JPS58154798A - Heat dehydration of brown coal - Google Patents

Heat dehydration of brown coal

Info

Publication number
JPS58154798A
JPS58154798A JP2798282A JP2798282A JPS58154798A JP S58154798 A JPS58154798 A JP S58154798A JP 2798282 A JP2798282 A JP 2798282A JP 2798282 A JP2798282 A JP 2798282A JP S58154798 A JPS58154798 A JP S58154798A
Authority
JP
Japan
Prior art keywords
gas
slurry
lignite
liquid separation
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2798282A
Other languages
Japanese (ja)
Other versions
JPH0237382B2 (en
Inventor
Tetsuo Matsumura
哲夫 松村
Toshio Osawa
大沢 寿夫
Hiroshi Yoshimura
吉村 洋
Osamu Okuma
大隈 修
Yasuo Sugino
杉野 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asia Oil Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
Asia Oil Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Oil Co Ltd, Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical Asia Oil Co Ltd
Priority to JP2798282A priority Critical patent/JPS58154798A/en
Priority to AU12258/83A priority patent/AU552677B2/en
Priority to PCT/JP1983/000051 priority patent/WO1983002936A1/en
Priority to DE3332116T priority patent/DE3332116C2/en
Priority to DD83248150A priority patent/DD209472A5/en
Publication of JPS58154798A publication Critical patent/JPS58154798A/en
Priority to US06/825,990 priority patent/US4714543A/en
Publication of JPH0237382B2 publication Critical patent/JPH0237382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To stabilize operation in a hydroliquefaction step by converting Ca, etc. in coal into a minute carbonate particle by injecting CO2-contg. gas produced in a gas/liquid separator into raw slurry in a heating to gas/liquid separation step. CONSTITUTION:Slurry S consisting of raw brown coal and a solvent (numeral 1 represents a ball mill, and 2 a slurry tank) is pressurized by a pump 3, sent with addition of a CO2-contg. gas to a heat exchanger 4, in which the water content is reduced to about 10%, and introduced into a gas/water separator 5 after Ca, etc. in the coal is converted into a minute carbonate particle and stabilized. Then the separated liquid phase portion (contg. calcium carbonate, etc.) is sent to a hydrogenation step, while the separated gas phase portion (contg. steam, CO2, etc.) is sent to a CO2 separator, and the separated CO2-contg. gas is supplied to a heat exchanger 4 and the gas/water separator 5, wherein, if necessary, CO2 is further added from outside the system.

Description

【発明の詳細な説明】 明発明は、褐#IO抽出水tie化法Kかける予備処理
法の改螢Kllすh%のであ〕、詳細には熱経済性の良
い方法で生褐脚中の水分を除去すると共に、反応系にお
ける沈降物やスケールの形成を予防する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on an improvement of the brown #IO extraction water tying method and the pretreatment method. The present invention relates to a method for removing moisture and preventing the formation of sediment and scale in a reaction system.

石炭の液化法としては、fIIIIAIIlと混合して
スラ曽−化し、石炭中O#I剤抽出物のみを水S液化の
対象とする方法、即ち抽出水温液化法が知られている。
As a method for liquefying coal, there is known a method in which coal is mixed with fIIIAIIIl to sludge and only the O#I agent extract in the coal is subjected to water S liquefaction, that is, the extraction water temperature liquefaction method.

しかるにある橋O石INは會水率が高く、就中襦脚O含
水率Fi@O*にもlぶことがあるのでこれをその1重
液化処理に付すことは熱効率的に見て不経済である。そ
こでこの様な原料炭を用いる場合は、液化工程へ供給す
るに先立って予め脱水処理を行なうことが必要でる〕、
従来#i気流乾燥法を適用するととによって含水率を1
0憾前後に低下させていた。しかしこの方法は気流加熱
O為に膨大な熱意を要求するという欠点と、褐脚粒O慶
面Kr11化膿を形成して水添液化反応の進行を阻害す
るという欠点と、過加熱O為に原料炭中0揮発成分が分
解して液化収率を低下させるという欠点とを有するもの
である為実用上の間i1零あつ九、この様なところから
本出願人においては、原料炭を加熱して原料炭中の水分
を蒸気として分離し、この高温fli9Kを原料*0前
記加熱に利用するという蒸気熱交換方式をStaして先
に特許J13顧した(特開11fi8−112902号
)。該方法の要点は、生褐炭の溶剤を混合してスラリー
化し、これを熱交換器に通して予熱しえ、後、100〜
800℃に加熱することKよってgcfII分離を行な
い、脱水スラリーを採取する一方で分離水蒸気を前述0
熱交換器に循環させて原料ス91−の予熱源とする点に
存在するもo′chl、仁れによって前jlO欠陥が一
気に解mされ為こととなった。
However, Hashi O stone IN has a high water content, and in particular, the water content of Hashi O stone IN can be as high as Fi@O*, so it is uneconomical from a thermal efficiency point of view to subject it to the 1-heavy liquefaction treatment. It is. Therefore, when using such coking coal, it is necessary to dehydrate it before supplying it to the liquefaction process.
When the conventional #i flash drying method is applied, the moisture content is reduced to 1 by
It was lowered to around 0. However, this method has the drawbacks of requiring enormous enthusiasm for airflow heating, the formation of purulence on the brown leg grains, and inhibiting the progress of the hydrogenation and liquefaction reaction. Since it has the disadvantage that the volatile components in the coal decompose and reduce the liquefaction yield, it is difficult to use in practical use.For this reason, the applicant has decided to heat the coking coal A steam heat exchange method in which moisture in coking coal is separated as steam and this high-temperature fli9K is used for heating the raw material *0 was previously published in Patent J13 (Japanese Patent Laid-Open No. 11fi8-112902). The key point of the method is to mix raw lignite with a solvent to form a slurry, pass it through a heat exchanger to preheat it, and then
GCFII separation is carried out by heating to 800°C, and while the dehydrated slurry is collected, the separated water vapor is
The pre-JlO defect was resolved at once by the presence of O'chl and keratin at the point where it was circulated through the heat exchanger and used as a preheating source for the raw material 91-.

この方法によって褐炭中の含有水分については至働台場
的且つM法的に除去される橡になりえが、褐1IIK′
)vhては今一りO開−があ)、平行的に解決されるべ
龜であるとのIlmが傭い。即ち褐炭を主原料とするX
9$−を抽出本添液化法に適用すると、予熱器や反th
塔、戚いはスラリーの輸送配管中KtjL−物の大量堆
積を18%Aて連続的操−御不111Klllili入
つ*)、−に重大なスケーリング事故に発展し美大な損
害を被むることがある。そこで沈峰−中スヶー〃へOj
1策を購する必要が生じ、とこれらOX−を研賓したと
ころ、金属炭#樵が重大な役w41jを果しているとの
確信が得られえ、しかるところ褐炭中には(a+MgO
如自1Il−樵形成性金属成分(以下代表的にはC&等
と述べる)が含着れておpl例えばツイン褐II#Cド
イツ麿)ては灰分中の44重量−がCaOであったとの
報告もある。しかも褐lIIは石**造上の特徴として
水#墨、mA/ボキFA/基、カルボニル基等のIII
Ill含有着換基を含み、これらの置換基が石J#溶解
段階中水1wfft化反応段階において容易に分解し、
系内KHgO,COQ、Co等を生成するという背景が
ある。これらのりちHIO#i直接的には水分の増大と
いう不具合を増幅し、反応工程の水嵩分圧が低下して液
効皐を下げ、又COgやCOは系内に共存するCa皓と
反応して脚酸箇管形威し、沈降物中スケールの発生原因
となる。
By this method, the moisture content in lignite can be removed in a very efficient manner and legally, but brown coal
) vh is now open, but Ilm is a problem that can be solved in parallel. In other words, X whose main raw material is lignite
If 9$- is applied to the extraction-based liquefaction method, the preheater and
Continuous operation at 18% A with a large amount of material deposited in the slurry transport piping, resulting in a serious scaling accident and causing great damage. There is. So I went to Shenbong-Nakasuka.
When it became necessary to purchase a new solution, I researched these OX- and was convinced that metallic coal #wood was playing an important role.
It is reported that 44% by weight of the ash contained in the ash was impregnated with wood-forming metal components (hereinafter typically referred to as C & etc.). There is also. Moreover, brown lII has stone structure characteristics such as water #ink, mA/BOKIFA/group, carbonyl group, etc.
Contains Ill-containing substituents, these substituents are easily decomposed in the water conversion reaction step during the stone dissolution step,
There is a background that KHgO, COQ, Co, etc. are generated within the system. These Richi HIO#i directly amplify the problem of increased water content, lower the water volume partial pressure in the reaction process and lower the liquid efficiency, and COg and CO react with the Ca coexisting in the system. The acid builds up and causes scale formation in the sediment.

即ち褐炭を水添液化OX象とすゐ場合の特殊事情(含水
率の過多中沈降物等Oil成)を考慮し、上記2大欠陥
を同時に解消するが、褐炭の水#i液化処増において経
済的に見ると非常に有利であるとの結論に到達しえ6本
発明はこの様な状況を考慮してなされえものであって、
予備処li1段階において十分な脱水効果を示すと共に
、可及的早い階階でCa等を!走化して水添液化段階K
JPける脚ll樵の形成を予防するという二人目的を都
合よく達成できる方法の確立を制約とするものである。
In other words, considering the special circumstances (excessive water content and formation of oil such as sediment) when lignite is hydrogenated and liquefied, the two major defects mentioned above are solved simultaneously, but in the water #i liquefaction treatment of lignite, We have reached the conclusion that it is very advantageous from an economic point of view.6 The present invention was made in consideration of this situation, and
It shows sufficient dehydration effect in the first stage of preliminary treatment, and removes Ca etc. on the first floor as possible! Chemotaxis and hydrogenation liquefaction stage K
The constraint is to establish a method that can conveniently achieve the two-person goal of preventing the formation of JP-ketsu-kyou-ki.

仁の様な目的を達成することOで11大本発明方法の要
点は、生褐炭と溶剤からなる原料スッV −を昇IIA
外圧下に気液分縮させて水分を蒸気杖で放出させ、a無
気をスラV−o!iF温用熱源として利用すると共に、
*’x液分虐によって併発する0g含有ガス及び/又は
糸外よ)供給されるCOQ含有ガスを、昇a&昇圧工楊
乃至気液分離工程中にある原料スラリー中に吹込み、石
脚中のC魯尋をこの段階で積極的に一軸なms樵として
安定させるものである。即ち脱木工薯と#11酸塩析出
安定化工程を、水添液化の前処場として平行的Kl!施
することKよυ、前記の一点が全て解消されることとな
った。即ち経済的な脱水効果については既に述べた通り
であるが、前処11段階で積極的に析出せしめられた1
11111樵はこのまま分離せずに水温液化工程へ送シ
込んIも反MS液中に再溶解しないのてSRC#ll1
kl工程に悪影響倉及はさず、又極めて像細粒であって
浮遊性に冨む為触媒や器壁に析出することがなく1粒成
長による堆積やスケール生成に発展する恐れがない。従
って閉烏事故中スケーリング事故を生じず、安定な杖況
下での連Ill操業が可能となった。
The main point of the method of the present invention is to achieve the above objectives by elevating the raw material consisting of raw brown coal and a solvent.
Gas-liquid decomposition under external pressure and release of water with a steam wand, a airlessness is sura V-o! In addition to using it as a heat source for iF warming,
*'x The 0g-containing gas and/or the COQ-containing gas that is supplied during the liquid separation process is injected into the raw material slurry in the elevating process or the gas-liquid separation process. This is to actively stabilize C. Lu-hyun as a single-minded ms woodcutter at this stage. In other words, the removal of wood and #11 salt precipitation stabilization process are performed in parallel as a pretreatment site for hydrogenation and liquefaction. The above point has all been resolved. In other words, although the economical dehydration effect has already been mentioned, the 1
11111 The woodcutter is sent to the water temperature liquefaction process without being separated as it is, and it does not dissolve again in the anti-MS liquid, so SRC#ll1
It does not have an adverse effect on the KL process, and since it is extremely fine-grained and highly buoyant, it does not precipitate on the catalyst or vessel wall, and there is no risk of single-grain growth leading to deposition or scale formation. Therefore, no scaling accident occurred during the closing accident, and continuous operation under stable conditions became possible.

次に実施例を示すフ四−図に基づいて本発明のat成及
び作用効果を明らかにする。
Next, the structure and effects of the present invention will be clarified based on diagrams showing examples.

第1図は、熱交換器4の入口部及び/又は気液分離装置
6内のスラリー中に、系内で発生した00g含有ガス(
COガス等を含むが、図面及び明細書では単KCOgと
記す)及び/*い#i系外から補給したC02を吹込む
場合の実施例を示すフロー図である。即ち生褐脚、低沸
点溶剤及び高沸点溶剤を原料とし、必IK応じて設けら
れるボールミルl内で必要によ〉添加される触媒粒を受
は入れ九後、スラリータン夕2に導入されて十分な混合
を受け、原料ス91j−(以下スッリーIIi単Kgで
示す)となる。#剤のtie中配中量合量ついては、全
工程を通じて適性な粘度を恨える有橋*iを用いるもの
であるIl〉特段の制@はない。
FIG. 1 shows a 00g-containing gas (
Although it includes CO gas, etc., it is expressed as a single KCOg in the drawings and specification) and /* is a flow diagram showing an example in which CO2 supplied from outside the i system is injected. That is, raw brown leg, a low boiling point solvent and a high boiling point solvent are used as raw materials, and after receiving catalyst particles added as necessary in a ball mill 1 installed according to the IK, it is introduced into a slurry tank 2. After sufficient mixing, the raw material 91j- (hereinafter referred to as suri IIi in Kg) is obtained. Regarding the total amount of the # agent in the tie, there is no particular rule, as Arihashi*i, which has an appropriate viscosity throughout the entire process, is used.

スラリーSはポンプ8て昇圧して熱交換器4に送られ、
とこての加熱によってスラリーs中の水分が蒸発するが
、必要であればその後適当な加熱装置に導入して水分を
更に且っ十分に蒸発させ、目標含水率(約tall以下
)迄低下させる。陶加熱編Nは100〜400℃、好ま
しいのは110〜860℃であ)、麟温度で水分が十分
蒸発する圧力下に気液分離器5へ送る。崗熱交換814
における熱源は、後述の加圧手段から送られてくるスチ
ームであシ、該スチームは熱交換に供され九後冷却され
、油水分aweに4人されて低綿点l#剤の回収が行な
われる。9L14!分離J[に供給されるスラリーsF
i、上述の蒸I!(以下スチーム)を含むだけでなく、
糸外又は脱CogM11から送られてくるcogo供給
を受けてCa等との反応が進んでいるので各JllII
脚峻樵O微粒及び未反応の気相C02を含んでいる。従
って電液分離−6ではスチーム及びgt相COgのガス
をスラリーや生成脚w樵から分離し、この分離ガスを脱
COg器Bに送る。脱co怠msでは例えばCO怠吸着
法若しくはスチームの凝縮及び再加熱の方法等によシC
O2ガスとスチームの分−が行なわれ、夫々前述の様に
確珈させるが、もし循環スチーム中にCO2やCO等の
非凝縮性ガスが含着れていると熱交!11器4内におけ
る伝熱効果が悪(な)熱効率が低下するのでCOaやc
oは可及的十分に除いてお(ことが推奨される。#脱c
ommmで精製されえスチームはブースター0舶き加圧
手段8によって昇圧され、又aI昇圧に応じた昇熱を受
けてから熱交#1器4に送ること一#推奨される。他方
気液分離−6を出たスラ替−は脱COga6からも若干
回収されてくるf#剤と合流した上で1次水添工程7に
送られ水添液化反応を受ける。向生褐脚との混合に用い
られる高沸点廖j@I#i1次水添工程7より回収して
リサイクルすることが¥i1すれる。
Slurry S is pressurized by pump 8 and sent to heat exchanger 4.
The water in the slurry s is evaporated by heating with a trowel, but if necessary, the slurry is then introduced into a suitable heating device to further evaporate the water sufficiently and reduce the water content to the target water content (approximately below the tall). The ceramic heating layer N is sent to the gas-liquid separator 5 at a temperature of 100 to 400° C., preferably 110 to 860° C., under pressure such that moisture is sufficiently evaporated at a room temperature. granite heat exchange 814
The heat source is steam sent from the pressurizing means described below, and the steam is subjected to heat exchange, then cooled, and immersed in oil and moisture awe to recover the low cotton spot l# agent. It will be done. 9L14! Slurry sF supplied to separation J[
i, the above steam I! (hereinafter referred to as steam), as well as
Reactions with Ca, etc. are progressing in response to the cogo supply sent from the outside of the thread or from the removed CogM11, so each JllII
Contains fine grains of Kizuna O and unreacted gas phase C02. Therefore, in electrolyte separation-6, steam and gt-phase COg gas are separated from the slurry and the production leg wood, and this separated gas is sent to the COg removal device B. In the case of decolonization, for example, CO2 is removed by a CO2 adsorption method or a steam condensation and reheating method.
Separation of O2 gas and steam is performed, and each is confirmed as described above, but if non-condensable gases such as CO2 and CO are included in the circulating steam, heat exchange is required! 11 The heat transfer effect within the vessel 4 is poor, and the thermal efficiency decreases, so COa and c
o should be removed as much as possible (it is recommended.
It is recommended that the steam purified by ommm is pressurized by the booster 0 and the pressurizing means 8, and that it is heated in accordance with the aI pressure increase before being sent to the heat exchanger #1. On the other hand, the slurry exchanger coming out of the gas-liquid separation 6 is combined with some f# agent recovered from the COga removal 6, and then sent to the primary hydrogenation step 7 to undergo a hydrogenation and liquefaction reaction. It costs ¥11 to recover and recycle from the high boiling point tank used for mixing with the probiotic brown leg in the primary hydrogenation step 7.

又本実施例ではgL液分jlI器5にも系内COg或い
は糸外COgが供給されてお夛、気液分離−6内におい
てもC111等が会細なP#壜として析出するので、j
I!1#搗形成性金形成性金賃走分効果は史に高いもの
となる。
In this embodiment, COg inside the system or COg outside the system is also supplied to the gL-liquid separator 5, and C111 etc. are precipitated in the gas-liquid separator 6 as a small P# bottle.
I! 1# The gold-forming gold-forming effect will be the highest in history.

熱交換#4及びt液分l1lIl器6における操業条件
については先に若干触れ九が、j!に補充説明を加える
。@8図はモーウニV褐脚(水分12鳴、灰分4優、I
IIM/石脚比a=8.0)を対象として、温度と分解
生成Co!!J11の関係を示すグラフであるが、CO
2は200℃を過ぎてから燃成され、以後/7i!1度
の上昇と共に急激に増大する仁とが分かシ、且つこの段
階では脱水工程による水分が十分存在する。
The operating conditions for heat exchanger #4 and t-liquid reactor 6 were briefly touched upon earlier, but j! Add supplementary explanation. @Figure 8 is Moouni V brown legs (moisture 12, ash 4, I
IIM/stone foot ratio a = 8.0), temperature and decomposition production Co! ! This is a graph showing the relationship between CO
2 is burned after passing 200℃, and after that /7i! Separation from the kernels increases rapidly as the temperature rises, and at this stage there is sufficient moisture due to the dehydration process.

この様なところから、次の様Kjl!作条件全条件する
ことが推奨される。即ち先の説明では熱交換器4におけ
る温度が250℃である場合は、第8図に示した如く分
解生成co21t;r極めて少ないと獣われる。従って
第1図にも示した様に県外からのC02供給が必要にな
ってくる。従って系内C02でまかなおうとすれば、温
度としては400℃近く4誦める必要がある。即ち石戻
構造中からCth等1)1分離され、しかも6脚が余り
溶解しない温度、若しくはスラリー形成相fII剤の沸
点以下が望ましい/!1度条件である。同圧力はスチー
ムを回収する際の再圧縮の仕事効率より十l1ir4を
圧し下に設定することが望ましい。
From this point of view, the following Kjl! It is recommended that all cropping conditions be met. That is, in the above description, when the temperature in the heat exchanger 4 is 250° C., it is said that the amount of decomposed CO21t;r is extremely small as shown in FIG. Therefore, as shown in Figure 1, it becomes necessary to supply CO2 from outside the prefecture. Therefore, if the system is to be covered by CO2, it is necessary to recite the temperature at nearly 400°C. That is, it is desirable that Cth, etc. 1) 1) be separated from the stone return structure, and the temperature at which the hexapods do not dissolve much, or below the boiling point of the slurry forming phase fII agent/! This is a one degree condition. The pressure is desirably set to 10 l1ir4 lower than the work efficiency of recompression when recovering steam.

第2図は、熱交換器4における熱効率を更に陶土させる
為の実施例70−図であ〉、電液分離器を6m、5bの
2段に分け、前者5aではスチームのみを分離し、後者
5bは#I2#檎析出全析出的としている。即ち第1図
の例では、gcogasを設けてスチームとCORの分
離を図っているが両者の完全分離は困難でh)、熱交換
器4への供給スチーム中には着千量のC02が混入して
いる。
FIG. 2 is a diagram showing an embodiment 70 for further improving the thermal efficiency in the heat exchanger 4. The electrolyte separator is divided into two stages of 6 m and 5b, the former 5a separates only steam, and the latter 5b is #I2# all precipitated. That is, in the example shown in Fig. 1, gcogas is installed to separate steam and COR, but it is difficult to completely separate the two, and thousands of C02 are mixed into the steam supplied to the heat exchanger 4. are doing.

その為熱交換器4における熱動1s#i必ずしも十分で
はなかつえ。その1第2#I!!Jでは気液分離器5a
内をかなル低圧にして操業し、C02の分解主観を抑制
すると共に、それ以前の工程へcogを供給することは
中止している。従って9jt液分lamlから分離され
るスチームに#′iCOgが混入されておらず、脱C0
2器を通す必要な(章に加圧するだけで熱交換#4へ供
給すれば良い。そして*20gL液分#l器6bを高温
熱媒体によって熱分解温度迄過昇温し、脱cogmgで
III匍法等により若干のスチームを凝縮させて分離す
ると共に、凝縮スチームは虐当な手段で排水処理する。
Therefore, the thermal movement 1s#i in the heat exchanger 4 is not necessarily sufficient. Part 1 2 #I! ! In J, gas-liquid separator 5a
The plant is operated at extremely low internal pressure to suppress the decomposition of CO2, and the supply of cog to previous processes is discontinued. Therefore, #'iCOg is not mixed in the steam separated from the 9jt liquid fraction laml, and the COg is removed.
It is sufficient to supply it to heat exchanger #4 by simply pressurizing the necessary liquid through two vessels.Then, the *20gL liquid #1 vessel 6b is overheated to the pyrolysis temperature using a high-temperature heating medium, and the mixture is removed by decogmg. A small amount of steam is condensed and separated using a method such as the wafer method, and the condensed steam is treated as wastewater by harsh means.

1M9tM分離器bb内での熱分解によシ生成したCO
畠は直ちに(、a等と反応して脚酸樵を形成するので、
上述のCogは未反応Cogであシ、これIfiIEN
I分離器5b[リサイクルすることができる。従って第
11図では系外COgの補給ラインも一応示してはいる
が、賽徴業においては殆んど必要ではない。
CO produced by pyrolysis in 1M9tM separator bb
Hatake immediately reacts with (, a, etc. to form leg acid wood, so
The Cog mentioned above is an unreacted Cog, and this is IfiIEN.
I separator 5b [can be recycled. Therefore, although Figure 11 also shows the supply lines of COg outside the system, it is hardly necessary in the recruitment work.

本発明は1紀の如<am成されているので、褐炭中に含
まれている水分及び(a等は、水添液化反応に先だって
はぼ確実に処理され、水分は系外へ放出されると共に(
a等は安定且つ徽細な脚酸塩となって閉塞事故を起こす
#I>配がな(なる、従って褐戻の抽出水添液化操業を
長期間安定して1111Mすることが可能になった。
Since the present invention was developed in the 1st century, the moisture and (a) contained in lignite are almost certainly treated prior to the hydrogenation and liquefaction reaction, and the moisture is released outside the system. With (
A, etc. become stable and delicate podates and cause blockage accidents. Therefore, it has become possible to perform extraction hydrogenation and liquefaction operations for browning stably for a long period of time. .

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は実施例のフロー図、第8図は分解CO2と
温度の関係を示すグラフである。 4・・・熱交換器    6・・・電液分離器6・・・
脱COg器   8・・・加圧手段出願人  株式会社
神戸製鋼所 第1頁の続き ■出 願 人 三菱化成工業株式会社 東京都千代田区丸の内2丁目5 番2号 ■出 願 人 アジア石油株式会社 東京都千代田区内幸町2丁目1 番1号 手続補正書(−発) 昭和67年! 月!b日 褐択O加熱脱水方法 3、補正をする者 事件との関係      特 許出願人住 所  神戸
市中央区脇浜町−丁目≦番18号名称 (119)株式
会社神戸製鋼所 代表者高橋孝吉 4、代  理  人  郵便番号530住 所  大阪
市北区堂島二丁目3番7号 シンコービル賂III及び
第寓園を別紙OもOと差し替えます。
FIG. 1.2 is a flow diagram of the embodiment, and FIG. 8 is a graph showing the relationship between decomposed CO2 and temperature. 4... Heat exchanger 6... Electrolyte separator 6...
COg removal device 8...Pressurizing means Applicant: Kobe Steel, Ltd. Continued from page 1 ■Applicant: Mitsubishi Chemical Industries, Ltd. 2-5-2 Marunouchi, Chiyoda-ku, Tokyo ■Applicant: Asia Oil Co., Ltd. 2-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo No. 1 Procedure Amendment (-issued) 1986! Month! b Nippon Selection O Heating Dehydration Method 3, Relationship with the Amendment Case Patent Applicant Address No. 18, Wakihama-cho, Chuo-ku, Kobe City Name (119) Kokichi Takahashi 4, Representative of Kobe Steel, Ltd. , Agent Postal code: 530 Address: 2-3-7 Dojima, Kita-ku, Osaka City Shinko Building Kiyoshi III and Dai-Gyoen are also replaced with O in Attachment O.

Claims (1)

【特許請求の範囲】[Claims] (1)生褐脚と溶剤を混合してなる原料スラリーの水添
液化反応に先立って前記スラリーを昇温昇圧し、If&
分喝により分離されえ蒸電を前記昇温の熱源として利用
すゐ褐炭の脱水方法において、該脱水工程における気液
分離に伴って発生するω2含有ガス及び/又は系外よ)
供給するCOQO有ガスを、昇温昇圧工程乃至電液分離
工程中の前記スラリー中に吹込み、褐炭中O脚ill樵
形成性金属成分をwe#樵として析出させることを特徴
とする褐炭の加熱脱水方法。 (2、特許請求の範囲第1項において、原料スラリーを
過昇温させて気液分離器に供給し、gLf&分離によっ
て得られるCO怠金含有ガス水蒸気の混合気からC0g
含有ガスを分離した後、該C0g含有ガスを昇温昇圧工
程乃至気液分離工程中の前記スラリー中に吹込む褐炭の
加熱脱水方法。 1$141許請求の範51111項において、気液分離
工程を!JiitK分け、alIO気液分離は比較的低
温側で行なうことによりて主に水蒸気の分離工場とす為
と共に、嬉i o(@分S#i比較的高温側で行なうこ
とKよって主KCOg含有ガスの分離工場とし、後者で
得られるC0g含有ガスを、該II2の気液分離工程中
KToる前記原料ス9リー中に吹込む褐j#O加熱脱水
方法。
(1) Prior to the hydrogenation and liquefaction reaction of the raw material slurry made by mixing raw brown leg and a solvent, the slurry is heated and pressurized, and if &
In a lignite dehydration method in which steam electricity that can be separated by fractionation is used as a heat source for raising the temperature, ω2-containing gas and/or outside the system generated due to gas-liquid separation in the dehydration step)
Heating of lignite, characterized in that the COQO gas to be supplied is blown into the slurry during the temperature and pressure raising step or the electrolyte separation step to precipitate O-leg mill-forming metal components in lignite as we#mill. Dehydration method. (2. In claim 1, the raw material slurry is overheated and supplied to a gas-liquid separator, and CO g
A heating dehydration method for lignite, in which the C0g-containing gas is injected into the slurry during a temperature and pressure raising step or a gas-liquid separation step after separating the gas contained therein. 1$141 In claim 51111, the gas-liquid separation process! JIITK separation, alIO gas-liquid separation is performed at a relatively low temperature side, so that it can be used as a separation factory for mainly water vapor. A heating dehydration method in which the C0g-containing gas obtained in the latter is blown into the raw material slurry during the gas-liquid separation step of II2.
JP2798282A 1982-02-22 1982-02-22 Heat dehydration of brown coal Granted JPS58154798A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2798282A JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal
AU12258/83A AU552677B2 (en) 1982-02-22 1983-02-21 Process for liquifying brown coal
PCT/JP1983/000051 WO1983002936A1 (en) 1982-02-22 1983-02-21 Process for liquefying brown coal
DE3332116T DE3332116C2 (en) 1982-02-22 1983-02-21 Process for liquefying lignite
DD83248150A DD209472A5 (en) 1982-02-22 1983-02-22 PROCESS FOR BROWN COAL LEVITATION
US06/825,990 US4714543A (en) 1982-02-22 1986-02-04 Method of treating brown coal for liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2798282A JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal

Publications (2)

Publication Number Publication Date
JPS58154798A true JPS58154798A (en) 1983-09-14
JPH0237382B2 JPH0237382B2 (en) 1990-08-23

Family

ID=12236053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2798282A Granted JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal

Country Status (1)

Country Link
JP (1) JPS58154798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207892A (en) * 1987-02-23 1988-08-29 Sumitomo Sekitan Kogyo Kk Pretreatment of coal for liquefaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206033A (en) * 1978-08-14 1980-06-03 Exxon Research & Engineering Co. CO2 Pretreatment prevents calcium carbonate formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206033A (en) * 1978-08-14 1980-06-03 Exxon Research & Engineering Co. CO2 Pretreatment prevents calcium carbonate formation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207892A (en) * 1987-02-23 1988-08-29 Sumitomo Sekitan Kogyo Kk Pretreatment of coal for liquefaction

Also Published As

Publication number Publication date
JPH0237382B2 (en) 1990-08-23

Similar Documents

Publication Publication Date Title
RU2078054C1 (en) Method of treating aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
RU2126489C1 (en) Method of incomplete oxidation with production of energy
EA012999B1 (en) Catalytic steam gasification of petroleum coke to methane
US4056599A (en) Process for the recovery of magnesium chloride hydrate and potassium chloride from carnallite and bischofite
US3718446A (en) Pollutant-free process for producing a clean burning fuel gas from organic-containing waste materials
US4188195A (en) Treatment of waste liquor
JPS6039115B2 (en) Energy use and recovery method of unconverted carbon in synthesis gas production
KR20070083174A (en) Reducing method of water from reactor outlet gas in the oxidation process of aromatic compound
CN111471477A (en) Process for mixing oil-based drilling cuttings and calcium oxide
JPS58154798A (en) Heat dehydration of brown coal
US4505808A (en) Method of extracting hydrocarbons from oil-containing rock or sand through hydrogenating low temperature carbonization
JPS60166205A (en) Manufacture of concentrated sulfuric acid and apparatus therefor
NO121525B (en)
US1932903A (en) Process of and apparatus for liquefying gases
US2042675A (en) Manufacture of sulphuric acid
CN113636730A (en) Oil sludge pyrolysis treatment system
US4714543A (en) Method of treating brown coal for liquefaction
CS228529B2 (en) Process for the production of urea
JPH0251474B2 (en)
US1879502A (en) Method of producing valuable products from vegetable substances
SU1350447A1 (en) Method of preparing hydrocarbon gas for transportation
US2028725A (en) Production of so from acid sludge
CN217895509U (en) Device for treating styrene tar
JPS61249600A (en) Treatment of oil storage tank sludge
CN116354809B (en) Method for treating and reutilizing tail gas from butyric acid production