorie fuel - natural gas, and vanadium-free steel scrap and cast iron are used in the metal charge, which reduces the concentration of vanadium in steel.

Известен также способ частичного восстановления руды и окатышей, причем процесс восстановления происходит в шахтной печи путем применения восстановительных газов, получаемых в газификаторе с жидкой ванной [3]. При этом способе возможно использование для газификации дешевого углеродсодержащего материала, как правило, это низкосортные угли. Однако в этом случае не предусмотрено использование ванадийсодержащих материалов (окатышей) и последующее легирование стали ванадием, а температура газа, подаваемого в шахтную печь, составляет 850oC.There is also a method of partial recovery of ore and pellets, and the recovery process occurs in a shaft furnace by using reducing gases obtained in a gasifier with a liquid bath [3]. With this method, it is possible to use cheap carbon-containing material for gasification, as a rule, these are low-grade coals. However, in this case, the use of vanadium-containing materials (pellets) and the subsequent alloying of steel with vanadium are not provided, and the temperature of the gas supplied to the shaft furnace is 850 o C.

Таким образом, известен способ выплавки легированной ванадием стали (с содержанием 0,08-0,3% V) [1, с. 20], при котором предусмотрено использование в электропечах металлизованных ванадиевых окатышей и который наиболее близок к предлагаемому техническому решению и выбран в качестве прототипа. При этом восстановительный газ, необходимый для процесса металлизации ванадиевых окатышей, получают путем конверсии природного газа, а в процессе плавки в электропечах используют стальной скрап и чугун (40-75% общей массы металлошихты), не содержащий ванадия. Thus, a known method of smelting alloyed with vanadium steel (with a content of 0.08-0.3% V) [1, p. 20], which provides for the use in electric furnaces of metallized vanadium pellets and which is closest to the proposed technical solution and is selected as a prototype. In this case, the reducing gas necessary for the metallization of vanadium pellets is obtained by converting natural gas, and in the smelting process, steel scrap and cast iron (40-75% of the total weight of the metal charge) that does not contain vanadium are used in electric furnaces.

Недостатком этого способа является применение для получения восстановительных газов дорогостоящего высококалорийного топлива - природного газа. Кроме того, при проведении конверсии выделяется значительное количество сажи и для уменьшения ее образования требуется применение специальных мер (дорогостоящие никелевые катализаторы, применение паровой кислородной конверсии). При этом также требуется применение значительного количества специально подготавливаемого стального скрапа и дорогостоящего чугуна, что снижает концентрацию ванадия в стали. The disadvantage of this method is the use for obtaining reducing gases of expensive high-calorie fuel - natural gas. In addition, a significant amount of soot is released during the conversion and special measures are required to reduce its formation (expensive nickel catalysts, the use of steam oxygen conversion). It also requires the use of a significant amount of specially prepared steel scrap and expensive cast iron, which reduces the concentration of vanadium in steel.

Технической задачей изобретения является удешевление процесса получения легированной ванадием стали и увеличение концентрации ванадия в стали при том же относительном расходе ванадийсодержащих материалов. An object of the invention is to reduce the cost of the process of producing alloyed with vanadium steel and increasing the concentration of vanadium in steel at the same relative consumption of vanadium-containing materials.

Решение этой задачи достигается тем, что ванадийсодержащее сырье (например, ванадиевые окатыши или брикеты) с содержанием ванадия до 0,4-0,5% проходит восстановительную стадию металлизации в печи металлизации, например, в шахтной печи, причем в качестве восстановителя используются горячие восстановительные газы, получаемые при газификации углеродсодержащих материалов, например, угля или любых отходов в жидкой расплавленной ванне. При этом температура горячих восстановительных газов при восстановлении ванадийсодержащих окатышей может быть выше, чем при обычном процессе металлизации, характерных для процессов Corex [3] (850oC) и Мидрекс [4] (750-770oC), и может составлять 850-1050oC. Такая температура и обеспечивается газификатором. Газификатор работает в смешанном режиме и при загрузке в качестве рудной части ванадийсодержащего сырья, например, окатышей, обеспечивает получение полупродукта с содержанием ванадия до 0,5% и шлака с содержанием ванадия 0,5%. Металлизованное ванадийсодержащее сырье, например, окатыши, ванадийсодержащие продукт и шлак используются в качестве шихты дуговых электропечей с получением ванадийсодержащей стали (с содержанием ванадия до 0,5-1,5%).The solution to this problem is achieved by the fact that vanadium-containing raw materials (for example, vanadium pellets or briquettes) with a vanadium content of up to 0.4-0.5% go through the reduction stage of metallization in a metallization furnace, for example, in a shaft furnace, and hot reduction materials are used as a reducing agent gases from the gasification of carbonaceous materials, such as coal or any waste in a molten bath. In this case, the temperature of the hot reducing gases during the reduction of vanadium-containing pellets can be higher than during the usual metallization process, which are typical for the processes of Corex [3] (850 o C) and Midrex [4] (750-770 o C), and can be 850- 1050 o C. This temperature is provided by a gasifier. The gasifier operates in a mixed mode and when loading vanadium-containing raw materials, for example, pellets, as the ore part, it provides a semi-product with a vanadium content of up to 0.5% and slag with a vanadium content of 0.5%. Metallized vanadium-containing raw materials, for example, pellets, a vanadium-containing product and slag are used as a charge for electric arc furnaces to produce vanadium-containing steel (with a vanadium content of up to 0.5-1.5%).

При этом выдерживаются следующие параметры технологического режима. In this case, the following parameters of the technological mode are maintained.

Основным продуктом плавки в электропечи является ванадийсодержащая сталь с содержанием ванадия до 0,5 - 1,5%. При этом металлическая часть шихты состоит из ванадийсодержащего металлизованного рудного сырья (например, окатышей) с содержанием ванадия V = 0,4-0,5%, получаемого в печи металлизации, ванадийсодержащего полупродукта с содержанием ванадия до 0,5%, получаемого в газификаторе с жидкой ванной при его работе в смешанном режиме (с одновременным получением восстановительного газа, металлического продукта и шлака). Кроме того, в электропечь загружается ванадийсодержащий шлак с содержанием ванадия 0,5%. The main product of smelting in an electric furnace is vanadium-containing steel with a vanadium content of up to 0.5 - 1.5%. The metal part of the charge consists of vanadium-containing metallized ore raw materials (for example, pellets) with a vanadium content of V = 0.4-0.5%, obtained in a metallization furnace, a vanadium-containing intermediate with a vanadium content of up to 0.5%, obtained in a gasifier with liquid bath during its operation in mixed mode (with simultaneous production of reducing gas, metal product and slag). In addition, vanadium-containing slag with a vanadium content of 0.5% is loaded into the electric furnace.

В печь металлизации загружается ванадийсодержащее рудное сырье, например, окатыши, с содержанием ванадия V = 0,4- 0,5%, а процесс восстановления проводят горячим восстановительным газом с температурой до 850-1050oC и содержанием СО = 50-60%, H2 = 27-36%, CO2 = 4-5%, получаемым в газификаторе с жидкой ванной, до степени металлизации 0,88- 0,92%. Расход горячего восстановительного газа составляет 2000-2700 м3/т окатышей [5].Vanadium-containing ore raw materials, for example, pellets, with a vanadium content of V = 0.4-0.5% are loaded into the metallization furnace, and the reduction process is carried out with hot reducing gas with a temperature of up to 850-1050 o C and a CO content of 50-60%, H 2 = 27-36%, CO 2 = 4-5%, obtained in a gasifier with a liquid bath, to a metallization degree of 0.88-0.92%. The flow rate of hot reducing gas is 2000-2700 m 3 / t of pellets [5].

В газификатор с жидкой ванной загружают углеродсодержащий материал, например, уголь или любые отходы, с расходом в пересчете на энергетический уголь 0,4- 0,5 кг/м3 газа, а также ванадийсодержащее рудное сырье (например, титаномагнетитовые ванадийсодержащие руды, ванадийсодержащие окатыши или брикеты) с содержанием ванадия до 0,4-0,5% с расходом 1,5-1,7 т/т выплавляемого полупродукта. При этом подается кислород с расходом 0,23-0,25 м33 газа или 400-500 м3/т полупродукта. Расход энергетического угля при этом составляет 0,9-1,1 т/т выплавляемого полупродукта.A carbon-containing material, for example coal or any waste, is charged to a gasifier with a liquid bath, with a consumption in terms of steam coal of 0.4-0.5 kg / m 3 of gas, as well as vanadium-containing ore raw materials (for example, titanomagnetite vanadium-containing ores, vanadium-containing pellets or briquettes) with a vanadium content of up to 0.4-0.5% with a consumption of 1.5-1.7 t / t of the lost product. In this case, oxygen is supplied with a flow rate of 0.23-0.25 m 3 / m 3 of gas or 400-500 m 3 / t of intermediate. The consumption of thermal coal in this case is 0.9-1.1 t / t of smelted intermediate.

На чертеже представлено устройство, реализующее предлагаемый способ. Оно содержит газификатор в жидкой расплавленной ванне 1, печь для металлизации 2 и дуговую электропечь 3. Газификатор 1 содержит засыпное устройство 4, фурмы для подачи кислорода 5, патрубок для отвода горячего восстановительного газа 6, выпускные отверстия для выпуска шлака 7 и полупродукта 8. Печь металлизации 2 содержит засыпное устройство 9, распределительное устройство 10 для подачи горячего восстановительного газа, патрубок 11 для отвода отработанного (экспортного газа). Дуговая электропечь 3 содержит засыпное устройство 12, электроды 13 и топливно-кислородные горелки 14. The drawing shows a device that implements the proposed method. It contains a gasifier in a molten molten bath 1, a furnace for metallization 2, and an electric arc furnace 3. Gasifier 1 contains a charging device 4, tuyeres for oxygen supply 5, a nozzle for exhausting hot reducing gas 6, exhaust holes for discharging slag 7 and intermediate 8. The furnace metallization 2 contains a filling device 9, a distribution device 10 for supplying hot reducing gas, a pipe 11 for discharging waste (export gas). Electric arc furnace 3 contains a charging device 12, electrodes 13 and fuel-oxygen burners 14.

Предлагаемый способ бескоксовой переработки ванадийсодержащего рудного сырья с получением легированной ванадием стали реализован следующим способом. В газификатор 1 через засыпное устройство 4 подаются углеродсодержащий материал 15, например, уголь или любые отходы, и ванадийсодержащее рудное сырье 16, например, титаномагнетитовые руды ванадийсодержащие окатыши. Одновременно через фурмы 5 подается кислород. Получаемые в процессе жидкофазного восстановления и газификации горячие восстановительные газы 17 через патрубок 6 подаются в распределительное устройство 10 печи металлизации 2. В печь металлизации 2 через засыпное устройство 9 загружается ванадийсодержащее рудное сырье 18, например, окатыши. Получаемый в процессе восстановления в печи 2 металлизованный ванадийсодержащий продукт 19 поступает через загрузочное устройство 12 в дуговую электропечь 3. В электропечь также поступает ванадийсодержащий полупродукт 20 из газификатора 1, работающего в смешанном режиме, а также ванадийсодержащий шлак 21. Отработанный в шахтной печи 2 газ через патрубок 11 отводится как экспортный газ 22. The proposed method of coke-free processing of vanadium-containing ore raw materials with obtaining vanadium-alloyed steel is implemented in the following way. Carbon-containing material 15, for example coal or any waste, and vanadium-containing ore raw materials 16, for example, vanadium-containing titanomagnetite ores, are fed into the gasifier 1 through the filling device 4. At the same time, oxygen is supplied through tuyeres 5. The hot reducing gases obtained in the process of liquid-phase reduction and gasification 17 are fed through a nozzle 6 to a distribution device 10 of a metallization furnace 2. Vanadium-containing ore raw materials 18, for example, pellets, are loaded into a metallization furnace 2 through a filling device 9. Obtained in the recovery process in furnace 2, the metallized vanadium-containing product 19 enters through the charging device 12 into an electric arc furnace 3. The vanadium-containing intermediate 20 from the gasifier 1 operating in a mixed mode also enters the electric furnace, as well as the vanadium-containing slag 21. The gas exhausted in the shaft furnace 2 the pipe 11 is discharged as export gas 22.

В дуговой электропечи 3 с помощью электроэнергии, подаваемой через электроды 13 и топливно-кислородные горелки 14, осуществляется процесс плавления шихты с получением легированной ванадием стали. При необходимости в электропечь может загружаться небольшое количество металлического скрапа. Экспортный газ 22 также может использоваться как добавка 23 к природному газу при его сжигании в топливно-кислородных горелках 14. In the electric arc furnace 3 with the help of electricity supplied through the electrodes 13 and fuel-oxygen burners 14, the process of melting the mixture to produce alloyed with vanadium steel. If necessary, a small amount of metal scrap can be loaded into the electric furnace. Export gas 22 can also be used as an additive 23 to natural gas when it is burned in fuel-oxygen burners 14.

Преимуществом данного способа является снижение себестоимости продукции за счет замены природного газа, применяемого для получения восстановительного газа, любым углеродсодержащим продуктом, в том числе отходами. Кроме того, концентрация ванадия в стали повышается в 2-3 раза (до 0,5-1,5%) за счет замены стального скрапа и чугуна в шихте дуговых электропечей ванадийсодержащими полупродуктами и шлаком, получаемыми при работе газификатора в смешанном режиме. Дополнительно, расход природного газа, применяемого в топливно-кислородных горелках электропечей, может быть снижен на 15-20% за счет использования экспортного газа, получаемого после процессов восстановления в печи металлизации. The advantage of this method is to reduce the cost of production by replacing the natural gas used to produce reducing gas, any carbon-containing product, including waste. In addition, the concentration of vanadium in steel increases by a factor of 2–3 (up to 0.5–1.5%) due to the replacement of steel scrap and cast iron in the charge of electric arc furnaces with vanadium-containing intermediates and slag obtained when the gasifier was operated in a mixed mode. Additionally, the consumption of natural gas used in fuel-oxygen burners of electric furnaces can be reduced by 15-20% due to the use of export gas obtained after reduction processes in a metallization furnace.

В случае использования в процессе в качестве ванадийсодержащего рудного сырья титаномагнетитовых руд стальной продукт также дополнительно легируется хромом, титаном, никелем, кобальтом, молибденом и другими легирующими элементами, а получаемые шлаки, наряду с ванадием, концентрируют титан, алюминий, магний, редкие и рассеянные элементы, что дополнительно улучшает качество стали и повышает экономичность процесса за счет возможности дальнейшей переработки шлаковой фазы с извлечением указанных элементов [6]. If titanomagnetite ores are used as vanadium ore in the process, the steel product is also additionally alloyed with chromium, titanium, nickel, cobalt, molybdenum and other alloying elements, and the resulting slags, along with vanadium, concentrate titanium, aluminum, magnesium, rare and dispersed elements , which further improves the quality of steel and increases the efficiency of the process due to the possibility of further processing of the slag phase with the extraction of these elements [6].

Литература
1. Бескоксовая переработка титаномагнетитовых руд // В.А. Ровнушкин, Б. А. Боковиков, С.Г. Братчиков и др. М.: Металлургия, 1988, 246 с.
Literature
1. Cox-free processing of titanomagnetite ores // V.A. Rovnushkin, B.A. Bokovikov, S.G. Bratchikov et al. M .: Metallurgy, 1988, 246 p.

2. Смирнов Л.А., Дерябин Ю.А., С.В.Шаврин. Металлургическая переработка ванадийсодержащих титаномагнетитов. Челябинск: Металлургия (Челябинское отделение), 1990, 255 с. 2. Smirnov L.A., Deryabin Yu.A., S.V. Shavrin. Metallurgical processing of vanadium-containing titanomagnetites. Chelyabinsk: Metallurgy (Chelyabinsk branch), 1990, 255 p.

3. Corex (R), Revolution in Ironmaking. Voest Alpine Industrianlagenbau. Linz. 1994, р. 21. 3. Corex (R), Revolution in Ironmaking. Voest Alpine Industrianlagenbau. Linz. 1994, p. 21.

4. Развитие бескоксовой металлургии. Н.А. Тулин, В.С. Кудрявцев, С.А. Пчелкин и др. М., Металлургия, 1987, 328 с. 4. The development of coke-free metallurgy. ON THE. Tulin, V.S. Kudryavtsev, S.A. Pchelkin et al. M., Metallurgy, 1987, 328 p.

5. Металлургия чугуна. Вегман Е.Ф., Жеребин Б.Н., Похвисхнев А.Н. и др. М.: Металлургия, 1998. - 512 с. 5. Metallurgy of pig iron. Vegman E.F., Zherebin B.N., Pokhviskhnev A.N. et al. M.: Metallurgy, 1998. - 512 p.

6. Резниченко Б.А., Садыхов Т.Б., Карязин И.А. Титаномагнетиты - сырье для новой модели производства. Металлы, 1997, N 6, с. 3-7. 6. Reznichenko B. A., Sadikhov T. B., Karyazin I. A. Titanomagnetites are raw materials for a new production model. Metals, 1997, N 6, p. 3-7.

Claims (3)

1. Способ бескоксовой переработки ванадийсодержащего рудного сырья с получением легированной ванадием стали, включающий загрузку сырья в шахтную печь, его металлизацию и последующую плавку металлизованного сырья в дуговой электропечи, отличающийся тем, что из ванадийсодержащего сырья дополнительно получают ванадийсодержащий полупродукт и шлак в плавильном газификаторе с жидкой ванной при газификации угля и углеродсодержащих материалов с одновременным получением горячего восстановительного газа, который с температурой 850-1050oC и с расходом 2000-2700 м3/т сырья подают в шахтную печь для металлизации ванадийсодержащего сырья, при этом получаемый ванадийсодержащий полупродукт и шлак используют в качестве дополнительной металлошихты для процесса плавки в дуговой электропечи.1. A method of cokeless processing of vanadium-containing ore raw materials to produce vanadium-alloyed steel, comprising loading the raw materials into a shaft furnace, metallizing it and subsequent melting of the metallized raw materials in an electric arc furnace, characterized in that vanadium-containing intermediate is additionally obtained from the vanadium-containing raw materials and slag in a melting gasifier with a melting gasifier bath and the coal gasification of carbonaceous materials with simultaneous production of the hot reducing gas which is at a temperature 850-1050 o C and p gathering of 2000-2700 m 3 / t of feed fed to the shaft furnace for metallizing the vanadium-containing raw material, wherein the vanadium intermediate and the resulting slag is used as the additional metal charge melting process in an electric arc furnace. 2. Способ по п.1, отличающийся тем, что переработке подвергают ванадийсодержащее рудное сырье в виде окатышей. 2. The method according to claim 1, characterized in that the processing is subjected to vanadium-containing ore raw materials in the form of pellets. 3. Способ по пп.1 и 2, отличающийся тем, что экспортный газ, получаемый в шахтной печи, используют для плавки в дуговой электропечи в качестве топливной добавки в топливно-кислородных горелках. 3. The method according to claims 1 and 2, characterized in that the export gas obtained in a shaft furnace is used for melting in an electric arc furnace as a fuel additive in oxygen-fuel burners.
RU98115858A 1998-08-11 1998-08-11 Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel RU2167944C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU98115858A RU2167944C2 (en) 1998-08-11 1998-08-11 Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU98115858A RU2167944C2 (en) 1998-08-11 1998-08-11 Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel

Publications (2)

Publication Number Publication Date
RU98115858A RU98115858A (en) 2000-06-10
RU2167944C2 true RU2167944C2 (en) 2001-05-27

Family

ID=20209757

Family Applications (1)

Application Number Title Priority Date Filing Date
RU98115858A RU2167944C2 (en) 1998-08-11 1998-08-11 Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel

Country Status (1)

Country Link
RU (1) RU2167944C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503724C2 (en) * 2012-04-20 2014-01-10 Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" Method of titanium-magnetite ore processing
RU2740547C2 (en) * 2018-09-07 2021-01-15 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) Method of steel and alloys melting in closed power metallurgical cycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
РОВНУШКИН В.А. и др. Бескоксовая переработка титаномагнетитовых руд. - М.: Металлургия, 1988, с.246. Химия, технология и применение ванадиевых соединений: Тезисы докладов III Всесоюзного совещания в г. Качканаре. - Свердловск, 1979, с.114-116. "Iron and Steel End", 1990, 67, № 6, с.21-25. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503724C2 (en) * 2012-04-20 2014-01-10 Общество С Ограниченной Ответственностью Промышленная Компания "Технология Металлов" Method of titanium-magnetite ore processing
RU2740547C2 (en) * 2018-09-07 2021-01-15 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) Method of steel and alloys melting in closed power metallurgical cycle

Similar Documents

Publication Publication Date Title
US4340420A (en) Method of manufacturing stainless steel
KR940008926B1 (en) Mill arrangement and a process of operating the same using off gases to refine pig iron
CN113265549B (en) Method for treating laterite-nickel ore and stainless steel metallurgy waste by oxygen-enriched side-blown smelting furnace
MXPA96005042A (en) Method for the direct use of chromium mineral in the production of stainless steel
CN102191348B (en) Technological method and device for producing high-grade nickel and stainless steel by using oxidized pellet method
Roth et al. PRIMUS, a new process for recycling by-products and producing virgin iron
RU2167944C2 (en) Method of coke-free processing of vanadium-containing ore materials with production of vanadium steel
RU2337971C1 (en) Steel production method with usage metallised iron-ore raw materials
CN102181776A (en) Technique and device for producing high-grade nickel and stainless steel by reduction pelletization
US6582492B1 (en) Method for producing melt iron
WO2001086006A2 (en) Improved process for the production of stainless steels and high chromium steels and stainless steelproduced thereby
Eketorp Energy considerations of classical and new iron-and steel-making technology
RU2287017C2 (en) Method of coke-free processing of vanadium-containing ore material for making vanadium-alloyed steel, hot metallized pellets and vanadium slag
EP0950117B1 (en) A method for producing metals and metal alloys
RU2282665C2 (en) Recuperative method of coke-free reworking of vanadium-containing ore raw material with direct alloying of steel with vanadium
Zervas et al. Direct smelting and alternative processes for the production of iron and steel
JPS5959818A (en) Steel making method
Chatterjee A critical appraisal of the present status of smelting reduction-Part I From blast furnace to Corex
JP2895247B2 (en) Operating method of steelmaking furnace
US4412862A (en) Method for the production of ferrochromium
RU2217505C1 (en) Method of processing nickel-bearing iron ore raw material
RU2318024C1 (en) Method of the non-coke reprocessing of the mining raw with production of the vanadium-alloyed steel
Sarma et al. A review of coal-based direct ironmaking processes
Moore An examination of the new direct smelting processes for iron and steelmaking
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step