JPS5815847Y2 - Housiya Senatsusa Sokutei Souchi - Google Patents

Housiya Senatsusa Sokutei Souchi

Info

Publication number
JPS5815847Y2
JPS5815847Y2 JP10939275U JP10939275U JPS5815847Y2 JP S5815847 Y2 JPS5815847 Y2 JP S5815847Y2 JP 10939275 U JP10939275 U JP 10939275U JP 10939275 U JP10939275 U JP 10939275U JP S5815847 Y2 JPS5815847 Y2 JP S5815847Y2
Authority
JP
Japan
Prior art keywords
shaped frame
metal plate
measured
radiation source
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10939275U
Other languages
Japanese (ja)
Other versions
JPS5223553U (en
Inventor
宇野利昭
山田純司
増井馨
中沢健二
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP10939275U priority Critical patent/JPS5815847Y2/en
Publication of JPS5223553U publication Critical patent/JPS5223553U/ja
Application granted granted Critical
Publication of JPS5815847Y2 publication Critical patent/JPS5815847Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は例えば一枚の金属板製品、或いは金属板圧延機
の自動制御系における圧延された金属板厚さの検出部と
して使用される放射線厚さ測定装置の改良に関し、特に
被測定物である金属板の厚さ測定点を金属板のセンター
とエッヂ点に定めて同時に連続測定を行わせる測定装置
に係るものであり、巾の異なる被測定金属板に対しても
測定点への追従設定が容易で、しかも測定誤差の発生が
なく、保守、取扱いも容易な測定装置を得ることを目的
とする。
[Detailed description of the invention] The present invention relates to the improvement of a radiation thickness measuring device used, for example, as a detection unit for measuring the thickness of a rolled metal plate in the automatic control system of a single metal plate product or a metal plate rolling mill. In particular, it relates to a measuring device that measures the thickness of a metal plate as an object to be measured by setting the thickness measurement points at the center and edge points of the metal plate and simultaneously performs continuous measurements, and can also be used for metal plates of different widths. It is an object of the present invention to provide a measuring device that can be easily set to follow a measurement point, does not cause measurement errors, and is easy to maintain and handle.

例えば圧延機の自動制御系における圧延金属板の厚さ検
出部として使用される厚さ測定装置としては、無接触で
測定が行える放射線厚さ計が多用されている。
For example, as a thickness measuring device used as a thickness detecting section of a rolled metal plate in an automatic control system of a rolling mill, a radiation thickness meter that can perform contactless measurement is often used.

しかも圧延金属板の製品品質を向上させるよう圧延機を
制御するためには、厚さ測定の精度が要求され、更に厚
さ測定点を1箇所に止めず、複数箇所で測定して、その
クラウン量を求める如き多点測定方式が行われている。
Moreover, in order to control the rolling mill to improve the product quality of rolled metal sheets, precision in thickness measurement is required. A multi-point measurement method is used to determine the quantity.

この測定箇所は通常金属板のセンターとエッチに定めら
れる。
This measurement point is usually determined at the center and edge of the metal plate.

又製品によっては金属板の巾が異なるものであるから、
被測定物である金属板の巾寸法が異なるものに対して、
厚さ計の測定位置が追従出来るように成すことが必要で
ある。
Also, since the width of the metal plate differs depending on the product,
For objects to be measured with different widths of metal plates,
It is necessary to be able to follow the measurement position of the thickness gauge.

従来上記の如き厚さ測定装置として最初の内は第1図な
いし第3図の如き装置が採用されていた。
Conventionally, devices such as those shown in FIGS. 1 to 3 were initially employed as the above-mentioned thickness measuring device.

第1図ないし第3図において1は被測定物である金属板
であり、ローラコンベア2の上を矢印Aの方向に移送さ
れる。
In FIGS. 1 to 3, reference numeral 1 denotes a metal plate as an object to be measured, which is transported on a roller conveyor 2 in the direction of arrow A.

金属板1の厚さ測定はセンタラインM1、エッヂライン
M2上の2箇所に定めて連続的に測定される。
The thickness of the metal plate 1 is measured continuously at two locations on the center line M1 and edge line M2.

この2箇所の厚さ測定に対しては2台の透過形放射線測
定装置3A、3Bが用意され、各装置3A、3Bはそれ
ぞれ金属板1の移送方向Aに対して変位した位置で、そ
れぞれ移送方向Aと直角方向に施設されたレール4Aお
よび4B上を自走するよう配置されている。
Two transmission type radiation measuring devices 3A and 3B are prepared for thickness measurement at these two locations, and each device 3A and 3B is moved at a position displaced from the direction A of the metal plate 1, respectively. It is arranged to run on rails 4A and 4B installed perpendicular to direction A.

各装置3Aおよび3Bはレール4Aおよび4B上を移動
するC形フレーム5Aおよび5Bと、各フレーム5A、
5Bの開放上下端にそれぞれ固定設置された検出器6及
び線源容器7よりなる。
Each device 3A and 3B has a C-shaped frame 5A and 5B moving on rails 4A and 4B, each frame 5A,
It consists of a detector 6 and a radiation source container 7 fixedly installed at the upper and lower open ends of 5B, respectively.

各測定装置3A、3Bでの厚さ測定は周知の如く、線源
容器7内に設置したラジオアイソトープより照射される
放射線が被測定物である金属板1を透過する際に減衰さ
れるので、この減衰量を検出器6で測定することにより
、既知の被測定物材質に相応して厚さを測定する。
As is well known, the thickness measurement by each measuring device 3A, 3B is performed because the radiation emitted from the radioisotope installed in the radiation source container 7 is attenuated when it passes through the metal plate 1, which is the object to be measured. By measuring this amount of attenuation with the detector 6, the thickness is measured in accordance with the known material of the object to be measured.

しかしながら上記の旧来構成では2台分の設置場所を必
要とするのみならず、金属板1に対して同一断面でのセ
ンターM1及びエッヂM2の測定が行えず、測定点が異
なる断面位置となって正確なりラウン量が測定出来ない
However, the conventional configuration described above not only requires installation space for two machines, but also makes it impossible to measure the center M1 and edge M2 on the same cross section of the metal plate 1, resulting in measurement points at different cross-sectional positions. The round amount cannot be measured accurately.

このために被測定金属板1における同一断面位置でのセ
ンターM1及びエッヂM2の測定が行えるよう、2組の
厚さ計を同一フレーム上に設置した第4図の構成が実施
されている。
For this purpose, the configuration shown in FIG. 4 is implemented in which two sets of thickness gauges are installed on the same frame so that the center M1 and edge M2 of the metal plate 1 to be measured can be measured at the same cross-sectional position.

第4図ではレール4上を自走するC形フレーム5の開放
上下端には1組の検出器6A、線源容器7Aが固定して
設置されている。
In FIG. 4, a pair of detectors 6A and a radiation source container 7A are fixedly installed at the open upper and lower ends of a C-shaped frame 5 that runs on a rail 4.

一方他方組の検出器6B1線源容器7Bはフレーム5内
で歯車8間に張架されたチェーン9に支承され、駆動モ
ータ10によりチェーン移送方式でフレーム5に対して
矢印Bの如く移動して固定設置である第1組の検出器6
A、線源容器7Aとの間隔距離を相対的に調節出来るよ
う構成されている。
On the other hand, the other set of detectors 6B1 and source container 7B are supported by a chain 9 stretched between gears 8 within the frame 5, and are moved relative to the frame 5 in the direction of arrow B by a chain transfer method by a drive motor 10. The first set of detectors 6 is fixedly installed.
A. It is configured so that the distance between it and the radiation source container 7A can be adjusted relatively.

11はフレーム5の自走駆動モータを示す。Reference numeral 11 indicates a self-propelled drive motor of the frame 5.

第4図の構成では、第2組の検出器6B、線源容器7B
がフレーム5に対して実線位置から鎖線位置まで矢印B
方向に移動設定出来るので、被測定金属板1の巾が変更
されても、金属板1の同じ断面位置にて所定のセンター
、エッヂ測定箇所へ追従移動が行える。
In the configuration shown in FIG. 4, the second set of detectors 6B, the radiation source container 7B
arrow B from the solid line position to the chain line position with respect to frame 5
Since movement can be set in the direction, even if the width of the metal plate 1 to be measured is changed, follow-up movement can be performed to a predetermined center or edge measurement location at the same cross-sectional position of the metal plate 1.

従って、先記第1図ないし第3図に示した構成に比較し
て金属板1の移送方向への測定位置ずれは解消される。
Therefore, compared to the configurations shown in FIGS. 1 to 3, the measurement position shift in the transport direction of the metal plate 1 is eliminated.

しかしながら一方の組の線源容器7B及び検出器6Bは
歯車8、チェーン9等を介して移動操作されるため、長
期使用に際して歯車8の摩耗、チェーン9の伸び等によ
り検出器6Bと線源容器7Bとの相対位置が最初に設定
した相対位置よりずれることが生じる。
However, since one set of radiation source container 7B and detector 6B is moved and operated via gear 8, chain 9, etc., during long-term use, wear of gear 8, elongation of chain 9, etc. may cause detector 6B and radiation source container to move. The relative position with respect to 7B may deviate from the initially set relative position.

このために両者の相対位置のずれに相応して線源容器7
Bからの放射線ビームに対する検出器の受ける放射線量
が変化し、厚さ測定値の誤差の要因となる。
For this reason, the radiation source container 7 is
The radiation dose received by the detector for the radiation beam from B changes, causing an error in the thickness measurement.

本考案は上記従来構成における欠点を解消し、取扱いが
容易で長期使用にも測定誤差の要因となる線源容器と検
出器の相対的な位置ずれの発生が生じない厚さ測定装置
を目的としたものであり、この目的は本考案により被測
定物に対して相対的に自走する第1のC形フレーム、該
フレームの開放上下端にそれぞれ固定設置した1組の線
源容器と検出器、第1のC形フレームとは独立して成0
、かつ第1のC形フレーム上を自走する第2のC形フレ
ーム、第2のC形フレームの開放上下端にそれぞれ固定
設置した1組の線源容器と検出器とを備えることにより
達成される。
The purpose of the present invention is to eliminate the drawbacks of the conventional configuration described above, and to create a thickness measuring device that is easy to handle and does not cause relative positional deviation between the radiation source container and the detector, which can cause measurement errors even after long-term use. The purpose of this invention is to provide a first C-shaped frame that is self-propelled relative to the object to be measured, and a pair of radiation source containers and detectors that are fixedly installed at the open upper and lower ends of the frame, respectively. , formed independently of the first C-shaped frame.
, and is achieved by providing a second C-shaped frame that runs on its own on the first C-shaped frame, and a pair of radiation source containers and detectors fixedly installed at the open upper and lower ends of the second C-shaped frame, respectively. be done.

次に本考案を図示の実施例により説明する。Next, the present invention will be explained with reference to illustrated embodiments.

第5図および第6図において、ローラコンベア2上を紙
面の垂直方向に移送される被測定金属板1に対して相対
的に、図示例では金属板1の移送方向に直角方向に施設
されたレール4i上を自走する第1のC形フレーム5【
が配置される。
5 and 6, relative to the metal plate 1 to be measured that is transferred on the roller conveyor 2 in the direction perpendicular to the plane of the paper, in the illustrated example, the installation is perpendicular to the direction of transfer of the metal plate 1. The first C-shaped frame 5 that runs on the rail 4i [
is placed.

このフレーム5■の開放上下端にはそれぞれ1組の検出
器6と線源容器7が所定の位置に向いて固定設置されて
いる。
A pair of detectors 6 and a radiation source container 7 are fixedly installed at the open upper and lower ends of the frame 5, respectively, facing predetermined positions.

第1のC形フレーム5Iは自走駆動モータ111により
レール4I上を移動する。
The first C-shaped frame 5I is moved on the rail 4I by a self-propelled drive motor 111.

更に第1のC形フレーム5Iに対して小形に独立構成さ
れた第2のC形フレーム5■が用意されており、このフ
レーム5■は第1のC形フレーム5■上にて、第1のC
形フレーム5■の自走レール4Iと同方向に施設された
レール4■上に移動可能に配置される。
Furthermore, a second C-shaped frame 5■ is provided which is small and independent from the first C-shaped frame 5I. C of
It is movably arranged on a rail 4■ installed in the same direction as the self-propelled rail 4I of the shaped frame 5■.

第2のC形フレーム5■は自走駆動モータ11■により
、レール4■上を矢印Bの如く第1のC形フレーム5I
と相対的に自走する。
The second C-shaped frame 5■ is driven by a self-propelled drive motor 11■ to move the first C-shaped frame 5I on the rail 4■ as shown by arrow B.
and relatively self-propelled.

第2のC形フレーム5■の開放上下端には1組の検出器
6と線源容器7が所定の位置に向いて固定配置されてい
る。
A pair of detectors 6 and a radiation source container 7 are fixedly arranged at predetermined positions at the open upper and lower ends of the second C-shaped frame 5.

上記構成における測定動作は次の通りである。The measurement operation in the above configuration is as follows.

先ず第1のC形フレーム5Iは被測定金属板1に対して
、その線源容器7及び検出器がセンター測定箇所M1に
設定されるよう自走移動さ石る。
First, the first C-shaped frame 5I is moved by itself relative to the metal plate 1 to be measured so that its radiation source container 7 and detector are set at the center measurement point M1.

次に金属板1の巾寸法に応じた外部信号により、第2の
C形フレーム5■はその線源容器6が金属板1の側線よ
り所定寸法だけ内側のエッヂ測定箇所M2に設定される
よう、第1のC形フレーム5I上をレール4■に沿って
移動される。
Next, in response to an external signal corresponding to the width of the metal plate 1, the second C-shaped frame 5 is set so that its radiation source container 6 is set at the edge measurement point M2, which is a predetermined distance inside the side line of the metal plate 1. , are moved along the rail 4■ on the first C-shaped frame 5I.

被測定金属板1の巾寸法か異なる場合には、その巾寸法
に応じたセンターおよびエッヂ測定点Ml 、M2まで
それぞれ前記と同様に移動設定され、次いで放射線の透
過による厚さ測定を行う。
If the width of the metal plate 1 to be measured is different, the center and edge measurement points M1 and M2 corresponding to the width are moved and set in the same manner as described above, and then the thickness is measured by transmitting radiation.

上記の本考案による構成によれば、第2のC形フレーム
5■は第1のC形フレーム5Iと同様に剛節の骨組構造
を持ったラーメンとして成るので、各組の検出器6と線
源容器Tとの相対位置は常に不変であり、仮にレール4
■が長期使用中に摩料しても同様である。
According to the above-mentioned configuration according to the present invention, the second C-shaped frame 5■ is formed as a rigid frame having a frame structure of rigid joints like the first C-shaped frame 5I. The relative position with respect to the source container T is always unchanged, and if rail 4
The same thing happens if (2) wears out during long-term use.

従って線源容器7から照射された放射線は正しく検出器
6で検出されることになり、第4図に示した如き測定誤
差要因となる相対的位置ずれの発生を無くして安定した
測定精度を得ることが出来る。
Therefore, the radiation irradiated from the radiation source container 7 is correctly detected by the detector 6, and stable measurement accuracy is obtained by eliminating relative positional deviations that cause measurement errors as shown in FIG. I can do it.

又被測定物の巾寸法が変更されても、同一断面上でのセ
ンター及びエッヂ測定点への追従移動が容易に行えるほ
か、第4図の構成に比較して保守、取扱いも極めて簡便
となる。
Furthermore, even if the width dimension of the object to be measured changes, it is easy to follow the center and edge measurement points on the same cross section, and maintenance and handling are also much easier compared to the configuration shown in Figure 4. .

なお、図示例は被測定金属板が移動し、測定装置の測定
は所定位置に停止して行う例について示したが、本考案
は更に被測定金属板を停止位譚させておき、一方策1の
C形フレームを被測定金属板の巾方向のみならず、長さ
方向にも自走出来るよう構成しておくことにより、被測
定物の長さ方向全域にわたって所定の測定箇所を連続的
に測定する装置にも実施することが出来る。
Although the illustrated example shows an example in which the metal plate to be measured is moved and the measuring device is stopped at a predetermined position for measurement, the present invention further has the metal plate to be measured stopped at a predetermined position. By configuring the C-shaped frame so that it can move by itself not only in the width direction of the metal plate to be measured but also in the length direction, it is possible to continuously measure a predetermined measurement point over the entire length of the object to be measured. It can also be implemented in devices that

この場合にも第2のC形フレームで先の実施例と同様の
効果が得られる。
In this case as well, the same effects as in the previous embodiment can be obtained with the second C-shaped frame.

以上のように本考案により長期使用にも測定誤差の恐れ
がなく、かつ保守、取扱いの点でも有利な透過形放射線
厚さ測定装置を提供することが出来る。
As described above, according to the present invention, it is possible to provide a transmission type radiation thickness measuring device that is free from the risk of measurement errors even during long-term use and is advantageous in terms of maintenance and handling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図はそれぞれ従来例の測定装置の平面
図、正面図及び側面図、第4図は他の例の側面図、第5
図、第6図はそえぞれ本考案−実症例の側面図及び背面
図である。 1:被測定物、4I:第1のC形フレームの自走レール
、4■:第2のC形フレームの自走レール、5■:第1
のC形フレーム、5■:第2のC形フレーム、6:検出
器、7:線源容器、111゜11■:自走駆動モータ、
Ml:センター測定箇所、M2:エッヂ測定箇所。
Figures 1 to 3 are a plan view, a front view, and a side view of a conventional measuring device, respectively, Figure 4 is a side view of another example, and Figure 5 is a side view of another example.
6 are a side view and a rear view of an actual case of the present invention, respectively. 1: Object to be measured, 4I: Self-propelled rail of first C-shaped frame, 4■: Self-propelled rail of second C-shaped frame, 5■: First
C-shaped frame, 5 ■: second C-shaped frame, 6: detector, 7: radiation source container, 111° 11 ■: self-propelled drive motor,
Ml: Center measurement point, M2: Edge measurement point.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定物に対して相対的に自走する第1のC形フレーム
、該フレームの開放上下端にそれぞれ固定設置した1組
の線源容器と検出器、第1のC形フレームとは独立して
成り、かつ第1のC形フレーム上を自走する第2のC形
フレーム、第2のC形フレームの開放上下端にそれぞれ
固定設置した1組の線源容器と検出器を備えて成ること
を特徴とする放射線厚さ測定装置。
A first C-shaped frame that is self-propelled relative to the object to be measured, a set of radiation source container and detector fixedly installed at the open upper and lower ends of the frame, and independent of the first C-shaped frame. a second C-shaped frame that is self-propelled on the first C-shaped frame, and a set of radiation source containers and detectors fixedly installed at the open upper and lower ends of the second C-shaped frame, respectively. A radiation thickness measuring device characterized by:
JP10939275U 1975-08-07 1975-08-07 Housiya Senatsusa Sokutei Souchi Expired JPS5815847Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10939275U JPS5815847Y2 (en) 1975-08-07 1975-08-07 Housiya Senatsusa Sokutei Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10939275U JPS5815847Y2 (en) 1975-08-07 1975-08-07 Housiya Senatsusa Sokutei Souchi

Publications (2)

Publication Number Publication Date
JPS5223553U JPS5223553U (en) 1977-02-18
JPS5815847Y2 true JPS5815847Y2 (en) 1983-03-31

Family

ID=28590564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10939275U Expired JPS5815847Y2 (en) 1975-08-07 1975-08-07 Housiya Senatsusa Sokutei Souchi

Country Status (1)

Country Link
JP (1) JPS5815847Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165648A (en) * 1980-05-22 1981-12-19 Ishikawajima Harima Heavy Ind Co Ltd Strip accumulator
JPS5954419A (en) * 1982-06-05 1984-03-29 Sumitomo Metal Ind Ltd Looper of strip and processing line
JPS59186856A (en) * 1983-04-06 1984-10-23 Sumitomo Metal Ind Ltd Device for reserving strip material
KR100856276B1 (en) 2007-05-15 2008-09-03 주식회사 포스코 Detecting device for thickness of rolled material

Also Published As

Publication number Publication date
JPS5223553U (en) 1977-02-18

Similar Documents

Publication Publication Date Title
JPS5890112A (en) Radiation ray thickness meter
JPS5815847Y2 (en) Housiya Senatsusa Sokutei Souchi
US1671737A (en) Measuring apparatus
KR100319430B1 (en) Calibrator and its calibration method for the assembly of measuring thickness profiles of flat products
JPH01249220A (en) Strain straightening method
JPS5921699B2 (en) Measuring and testing device for continuous casting molds and guide devices with roller conveyors facing each other
JP2526457B2 (en) Plate flatness meter
CN108844481A (en) A kind of high-speed train body side wall type face automatic detection device and its detection method
JPH0158444B2 (en)
US2598825A (en) X-ray testing apparatus
JPS6073309A (en) Measurement of surface roughness pattern of running sheet material
GB1383160A (en) Method and apparatus for measurement of thickness of moving metal strip
JPS60106610A (en) Control method of camber of rolling material
JPS625844B2 (en)
JPH0352892B2 (en)
JPH0749958B2 (en) Surface shape measuring device
JPH0437924B2 (en)
JP2656426B2 (en) Steel plate thickness measuring device
JPS6054606B2 (en) Inspection device for long objects
JPH03162646A (en) Density detecting device for porous material
JPH04116404A (en) Automatic plate-thickness measuring apparatus
JPS6035006B2 (en) Movement measuring device
JPH05285647A (en) Method and device for welding stiffener
JPS6256808A (en) Measuring method for flange thickness of h-shape steel
JP2728555B2 (en) Automatic thickness gauge