JPS5815666A - Processing method - Google Patents

Processing method

Info

Publication number
JPS5815666A
JPS5815666A JP56113626A JP11362681A JPS5815666A JP S5815666 A JPS5815666 A JP S5815666A JP 56113626 A JP56113626 A JP 56113626A JP 11362681 A JP11362681 A JP 11362681A JP S5815666 A JPS5815666 A JP S5815666A
Authority
JP
Japan
Prior art keywords
viscosity
abrasive grain
abrasive grains
processing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56113626A
Other languages
Japanese (ja)
Inventor
Kazufumi Asakawa
浅川 一文
Kiichi Hama
浜 貴一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Hoya Electronics Corp
Original Assignee
Hoya Corp
Hoya Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp, Hoya Electronics Corp filed Critical Hoya Corp
Priority to JP56113626A priority Critical patent/JPS5815666A/en
Publication of JPS5815666A publication Critical patent/JPS5815666A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To give the processing liquid abrasive grain sortability without using super-corpuscular particle in such a way that abrasive grain of hard and friable material is suspended in the processing liquid made by adding aqueous soluble liquid which improves viscosity into water, and both sides of a work are simultaneously ground by means of the suspension liquid. CONSTITUTION:Viscous polisher 4 is adhered on upper and lower fixing discs 11, 12, while a constant load is being applied through processing liquid 14 in which viscosity is improved and abrasive grain 13 is suspended, a work 1 is made planetary revolution by means of a carrier 15 therein. If viscosity of the processing liquid, since according to the Stokes' law, bigger abrasive grain undergoes more restricted movement in the fluid, by properly sorting the viscosity, the size of abrasive grain to take part in the processing can be sorted. Thus, the surfaces of the work can be finished to be non-turbulent surfaces at the same time on its both sides.

Description

【発明の詳細な説明】 この発明は硬脆材料の遊離砥粒を用いた加工方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for processing hard and brittle materials using free abrasive grains.

従来ガラス基板等を高精度、高品質に研摩する技術とし
て ■ 遊離砥粒として粗粒子から超微粒子まで分用いて加
工する方法、 ■ 被加工物を加工液中に浸し、砥粒と加工液を介在さ
せた状態で金属定盤等と被加工物を非接触状態で加工す
る方法、 がある。
Conventional techniques for polishing glass substrates with high precision and quality include ■ A method of processing using free abrasive grains ranging from coarse particles to ultra-fine particles; ■ A method of immersing the workpiece in a machining fluid and mixing the abrasive grains and the machining fluid. There is a method of processing a metal surface plate, etc. and a workpiece in a non-contact state with the metal surface plate interposed therebetween.

前者にお−ては、第1図乃至第5図に示すように、被加
工物1と金属□定盤2との間に粗粒子からなる砥粒3を
介在させ(第1図及び第2図)て粗仕上けする。更に被
加工物1を微粒子からなる砥粒3′を介してゴム製等の
粘弾性を有するポリシャ4により研摩(第3図及び第4
図)して超仕上けIをし、最後に超微粒子からなる砥粒
31を用いて(第5v!J)超仕上げ■することにより
、5段階程度の研摩加工をするものである。
In the former, as shown in FIGS. 1 to 5, abrasive grains 3 made of coarse particles are interposed between the workpiece 1 and the metal surface plate 2 (see FIGS. 1 and 2). (Fig.) for rough finishing. Further, the workpiece 1 is polished by a viscoelastic polisher 4 made of rubber or the like through abrasive grains 3' made of fine particles (see Figs. 3 and 4).
(Fig.), super-finishing I, and finally super-finishing (2) using abrasive grains 31 made of ultra-fine particles (5th v! J), thereby performing polishing in about five stages.

このように定盤や砥粒の種類を変えながら、機械的もし
く祉機械的+化学的作用で被加工物をマイクロスクラッ
チ、応力変質層がない均−表面(以下無じよう孔表面と
いう)に仕上げるものである。
In this way, while changing the type of surface plate and abrasive grains, the workpiece is micro-scratched by mechanical or mechanical + chemical action, and a uniform surface without a stress-altered layer (hereinafter referred to as a non-porous surface) It is something that will be completed.

後者においては、超仕上げIを終えた被加工物1を保持
台5に接着し、砥粒31を含も加工液6を満たした水槽
7に浸漬し、回転運動している金属定型2上で回転させ
て金属定盤2と被加工物1とと流体軸受状態にて非接触
で保ち、被加工物1の凹凸を分子オーダーで除去するこ
とにより無じよう孔表面に仕上げるものである。
In the latter case, the workpiece 1 that has undergone superfinishing I is glued to a holding table 5, immersed in a water tank 7 filled with a machining liquid 6 containing abrasive grains 31, and placed on a rotating metal mold 2. The metal surface plate 2 and the workpiece 1 are rotated to maintain non-contact with each other in a fluid bearing state, and the unevenness of the workpiece 1 is removed on a molecular order, thereby finishing the surface of the hole.

しかしながら前者においては、超仕上げ■の前に超仕上
げIを行うため工程数が多く、能率が悪い1超仕上け■
において加工に使用する水や環境をクリーンに保ち(た
とえば水は純水。
However, in the former case, super-finishing I is performed before super-finishing ■, which results in a large number of steps and is inefficient.
Keep the water and environment used for processing clean (for example, use pure water).

雰囲気としてはクリーンブース等を使用して7ラス10
,000程度)、そのうえ超微粒子は粒度のそろったも
の、すなわち通常最大粒径が平均粒径の5〜6倍である
がこれを3倍以内とするという、以上の条件すべてが満
たされなければ必要な無じよう孔表面が得られないとい
う難点がある。また0、04μ程度の超微粒子の場合、
ホウケイ酸ガラスに対する加工速度は15A / se
c程度である。
For the atmosphere, we used a clean booth etc. for 7 to 10 hours.
, 000), and in addition, the ultrafine particles must have a uniform particle size, that is, the maximum particle size is usually 5 to 6 times the average particle size, but this must be within 3 times. All of the above conditions must be met. The disadvantage is that the required pore surface cannot be obtained. In addition, in the case of ultrafine particles of about 0.04μ,
Processing speed for borosilicate glass is 15A/se
It is about c.

後者においても加工するオーダーが分子単位であるため
加工能率1alOA/sec程度と悪く、装置も大がか
りになり、もう一つの欠点として板材等における両面同
時加工が不可能である。
Even in the latter case, since the order of processing is in molecular units, the processing efficiency is poor at about 1 alOA/sec, the equipment is large-scale, and another drawback is that simultaneous processing of both sides of a plate or the like is impossible.

ところで硬脆材料の遊離砥粒加工においては高能率を目
ざすと砥粒の機械的な作用によるマイクロスクラッチ、
応力変質層が生じやす−0そこで超微粒子、液中加工な
どを用いて機械的+化学的作用で加工を行うわけである
が、この場合、加工環境、砥粒の粒度分布、装置等にき
びしい条件が必要とな抄、低能率な結果しか得られない
By the way, when aiming for high efficiency in free abrasive processing of hard and brittle materials, microscratches due to the mechanical action of abrasive grains,
A stress-altered layer is likely to occur -0 Therefore, processing is performed using mechanical and chemical effects using ultrafine particles, submerged processing, etc., but in this case, the processing environment, particle size distribution of abrasive grains, equipment, etc. are severe. Extracting requires certain conditions, and results can only be obtained with low efficiency.

本発明は上記のような従来の欠点を除去するために鋭意
研究の結果なされたもので、超微粒子を用−ずに加工液
に砥粒選択能力をもたせ、異常砥粒もしくは異物を加工
に関与させないようにし、またもし関与した場合も、そ
の影響を最小限にく−とめるとともに1被加工物の表面
を両面同時に無じよう孔表面に仕上けることを目的とす
る。
The present invention was made as a result of intensive research in order to eliminate the above-mentioned drawbacks of the conventional technology.It gives the machining fluid the ability to select abrasive grains without using ultrafine particles, and eliminates abnormal abrasive grains or foreign matter from being involved in machining. The purpose is to prevent this from occurring, and to minimize its influence even if it is involved, and to finish the surface of one workpiece simultaneously on both sides with a hole-free surface.

更に従来例における超仕上げI、Iを一工程で行えるよ
う如し、工程を合理化することである。
Furthermore, it is possible to perform superfinishing I and I in the conventional example in one step, thereby streamlining the process.

す々わち本発明は水に粘性率を高める水溶性の液を加え
た加工液中に硬脆材料の砥粒をけん濁させ、とのけん濁
液によって被加工物の両面を同時に研摩することを特徴
とし、加工液中の砥粒の動きをその砥粒の粒径により、
加工に関与させるかさせないかを加工液が選別する能力
を持たせた加工方法である。これはストークスの法則「
半径rの球が粘性率ηの流体中を速度v8で動ψている
とき、球の受ける抵抗力をPとすると、P=6πηrv
oが成り立つ。」を利用したもので、この場合粘性率η
分増せば大きな砥粒はど流体中で動きに制約が加わるた
め、粘性率を適当にiIJ:ことによって、加工に関与
する砥粒(異物でも同じ)の大きさを選別することがで
きる。
In other words, the present invention suspends abrasive grains of a hard brittle material in a machining liquid made by adding a water-soluble liquid that increases viscosity to water, and simultaneously polishes both sides of a workpiece with the suspension. The movement of abrasive grains in the machining fluid is controlled by the particle size of the abrasive grains.
This is a processing method in which the processing fluid has the ability to select whether it is involved in processing or not. This is Stokes' law
When a sphere with radius r is moving at speed v8 in a fluid with viscosity η, and the resistance force that the sphere receives is P, then P=6πηrv
o holds true. ”, in which case the viscosity η
If the abrasive grains are increased in size, the movement of large abrasive grains will be restricted in the fluid, so by appropriately adjusting the viscosity, it is possible to select the size of the abrasive grains (including foreign substances) involved in processing.

またもし上記制約外(以上)の大きさの砥粒が加工に関
与してきて、異常砥粒が定盤と被加工物との間に介在し
たとしても、加工液が異常砥粒に集中的にかかる荷重を
分散させる働きを持ち、被加工物への異常砥粒によるマ
イクロスクラッチ、応力変質層の発生を防ぐようにした
ことを特徴として−る。
Furthermore, if abrasive grains with a size outside (or above) the above constraints are involved in machining and abnormal abrasive grains are interposed between the surface plate and the workpiece, the machining fluid will concentrate on the abnormal abrasive grains. It has the function of dispersing this load, and is characterized by preventing the occurrence of micro-scratches and stress-altered layers caused by abnormal abrasive grains on the workpiece.

次に図面に基いて本発明の一実施例を説明すると、第7
図の断面IWにおいて、粘弾性lリシャ4を上下定盤1
1.12に接着し、その間に粘性を高めるとともに砥粒
13をけん濁させた加工液14を介して一定荷重をかけ
ながら、その中で被加工物1をキャリア15により遊星
回転運動させてφる。勿論上部定盤11に設けた供給穴
16より連続的に砥粒をけん濁させた加工液14を供給
することが必要で、このようにして被加工物表面を機械
的十化学的作用によや鏡面状の無じよう孔表面に仕上け
る。
Next, one embodiment of the present invention will be explained based on the drawings.
In the cross section IW in the figure, the viscoelastic lisha 4 is placed on the upper and lower surface plates 1.
1.12, and while applying a constant load through a machining fluid 14 with increased viscosity and suspension of abrasive grains 13, the workpiece 1 is planetarily rotated by a carrier 15 to form φ. Ru. Of course, it is necessary to continuously supply the machining liquid 14 in which abrasive grains are suspended through the supply hole 16 provided in the upper surface plate 11, and in this way, the surface of the workpiece is coated by mechanical and chemical actions. It can be finished to a mirror-like orifice-like surface.

本発明にお−て使用される砥粒は平均粒径0.5μ、平
均粒径の6倍である3μ粒径のものを含むものである。
The abrasive grains used in the present invention include those with an average particle size of 0.5 μm and a particle size of 3 μm, which is 6 times the average grain size.

この粒度分布を第8図に示す。This particle size distribution is shown in FIG.

この際の砥粒#i酸化ジルコニウム(zroz)を用い
たが、アルミナ(htt O,) 、酸化マグネシウム
(MgO)、酸化セリウA (OeO,>、ベンガラ(
FetO3)、酸化亜鉛(ZnO)、酸化Yンガン(M
nO)、炭化ホウ素(B4C)、ダイヤモンド等も使用
できる。なお第8図において、平均粒径0.5μの6倍
の3μ粒径のものが全体の2重量%、また3μ〜8μの
粒径のものも認められる。
At this time, abrasive grain #i zirconium oxide (zroz) was used, but alumina (htt O,), magnesium oxide (MgO), cerium oxide (OeO, >
FetO3), zinc oxide (ZnO), Y oxide (M
nO), boron carbide (B4C), diamond, etc. can also be used. In FIG. 8, 2% by weight of the total particles had a particle diameter of 3 microns, which is six times the average particle diameter of 0.5 microns, and particles with a particle diameter of 3 microns to 8 microns were also observed.

使用される水#i3μlFilteringを受けたイ
オン交換していないもの等であり、粘性率をエチレング
リフール分加えることにより高くしている。
The water used #i is 3 μl filtered and not ion-exchanged, and the viscosity is increased by adding ethylene glyfur.

エチレングリコールF!20CP(センチポアズ、20
°CI Po1se=10  NSM’−)の粘度をも
ち、純水に対して約(9)〜艶重量襲添加すれば本発明
の効果が秦せ瞥れた。勿論被加工物の種類、例えばフォ
トマスクブランクス用ガラス基板の場合ソーダライムガ
ラス、ホウケイ酸ガラス、石英ガラス−〇耐酸性の相違
によって若干配合割合が異る。
Ethylene glycol F! 20CP (centipoise, 20
It has a viscosity of °CI Po1se = 10 NSM'-), and the effects of the present invention can be seen if it is added to pure water in an amount of about (9) to gloss weight. Of course, the blending ratio differs slightly depending on the type of workpiece, for example, soda lime glass, borosilicate glass, quartz glass - acid resistance in the case of glass substrates for photomask blanks.

第9図に加工液の粘性率と、加工能率をグラフで示し、
横軸上欄は砥粒を含めた粘性率(cp )、下欄は上欄
の粘性率を示す加工液中に占めるエチレングリコールの
量(重量%)である。
Figure 9 shows the viscosity of the machining fluid and the machining efficiency as a graph.
The upper column of the horizontal axis shows the viscosity (cp) including abrasive grains, and the lower column shows the amount (% by weight) of ethylene glycol in the processing liquid showing the viscosity in the upper column.

次表に本発明方法における加工速度を従来例■のものと
比較して示す。対象はフォトマスクブランクス用ガラス
基板である。
The following table shows the machining speed in the method of the present invention in comparison with that in the conventional example (2). The target is glass substrates for photomask blanks.

表−1 上記表−1に示した如く、それぞれ超仕上けとしては相
当高能率である。
Table 1 As shown in Table 1 above, each has a considerably high efficiency as a super finishing.

上記粘性率を高める水溶性の液としては上記エチレング
リコール・、のみならず、水よりも粘性率の高い水溶性
のものであれば良いが、粘性率があまり高くない場合社
効果を出すまで添加すると添加量が高くなるので、室温
で200P以上を示すエチレングリコール、グリセリン
等が望ましい。
The water-soluble liquid that increases the viscosity may be not only the above-mentioned ethylene glycol, but also any water-soluble liquid with a higher viscosity than water, but if the viscosity is not very high, add it until the effect is achieved. In this case, the amount added becomes high, so ethylene glycol, glycerin, etc. that exhibit 200 P or more at room temperature are desirable.

本発明の加工方法が適用される被加工物としては上記の
ようなガラス基板のみ人らず、金属単結晶、多結晶材料
などがあや、材料に応じて最適砥粒、粒度等を選択すれ
ば良い。
Workpieces to which the processing method of the present invention can be applied include not only glass substrates as described above, but also metal single crystals, polycrystalline materials, etc. If the optimum abrasive grain, grain size, etc. are selected according to the material, good.

本発明は以上のように構成したから、得られた被加工物
は砥粒の機械的乃至化学的作用が一様で、マイクロスク
ラッチが皆無であることは勿論、エツチングを加えても
ビット、スクラッチが発生せず無じよう乱表面が得られ
る。これを第10図乃至第15図に示す。それぞれ第1
0図乃至第12図は従来例の、第13図乃至第15図は
本発明方法によって得たフォトマスクブランクス用ガラ
ス基板の表面エツチング援の顕微鏡写′に50倍)であ
る。第10図乃至第12図に散見されるスクラッチは本
発明方法を適用した第13図乃至第15図において社ま
ったく見られが−。
Since the present invention is configured as described above, the obtained workpiece has uniform mechanical and chemical effects of abrasive grains, and there are no microscratches at all, and even if etched, there will be no bits or scratches. A surface with no turbulence can be obtained. This is shown in FIGS. 10 to 15. each first
FIGS. 0 to 12 are micrographs of the conventional example, and FIGS. 13 to 15 are micrographs (50 times magnification) of surface etching aids of glass substrates for photomask blanks obtained by the method of the present invention. The scratches that can be seen here and there in FIGS. 10 to 12 are completely visible in FIGS. 13 to 15, where the method of the present invention is applied.

表−2 以上のように本発明は超微粒子を用いていないため高能
率であり、また加工環境、砥粒の粒度分布もさはど気に
ならず、容易にかつ高能率で無じよう乱表面が得られる
。また工程の合理化のみならず、液中ラッピング法にお
ける大型設備が不要でしかも両面同時研摩が行−得ると
いう顕著な効果を奏するものである。
Table 2 As shown above, the present invention is highly efficient because it does not use ultrafine particles, and the processing environment and particle size distribution of the abrasive grains are not a concern, making it easy and highly efficient to avoid disturbances. A surface is obtained. In addition to streamlining the process, it also has the remarkable effect of eliminating the need for large-scale equipment in the submerged lapping method and allowing simultaneous polishing of both sides.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図は従来例■の加工工程を示す要部断面
図、第6図社従来例■の加工方法の要部断面図、第7図
は本発明の加工方法の要部断面図、第8図は本発明にお
−て使用される砥粒(ZrO,)の粒度分布を示すグラ
フ、第9図は本発明の加工液の粘性率と加工能率を示す
グラフ、第10図乃至第12図は従来例の加工方法で得
たフォトマスクブランクス用ガラス基板の表面状態を示
す顕微鏡写真、第13図乃至第15図は本発明の場合の
顕微鏡写真である。 1・・・被加工物    2・・・金属定盤3.13・
・・砥粒    4・・・粘弾性lリシャ11 、12
・・・定盤    14−・・加工液15・・・キャリ
ア    16・・・供給水特許出願人  株式会社 
保谷電子 第1図 第14閃 ()         昭和57年 を157日・・“
2− 発、・−′−名蒜 住 所  山梨県北巨摩郡長板町中丸3280番地氏 
名(名称)  株式会社 保谷電子4 代理 人 刊囲 ■、明細書第9頁第11行目乃〒第18行目の「これを
・・・・・・まったく見られない。」を削除する。 2、明細書第1O頁の表−2を次の通りに訂IEする。 1表−2 *被加工物 比較例1 ソーダライムガラス 比較例2 ホウケイ酸ガラス 比較例3 石英ガラス 実施例1 ソーダライノ、ガラス 実施例2 ホウケイ酸ガラス 3、明細書第11百第7行目乃至第1O行目の、「、第
1O図・・・・・・顕微鏡写真」を削除する。 4、図面中r第1O図乃至第15図」を削除する。 5、参考写真/乃至乙を別途、参考図面(写真)説明i
とともに提出する。 以上
Figures 1 to 5 are cross-sectional views of main parts showing the processing steps of conventional example (2), Figure 6 are cross-sectional views of main parts of the processing method of conventional example (2), and Figure 7 is a cross-sectional view of main parts of the processing method of the present invention. Figure 8 is a graph showing the particle size distribution of abrasive grains (ZrO,) used in the present invention, Figure 9 is a graph showing the viscosity and machining efficiency of the working fluid of the present invention, and Figure 10 is 12 to 12 are micrographs showing the surface conditions of glass substrates for photomask blanks obtained by the conventional processing method, and FIGS. 13 to 15 are micrographs in the case of the present invention. 1... Workpiece 2... Metal surface plate 3.13.
... Abrasive grains 4 ... Viscoelastic lisha 11, 12
...Surface plate 14-...Working liquid 15...Carrier 16...Supply water patent applicant Co., Ltd.
Hoya Electronics Figure 1, 14th flash () 1981, 157 days...“
2- From,・-'-Meibiru Address: 3280 Nakamaru, Nagaita-cho, Kitakoma-gun, Yamanashi Prefecture
Name: Hoya Electronics Co., Ltd. 4 Agent Published by ■, page 9, line 11 to line 18 of the specification, ``I can't see this at all.'' is deleted. 2. Table 2 on page 10 of the specification is revised as follows. Table 1-2 * Workpiece Comparative Example 1 Soda Lime Glass Comparative Example 2 Borosilicate Glass Comparative Example 3 Quartz Glass Example 1 Soda Rhino, Glass Example 2 Borosilicate Glass 3, Specification No. 1100, Lines 7 to 1 Delete ", Figure 1O...Micrograph" in line 1O. 4. Delete "Figures 10 to 15" in the drawings. 5.Reference photo/explanation of reference drawing (photo) separately
Submit with. that's all

Claims (1)

【特許請求の範囲】 1)水に粘性を高める水溶性の液を加えた加工液中に硬
脆材料の砥粒をけん濁させ、このけん濁液によって被加
工物の両面を同時に研摩することを特徴とする加工方法
。 2)粘性を高める水溶性の液が室温で粘性がIOP以上
である特許請求の範囲第1項記載の加工方法。 3)粘性を高める水溶性の液がエチレングリコールであ
る特許請求の範囲第2項記載の加工方法。 4)エチレングリコールを水に対して30−50重量襲
添加してなる特許請求の範囲第3項記載の加工方法。
[Scope of Claims] 1) A method of suspending abrasive grains of hard brittle material in a machining liquid made by adding a water-soluble liquid that increases viscosity to water, and simultaneously polishing both sides of a workpiece with this suspension. A processing method characterized by 2) The processing method according to claim 1, wherein the viscosity-increasing water-soluble liquid has a viscosity of IOP or higher at room temperature. 3) The processing method according to claim 2, wherein the water-soluble liquid that increases viscosity is ethylene glycol. 4) The processing method according to claim 3, wherein 30-50% by weight of ethylene glycol is added to water.
JP56113626A 1981-07-22 1981-07-22 Processing method Pending JPS5815666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56113626A JPS5815666A (en) 1981-07-22 1981-07-22 Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56113626A JPS5815666A (en) 1981-07-22 1981-07-22 Processing method

Publications (1)

Publication Number Publication Date
JPS5815666A true JPS5815666A (en) 1983-01-29

Family

ID=14616984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56113626A Pending JPS5815666A (en) 1981-07-22 1981-07-22 Processing method

Country Status (1)

Country Link
JP (1) JPS5815666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062458A (en) * 1983-09-16 1985-04-10 Fujitsu Ltd Polishing method
JPS616567U (en) * 1984-06-20 1986-01-16 株式会社山武 Toilet cleaning control device
JPS616571U (en) * 1984-06-20 1986-01-16 株式会社山武 Toilet cleaning control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062458A (en) * 1983-09-16 1985-04-10 Fujitsu Ltd Polishing method
JPS6332591B2 (en) * 1983-09-16 1988-06-30 Fujitsu Ltd
JPS616567U (en) * 1984-06-20 1986-01-16 株式会社山武 Toilet cleaning control device
JPS616571U (en) * 1984-06-20 1986-01-16 株式会社山武 Toilet cleaning control device

Similar Documents

Publication Publication Date Title
KR100623900B1 (en) Porous abrasive tool and method for making the same
EP0146223A2 (en) Metal polishing composition and process
EP0637619A1 (en) An abrasive composition with an electrolytic water and a polishing process with the use of said abrasive composition
Doi et al. Advances in CMP polishing technologies
CN106829954B (en) A kind of preparation method of the nano-diamond micro mist of narrow size distribution
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2009509784A (en) Polishing slurry and method using the polishing slurry
US6638144B2 (en) Method of cleaning glass
JPS5815666A (en) Processing method
CN110079217A (en) A kind of self-lubricating polishing silica gel material and preparation method thereof and product
US6458017B1 (en) Planarizing method
JPH06330025A (en) Polishing material for glass
CN105255368A (en) Method for screening micron and submicron polishing solution for ultra-precision polishing
Cheng et al. Material removal and micro-roughness in fluid-assisted smoothing of reaction-bonded silicon carbide surfaces
JP2783329B2 (en) Abrasive for glass polishing
JPH04105874A (en) Polishing grindstone and polishing method therewith
JP4167441B2 (en) Abrasive and carrier particles
Fukazawa et al. Mirror grinding of silicon wafer with silica EPD pellets
JPH1058331A (en) Super abrasive grain wheel for lapping
JPH01177967A (en) Barrel finishing method for inorganic hard body
JP4024622B2 (en) Carrier particle composition for abrasive and abrasive
US20070105483A1 (en) Methods and apparatus for discrete mirror processing
RU2809530C1 (en) Suspension for polishing germanium crystals
JP2003531737A (en) How to clean glass
JPH0360970A (en) Polishing surface plate