JPH0237382B2 - - Google Patents

Info

Publication number
JPH0237382B2
JPH0237382B2 JP57027982A JP2798282A JPH0237382B2 JP H0237382 B2 JPH0237382 B2 JP H0237382B2 JP 57027982 A JP57027982 A JP 57027982A JP 2798282 A JP2798282 A JP 2798282A JP H0237382 B2 JPH0237382 B2 JP H0237382B2
Authority
JP
Japan
Prior art keywords
slurry
gas
hydrogenation
lignite
liquefaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027982A
Other languages
Japanese (ja)
Other versions
JPS58154798A (en
Inventor
Tetsuo Matsumura
Toshio Oosawa
Hiroshi Yoshimura
Osamu Ookuma
Yasuo Sugino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2798282A priority Critical patent/JPS58154798A/en
Priority to AU12258/83A priority patent/AU552677B2/en
Priority to PCT/JP1983/000051 priority patent/WO1983002936A1/en
Priority to DE3332116T priority patent/DE3332116C2/en
Priority to DD83248150A priority patent/DD209472A5/en
Publication of JPS58154798A publication Critical patent/JPS58154798A/en
Priority to US06/825,990 priority patent/US4714543A/en
Publication of JPH0237382B2 publication Critical patent/JPH0237382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、褐炭の抽出水添液化法における予備
処理法の改善に関するものであり、詳細には熱経
済性の良い方法で生褐炭中の水分を除去すると共
に、反応系におおける沈降物やスケールの形成を
予防する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the pretreatment method in the extraction hydrogenation and liquefaction method of lignite, and more specifically, to remove water in raw lignite using a method with good thermoeconomic efficiency, and to It relates to a method for preventing the formation of sediment and scale in a system.

石炭の液化法としては、溶剤類と混合してスラ
リー化し、石炭中の溶剤抽出物のみを水添液化の
対象とする方法、即ち抽出水添液化法が知られて
いる。しかるにある種の石炭は含水率が高く、就
中褐炭の含水率は60%にも及ぶことがあるのでこ
れをそのまま液化処理に付すことは熱効率的に見
て不経済である。そこでこの様な原料炭を用いる
場合は、液化工程へ供給するに先立つて予め脱水
処理を行なうことが必要であり、従来は気流乾燥
法を適用することによつて含水率を10%前後に低
下させていた。しかしこの方法は気流加熱の為に
膨大な熱量を要求するという欠点と、褐炭粒の表
面に酸化膜を形成して水添液化反応の進行を阻害
するという欠点と、過加熱の為に原料炭中の揮発
成分が分解して液化収率を低下させるという欠点
とを有するものである為実用上の問題があつた。
この様なところから本出願人においては、原料炭
を加熱して原料炭中の水分を蒸気として分離し、
この高温蒸気を原料炭の前記加熱に利用するとい
う蒸気熱交換方式を完成して先に特許出願した
(特開昭53−112902号)。該方法の要点は、生褐炭
の溶剤を混合してスラリー化し、これを熱交換器
に通して予熱した後、100〜300℃に加熱すること
によつて気液分離を行ない、脱水スラリーを採取
する一方で分離水蒸気を前述の熱交換器に循環さ
せて原料スラリーの予熱源とする点に存在するも
のであり、これによつて前述の欠陥が一気に解消
されることとなつた。
As a method for liquefying coal, there is known a method in which the coal is mixed with a solvent to form a slurry and only the solvent extract in the coal is subjected to hydrogenation and liquefaction, that is, the extraction hydrogenation and liquefaction method. However, some types of coal have a high moisture content, and brown coal in particular has a moisture content of up to 60%, so it is uneconomical from a thermal efficiency standpoint to subject this coal to liquefaction treatment as it is. Therefore, when using such coking coal, it is necessary to dehydrate it before supplying it to the liquefaction process, and conventionally, the moisture content is reduced to around 10% by applying a flash drying method. I was letting it happen. However, this method has the drawbacks of requiring a huge amount of heat due to airflow heating, the formation of an oxide film on the surface of lignite grains and inhibiting the progress of the hydrogenation and liquefaction reaction, and the disadvantage of overheating the raw coal. This poses a practical problem because the volatile components therein decompose and reduce the liquefaction yield.
For this reason, the applicant heats the coking coal to separate the moisture in the coking coal as steam.
They completed a steam heat exchange system that uses this high-temperature steam to heat the coking coal, and filed a patent application for it (Japanese Patent Application Laid-Open No. 112902/1983). The key point of this method is to mix raw lignite with a solvent to form a slurry, pass it through a heat exchanger to preheat it, and then heat it to 100-300°C to perform gas-liquid separation and collect the dehydrated slurry. On the other hand, the separated steam is circulated through the heat exchanger described above to be used as a preheating source for the raw material slurry, and the above-mentioned deficiencies can be solved at once.

この方法によつて褐炭中の含有水分については
至極合理的且つ経済的に除去される様になつた
が、褐炭については今一つの問題があり、平行的
に解決されるべきであるとの要望が強い。即ち褐
炭を主原料とするスラリーを抽出水添液化法に適
用すると、予熱器や反応塔、或いはスラリーに輸
送配管中に沈降物の大量堆積を招いて連続操業が
不能に陥入つたり、時に重大なスケーリング事故
に発展し莫大な損害を被むることがある。そこで
沈降物やスケールへの対策を構ずる必要が生じ、
ここれらの本態を研究したところ、金属炭酸塩が
重大な役割りを果しているとの確信が得られた。
しかるところ褐炭中にはCaやMgの如き炭酸塩形
成性金属成分(以下代表的にはCa等と述べる)
が含まれており、例えばライン褐炭(ドイツ産)
では灰分中の44重量%がCaOであつたとの報告も
ある。しかも褐炭は石炭構造上の特徴として水酸
基、カルボキシル基、カルボニル基等の酸素含有
置換基を含み、これらの置換基が石炭溶解段階や
水添液化反応段階において容易に分解し、系内に
H2O,CO2,CO等を生成するという背景がある。
これらのうちH2Oは直接的には水分の増大とい
う不具合を増幅し、反応工程の水素分圧が低下し
て液効率を下げ、又CO2やCOは系内に共存する
Ca等と反応して炭酸塩を形成し、沈降物やスケ
ールの発生原因となる。
Although this method has made it possible to remove the water content in lignite in an extremely rational and economical manner, there is another problem with lignite, and there is a desire to solve it in parallel. strong. In other words, if a slurry whose main raw material is lignite is applied to the extraction hydrogenation and liquefaction method, a large amount of sediment will accumulate in the preheater, reaction tower, or slurry transport pipe, making continuous operation impossible and sometimes causing problems. This may develop into a serious scaling accident and cause huge damage. Therefore, it became necessary to take measures against sediment and scale.
After studying the nature of these phenomena, we became convinced that metal carbonates play an important role.
However, brown coal contains carbonate-forming metal components such as Ca and Mg (hereinafter typically referred to as Ca, etc.).
For example, Rhine brown coal (produced in Germany)
There is also a report that 44% by weight of the ash was CaO. Furthermore, lignite contains oxygen-containing substituents such as hydroxyl groups, carboxyl groups, and carbonyl groups as a characteristic feature of its coal structure, and these substituents easily decompose during the coal dissolution stage and hydrogenation liquefaction stage, resulting in the formation of gas in the system.
The background is that H 2 O, CO 2 , CO, etc. are generated.
Of these, H 2 O directly amplifies the problem of increased water content, lowers the hydrogen partial pressure in the reaction process and lowers the liquid efficiency, and CO 2 and CO coexist in the system.
It reacts with Ca, etc. to form carbonate, which causes the formation of sediment and scale.

即ち褐炭を水添液化の対象とする場合の特殊事
情(含水率の過多や沈降物等の形成)を考慮し、
上記2大欠陥を同時に解消することが、褐炭の水
添液化処理における経済性を大幅に高めるとの結
論に到達した。本発明はこの様な状況を考慮して
なされたものであつて、予備処理段階において十
分な脱水効果を示すと共に、可及的早い段階で
Ca等を安定化して水添液化段階における炭酸塩
の形成を予防するという二大目的を都合よく達成
できる方法の確立を目的とするものである。
In other words, considering the special circumstances (excessive moisture content, formation of sediment, etc.) when brown coal is subjected to hydrogenation and liquefaction,
It was concluded that eliminating the above two major defects at the same time would greatly improve the economic efficiency of brown coal hydrogenation and liquefaction treatment. The present invention was developed in consideration of this situation, and it exhibits a sufficient dehydration effect in the preliminary treatment stage, and also provides dehydration at the earliest possible stage.
The purpose of this study is to establish a method that can conveniently achieve the two main objectives of stabilizing Ca and the like and preventing the formation of carbonates during the hydrogenation and liquefaction stage.

この様な目的を達成することのできた本発明方
法の要点は、生褐炭と溶剤からなる原料スラリー
を、水添液化反応塔への供給に先立つて加圧下に
300〜400℃に加熱し、生褐炭中の水分を蒸発させ
ると共に褐炭を部分的に熱分解してCO2を発生せ
しめ、水蒸気とCO2の混合気体より水蒸気とCO2
を分離し、水蒸気はスラリーの加熱用熱源として
利用する一方、CO2含有ガスを高温状態にあるス
ラリー中に吹込んで該スラリー中の炭酸塩形成性
金属を浮遊性炭酸塩として微細に析出させ、この
炭酸塩を含有したままのスラリーを水添液化反応
塔に供給する様に構成したものである。即ち脱水
工程と炭酸塩析出安定化工程を、水添液化の前処
理として平行的に実施することにより、前記の難
点が全て解消されることとなつた。即ち経済的な
脱水効果については既に述べた通りであるが、前
処理段階で積極的に析出せしめられた浮遊性炭酸
塩はこのまま分離せずに水添液化工程へ送り込ん
でも反応液中に再溶解も沈殿もしないのでSRC
精製工程に悪影響を及ぼさず、又極めて微細粒で
あつて浮遊性に富む為触媒や器壁に析出すること
がなく、粒成長による堆積やスケール生成に発展
する恐れがない。従つて閉塞事故やスケーリング
事故を生じず、安定な状況下での連続操業が可能
となつた。
The key point of the method of the present invention that was able to achieve these objectives is that the raw material slurry consisting of raw lignite and a solvent is placed under pressure before being supplied to the hydrogenation and liquefaction reaction tower.
Heating to 300-400℃ evaporates the moisture in the raw lignite and partially thermally decomposes the lignite to generate CO 2 , which produces water vapor and CO 2 from a mixed gas of water vapor and CO 2
is separated, and the water vapor is used as a heat source for heating the slurry, while CO 2 -containing gas is blown into the slurry in a high temperature state to finely precipitate carbonate-forming metals in the slurry as floating carbonates, This slurry containing carbonate is supplied to the hydrogenation and liquefaction reaction tower. That is, by carrying out the dehydration step and the carbonate precipitation stabilization step in parallel as pretreatment for hydrogenation and liquefaction, all of the above-mentioned difficulties have been solved. In other words, although the economic dehydration effect has already been mentioned, floating carbonates that are actively precipitated during the pretreatment stage will not be redissolved in the reaction solution even if they are sent to the hydrogenation and liquefaction process without being separated. SRC because it does not precipitate
It does not adversely affect the refining process, and since it is extremely fine and highly buoyant, it does not precipitate on the catalyst or vessel walls, and there is no risk of deposition or scale formation due to grain growth. Therefore, continuous operation was possible under stable conditions without any blockage or scaling accidents.

次に実施例を示すフロー図に基づいて本発明の
構成及び作用効果を明らかにする。
Next, the configuration and effects of the present invention will be explained based on a flowchart showing an example.

第1図は、熱交換器4の入口部及び/又は気液
分離装置5内のスラリー中に、系内で発生した
CO2含有ガス(COガス等を含むが、図面及び明
細書では単にCO2と記す)を吹込む場合の実施例
を示すフロー図である。即ち生褐炭、低沸点溶剤
及び高沸点溶剤を原料とし、必要に応じて設けら
れるボールミル1内で必要により添加される触媒
粒を受け入れた後、スラリータンク2に導入され
て十分な混合を受け、原料スラリー(以下スラリ
ーは単にSで示す)となる。溶剤の種類や配合量
等については、全工程を通じて適性な粘度を与え
る有機溶媒を用いるものである限り制限はない。
スラリーSはポンプ3で昇圧して熱交換器4に送
られ、ここでの加熱によつてスラリーS中の水分
が蒸発するが、必要であればその後適当な加熱装
置に導入して水分を更に且つ十分に蒸発させ、目
標含水率(約10%以下)迄低下させる。尚加熱温
度は後述の第3図に見られる如く300〜400℃とす
るのが好ましく、該温度で水分が十分蒸発する圧
力下に気液分離器5へ送る。尚熱交換器4におけ
る熱源は、後述の加圧手段から送られてくるスチ
ームであり、該スチームは熱交換に供された後冷
却され、油水分離器9に導入されて低沸点溶剤の
回収が行なわれる。気液分離器5に供給されるス
ラリーSは、生褐炭由来のスチームを含む他、
CO2器6から送られてくるCO2の供給を受けてCa
等との反応が進んでいるので各種炭酸塩の微粒及
び未反応の気相CO2を含んでいる。従つて気液分
離器5ではスチーム及び気相CO2のガスをスラリ
ーや生成炭酸塩から分離し、この分離ガスを脱
CO2器6に送る。脱CO2器6では例えばCO2吸着
法若しくはスチームの凝縮及び再加熱の方法等に
よりCO2ガスとスチームの分離が行なわれ、夫々
前述の様に循環させるが、もし循環スチーム中に
CO2やCO等の非凝縮性ガスが含まれていると熱
交換器4内における伝熱効果が悪くなり熱効率が
低下するのでCO2やCOは可及的十分に除いてお
くことが推奨される。尚脱CO2器6で精製された
スチームはブースターの如き加圧手段8によつて
昇圧され、又該昇圧に応じた昇熱を受けてから熱
交換器4に送ることが推奨される。他方気液分離
器5を出たスラリーは脱CO2器6からも若干回収
されてくる溶剤と合流した上で1次水添工程7に
送られ水添液化反応を受ける。尚生褐炭との混合
に用いられる高沸点溶剤は1次水添工程7より回
収してリサイクルすることが望まれる。又本実施
例では気液分離器5にもCO2が供給されており、
気液分離器5内においてもCa等が微細な炭酸塩
として析出するので、炭酸塩形成金属成分の安定
化効果は更に高いものとなる。
FIG. 1 shows the amount of water generated within the system in the slurry at the inlet of the heat exchanger 4 and/or the gas-liquid separator 5.
FIG. 2 is a flowchart showing an example in which a CO 2 -containing gas (including CO gas and the like, but simply referred to as CO 2 in the drawings and specification) is injected. That is, raw lignite, a low boiling point solvent and a high boiling point solvent are used as raw materials, and after receiving catalyst particles added as necessary in a ball mill 1 provided as necessary, it is introduced into a slurry tank 2 and subjected to sufficient mixing, This becomes a raw material slurry (hereinafter the slurry will be simply referred to as S). There are no restrictions on the type or amount of the solvent, as long as it is an organic solvent that provides an appropriate viscosity throughout the entire process.
The slurry S is pressurized by the pump 3 and sent to the heat exchanger 4, where the water in the slurry S is evaporated by heating, but if necessary, it can be introduced into an appropriate heating device to further increase the water content. It is then sufficiently evaporated to reduce it to the target moisture content (approximately 10% or less). The heating temperature is preferably 300 to 400 DEG C. as shown in FIG. 3, which will be described later, and the material is sent to the gas-liquid separator 5 under pressure such that moisture is sufficiently evaporated at this temperature. The heat source in the heat exchanger 4 is steam sent from a pressurizing means, which will be described later. After the steam is subjected to heat exchange, it is cooled and introduced into the oil/water separator 9 to recover the low boiling point solvent. It is done. The slurry S supplied to the gas-liquid separator 5 contains steam derived from raw lignite, and
After receiving the supply of CO 2 sent from the CO 2 unit 6, Ca
It contains fine particles of various carbonates and unreacted gas phase CO 2 as the reaction with other substances is progressing. Therefore, the gas-liquid separator 5 separates steam and gas-phase CO 2 gas from the slurry and carbonate produced, and desorbs this separated gas.
Send to CO2 vessel 6. In the CO 2 removal unit 6, CO 2 gas and steam are separated by, for example, a CO 2 adsorption method or a steam condensation and reheating method, and each is circulated as described above.
If non-condensable gases such as CO 2 and CO are included, the heat transfer effect within the heat exchanger 4 will deteriorate and the thermal efficiency will decrease, so it is recommended to remove CO 2 and CO as much as possible. Ru. It is recommended that the steam purified by the CO 2 removing device 6 is pressurized by a pressurizing means 8 such as a booster, and is sent to the heat exchanger 4 after being heated in accordance with the pressurization. On the other hand, the slurry leaving the gas-liquid separator 5 is combined with some solvent recovered from the CO 2 remover 6 and then sent to the primary hydrogenation step 7 where it undergoes a hydrogenation and liquefaction reaction. It is desirable that the high boiling point solvent used for mixing with fresh brown coal be recovered from the primary hydrogenation step 7 and recycled. In this embodiment, CO 2 is also supplied to the gas-liquid separator 5,
Since Ca and the like are precipitated as fine carbonates in the gas-liquid separator 5, the stabilizing effect of the carbonate-forming metal components is further enhanced.

熱交換器4及び気液分離器5における操業条件
については先に若干触れたが、更に補充説明を加
える。第3図はモーウエル褐炭(水分12%、灰分
4%、溶剤/石炭比=3.0)を対象として、温度
と分解生成CO2量の関係を示すグラフであるが、
CO2は200℃を過ぎてから形成され、以後温度の
上昇と共に急激に増大することが分かり、且つこ
の段階では脱水工程による水分が十分存在する。
The operating conditions for the heat exchanger 4 and the gas-liquid separator 5 have been briefly mentioned above, but additional explanation will be added. Figure 3 is a graph showing the relationship between temperature and amount of decomposed CO 2 for Mowell lignite (moisture 12%, ash 4%, solvent/coal ratio = 3.0).
It was found that CO 2 is formed after the temperature exceeds 200° C., and then increases rapidly as the temperature rises, and at this stage there is sufficient moisture due to the dehydration process.

この様なところから、次の様に操作条件を設定
することが推奨される。即ち石炭構造中からCa
等や分離され、しかも石炭が余り溶解しない温
度、若しくはスラリー形成用溶剤の沸点以下が望
ましい温度条件であり、前述の如く第3図のデー
タに従つて300〜400℃と設定した。尚圧力はスチ
ームを回収する際の再圧縮の仕事効率より十数気
圧以下に設定することが望ましい。
From this point of view, it is recommended to set the operating conditions as follows. In other words, Ca is removed from the coal structure.
The desirable temperature condition is a temperature at which the coal is separated and the coal does not dissolve much, or below the boiling point of the slurry forming solvent, and as mentioned above, the temperature was set at 300 to 400°C according to the data shown in Figure 3. In addition, it is desirable to set the pressure to less than 10-odd atmospheres in view of the work efficiency of recompression when recovering steam.

第2図は、熱交換器4における熱効率を更に向
上させる為の実施例フロー図であり、気液分離器
を5a,5bの2段に分け、前者5aではスチー
ムのみを分離し、後者5bは炭酸塩析出を主目的
としている。即ち第1図の例では、脱CO2器6を
設けてスチームとCO2の分離を図つているが両者
の完全分離は困難であり、熱交換器4への供給ス
チーム中には若干量のCO2が混入している。その
為熱交換器4における熱効率は必ずしも十分では
なかつた。その為第2図では気液分離器5a内を
かなり低圧にして操業し、CO2の分解生成を抑制
すると共に、CO2を循環供給することも中止して
いる。従つて気液分離器5aから分離されるスチ
ームにはCO2が混入されておらず、脱CO2器を必
要なく単に加圧するだけで熱交換器4へ供給すれ
ば良い。そして第2の気液分離器5bを高温熱媒
体によつて熱分解温度迄過昇温し、脱CO2器6で
凝縮法等により若干のスチームを凝縮させて分離
すると共に、凝縮スチームは適当な手段で排水処
理する。尚気液分離器5b内での熱分解により生
成したCO2は直ちにCa等と反応して炭酸塩を形
成するので、脱CO2器6で分離させるCO2は未反
応CO2であり、これは気液分離器5bにリサイク
ルすることができる。
FIG. 2 is a flowchart of an embodiment for further improving the thermal efficiency in the heat exchanger 4. The gas-liquid separator is divided into two stages 5a and 5b. The former 5a separates only steam, and the latter 5b The main purpose is carbonate precipitation. That is, in the example shown in FIG. 1, a CO 2 remover 6 is provided to separate steam and CO 2 , but it is difficult to completely separate the two, and a small amount of steam is supplied to the heat exchanger 4. Contains CO2 . Therefore, the thermal efficiency in the heat exchanger 4 was not necessarily sufficient. Therefore, in FIG. 2, the gas-liquid separator 5a is operated at a considerably low pressure to suppress the decomposition and production of CO2 , and the circulation supply of CO2 is also discontinued. Therefore, the steam separated from the gas-liquid separator 5a does not contain CO 2 and can be supplied to the heat exchanger 4 by simply pressurizing the steam without the need for a CO 2 remover. Then, the temperature of the second gas-liquid separator 5b is raised to the thermal decomposition temperature using a high-temperature heat medium, and a small amount of steam is condensed and separated by a condensation method in the CO2 removal device 6, and the condensed steam is Treat wastewater by suitable means. Note that the CO 2 generated by thermal decomposition in the gas-liquid separator 5b immediately reacts with Ca, etc. to form carbonates, so the CO 2 separated in the CO 2 remover 6 is unreacted CO 2 . can be recycled to the gas-liquid separator 5b.

本発明は上記の如く構成されているので、褐炭
中に含まれている水分及びCa等は、水添液化反
応に先だつてほぼ確実に処理され、水分は系外へ
放出されると共にCa等は安定且つ微細な炭酸塩
となつて閉塞事故を起こす必配がなくなる。従つ
て褐炭の抽出水添液化操業を長期間安定して継続
することが可能になつた。
Since the present invention is configured as described above, moisture, Ca, etc. contained in lignite are almost certainly treated prior to the hydrogenation and liquefaction reaction, and moisture is released outside the system while Ca, etc. It becomes a stable and fine carbonate and there is no need to cause a blockage accident. Therefore, it has become possible to continue the extraction hydrogenation and liquefaction operation of brown coal stably for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は実施例のフロー図、第3図は分解
CO2と温度の関係を示すグラフである。 4…熱交換器、5…気液分離器、6…脱CO2
器、8…加圧手段。
Figures 1 and 2 are flow diagrams of the example, and Figure 3 is disassembly.
It is a graph showing the relationship between CO 2 and temperature. 4... Heat exchanger, 5... Gas-liquid separator, 6... CO 2 removal
8... Pressurizing means.

Claims (1)

【特許請求の範囲】[Claims] 1 生褐炭と溶剤を混合してなる原料スラリー
を、水添液化反応塔への供給に先立つて加圧下に
300〜400℃に加熱し、生褐炭中の水分を蒸発させ
ると共に褐炭を部分的に熱分解してCO2を発生せ
しめ、水蒸気とCO2の混合気体より水蒸気とCO2
を分離し、水蒸気はスラリーの加熱用熱源として
利用する一方、CO2含有ガスを高温状態にあるス
ラリー中に吹込んで該スラリー中の炭酸塩形成性
金属を浮遊性炭酸塩として微細に析出させ、この
炭酸塩を含有したままのスラリーを水添液化反応
塔に供給する様に構成したことを特徴とする褐炭
の加熱脱水方法。
1. A raw material slurry made by mixing raw lignite and a solvent is placed under pressure before being supplied to the hydrogenation and liquefaction reaction tower.
Heating to 300-400℃ evaporates the moisture in the raw lignite and partially thermally decomposes the lignite to generate CO 2 , which produces water vapor and CO 2 from a mixed gas of water vapor and CO 2
is separated, and the water vapor is used as a heat source for heating the slurry, while CO 2 -containing gas is blown into the slurry in a high temperature state to finely precipitate carbonate-forming metals in the slurry as floating carbonates, A method for heating and dehydrating brown coal, characterized in that the slurry containing carbonate is supplied to a hydrogenation and liquefaction reaction tower.
JP2798282A 1982-02-22 1982-02-22 Heat dehydration of brown coal Granted JPS58154798A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2798282A JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal
AU12258/83A AU552677B2 (en) 1982-02-22 1983-02-21 Process for liquifying brown coal
PCT/JP1983/000051 WO1983002936A1 (en) 1982-02-22 1983-02-21 Process for liquefying brown coal
DE3332116T DE3332116C2 (en) 1982-02-22 1983-02-21 Process for liquefying lignite
DD83248150A DD209472A5 (en) 1982-02-22 1983-02-22 PROCESS FOR BROWN COAL LEVITATION
US06/825,990 US4714543A (en) 1982-02-22 1986-02-04 Method of treating brown coal for liquefaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2798282A JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal

Publications (2)

Publication Number Publication Date
JPS58154798A JPS58154798A (en) 1983-09-14
JPH0237382B2 true JPH0237382B2 (en) 1990-08-23

Family

ID=12236053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2798282A Granted JPS58154798A (en) 1982-02-22 1982-02-22 Heat dehydration of brown coal

Country Status (1)

Country Link
JP (1) JPS58154798A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534489B2 (en) * 1987-02-23 1996-09-18 住友石炭鉱業 株式会社 Liquefaction coal pretreatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206033A (en) * 1978-08-14 1980-06-03 Exxon Research & Engineering Co. CO2 Pretreatment prevents calcium carbonate formation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206033A (en) * 1978-08-14 1980-06-03 Exxon Research & Engineering Co. CO2 Pretreatment prevents calcium carbonate formation

Also Published As

Publication number Publication date
JPS58154798A (en) 1983-09-14

Similar Documents

Publication Publication Date Title
RU2078054C1 (en) Method of treating aqueous solutions containing hydrogen sulfide, hydrogen cyanide, and ammonia
KR101725557B1 (en) Improved integrated chemical process
US4486959A (en) Process for the thermal dewatering of young coals
JPS6055084A (en) Fluidized bed gasification for extracted coal
JPS59157419A (en) Method and device for burning fuel containing water
US1868499A (en) Process of recovering alumina from silicious materials containing it
JPH06200267A (en) Method for reducing sulfur and ash content of coal
US4319980A (en) Method for treating coal to obtain a refined carbonaceous material
JPH0237382B2 (en)
JPS588438B2 (en) Heat dehydration treatment method for lignite
US3607143A (en) Sulfur extraction by sequential contact with vapor and with liquid perchloroethylene
KR102095980B1 (en) Improved treatment method of magnesium chloride solution and method of preparing carboxylic acid
JPS5946995B2 (en) Improvements in aqueous effluent purification
EP1496101B1 (en) Method for manufacturing gasified fuel and method and apparatus for heat recovery in manufacturing gasified fuel
JPH10165759A (en) Refining method and apparatus for gas containing hydrogen sulfide and sulfur dioxide
US4714543A (en) Method of treating brown coal for liquefaction
JPS6241698B2 (en)
JPS6241390A (en) Method and apparatus for concentrating black liquor
JP4153448B2 (en) Power generation method using low-grade coal as fuel
KR100744754B1 (en) Preparation method of aromatic carboxylic acid
JPS6158118B2 (en)
JPH0685920B2 (en) Oil treatment method for organic sludge
JPH0142993B2 (en)
JPS6212954B2 (en)
US3256059A (en) Process for the recovery of sodium carbonate and sodium sulfate from spent sulfite liquor