JPS5815448B2 - Method for manufacturing phosphoric acid glass - Google Patents

Method for manufacturing phosphoric acid glass

Info

Publication number
JPS5815448B2
JPS5815448B2 JP54130634A JP13063479A JPS5815448B2 JP S5815448 B2 JPS5815448 B2 JP S5815448B2 JP 54130634 A JP54130634 A JP 54130634A JP 13063479 A JP13063479 A JP 13063479A JP S5815448 B2 JPS5815448 B2 JP S5815448B2
Authority
JP
Japan
Prior art keywords
glass
phosphoric acid
soot
compound
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130634A
Other languages
Japanese (ja)
Other versions
JPS5595643A (en
Inventor
井上浩蔵
赤松武志
中村理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP54130634A priority Critical patent/JPS5815448B2/en
Publication of JPS5595643A publication Critical patent/JPS5595643A/en
Publication of JPS5815448B2 publication Critical patent/JPS5815448B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は光伝送線の構成材料となるガラスの製造方法、
とくに燐酸化合物を含むガラスの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for manufacturing glass that is a constituent material of an optical transmission line;
In particular, it relates to a method for producing glass containing a phosphoric acid compound.

光伝送線とくに高品質の光学繊維に用いるガラスは高純
度であることが要求される。
Glass used for optical transmission lines, especially high-quality optical fibers, is required to have high purity.

ただし、ここに高純度というのは意図せざる不純物の含
有量がたとえば数ppm以下というようにきわめて少な
いことを意味する。
However, "high purity" here means that the content of unintended impurities is extremely small, for example, several ppm or less.

上述のような高純度のガラスを得る方法としてガラス形
成酸化物となる元素のハロゲン化物、たとえば5iC1
4,GeC1,、TiC1,等を出発原料として用い、
この原料を気相で酸化せしめてガラス形成酸化物とする
方法はすでに周知である。
As a method for obtaining high-purity glass as described above, a halide of an element that becomes a glass-forming oxide, such as 5iC1
4, using GeC1, TiC1, etc. as a starting material,
It is already well known to oxidize this raw material in the gas phase to give glass-forming oxides.

この方法によれば出発原料がすでに相当に高純度なもの
が得られるので、他の反応ガス(H2,02等)の純度
に注意すればきわめて高純度のガラス形成酸化物を生成
させることができる。
With this method, the starting materials are already of fairly high purity, so if care is taken with the purity of other reaction gases (H2, 02, etc.), glass-forming oxides of extremely high purity can be produced. .

しかしながら、上述した従来周知のガラス合成方法は、
管または棒状体を支持体として用い、管の内壁または棒
状体の表面に気相から粉末状で析出したガラス形成酸化
物(以下スート(soot)という)を被着する方法で
あるため量産性に乏しい不利がある。
However, the conventional well-known glass synthesis method described above,
This method is suitable for mass production because it uses a tube or rod-shaped body as a support and deposits glass-forming oxide (hereinafter referred to as soot) deposited in powder form from the gas phase on the inner wall of the tube or the surface of the rod-shaped body. There is a disadvantage of scarcity.

また、本発明者らのうちの1名は、気相から析出させた
スートを一旦石英製容器中に集め、容器外から加熱して
ガラス化する方法を提案した。
In addition, one of the present inventors proposed a method in which soot precipitated from the gas phase is once collected in a quartz container and heated from outside the container to vitrify it.

しかしながら従来の光伝送線用ガラスはSiO2を主成
分とする硅酸系のものが主流であったため、スートのガ
ラス化と溶融に要する温度が高く、石英るつぼによる溶
融が困難であり、溶融温度を低くするためにアルカリ(
たとえばNa2O等)を添加すれば加熱状態において石
英容器が侵食される不都合がある。
However, since the conventional glasses for optical transmission lines were mainly silicic acid-based glasses containing SiO2 as the main component, the temperature required for vitrification and melting of the soot was high, making it difficult to melt in a quartz crucible. To lower the alkali (
For example, if Na2O, etc.) is added, there is a problem that the quartz container will be eroded in the heated state.

石英(Sin2)は元来微弱ながら酸性を有しており、
アルカリには侵されやすいが弱酸性の物質には侵され難
い。
Quartz (Sin2) is originally slightly acidic,
It is easily attacked by alkalis, but not easily attacked by weakly acidic substances.

酸性を有するガラス形成化合物として五酸化燐(P2O
5)が周知であるが、P2O5自体は化学的に活性が強
く、とくに空気中の水分をよく吸収する。
Phosphorus pentoxide (PO
5) is well known, but P2O5 itself is highly chemically active and particularly absorbs moisture from the air.

またP2O5は易蒸発性であるためガラス化の際の高温
で多量に蒸発し、結果として生成したガラス中に含有さ
れるP2O3の量が最初に混合した量に比し相当に少な
くなる不都合がある。
Furthermore, since P2O5 is easily evaporated, it evaporates in large quantities at high temperatures during vitrification, resulting in the disadvantage that the amount of P2O3 contained in the resulting glass is considerably smaller than the amount initially mixed. .

この対策としては、P2O5の代わりにMPO4のよう
な形の燐酸塩(Mは金属等の陽性元素)を用いるのが望
ましいが、従来の燐酸塩の製造方法では光伝送線用ガラ
スの原料として使用し得るような高純度の燐酸塩が得ら
れない。
As a countermeasure against this, it is desirable to use a phosphate in the form of MPO4 (M is a positive element such as a metal) instead of P2O5, but in the conventional manufacturing method of phosphate, it is used as a raw material for glass for optical transmission lines. Phosphate of high purity cannot be obtained.

さらに、易蒸発性、のP2O5の蒸発を防ぐために燐の
ハロゲン化合物たとえばPOCl3と、ゲルマニウムの
ハロゲン化合物たとえばGeCl4とを気相で混合して
この混合ガスを酸化せしめる方法が提案された。
Furthermore, in order to prevent the evaporation of easily evaporable P2O5, a method has been proposed in which a halogenated phosphorus compound such as POCl3 and a halogenated germanium compound such as GeCl4 are mixed in the gas phase and the mixed gas is oxidized.

この方法によればP2O5の蒸発を大幅に減少させるこ
とができるが、生成したガラスは水に対する親和性が強
く、空気中の湿気を吸い易いため、そのままでは使用に
耐えない欠点がある。
Although this method can significantly reduce the evaporation of P2O5, the produced glass has a strong affinity for water and easily absorbs moisture from the air, so it has the drawback that it cannot be used as it is.

本発明は前述の点に鑑みなされたもので、■族元素の化
合物と燐化合物との気相化学反応により上記■族元素の
燐酸塩を形成する燐酸ガラス原料を得、この原料に他種
の燐酸化合物を混合した状態で溶融させガラス化する燐
酸ガラスの製造方法を提供せんとするものである。
The present invention has been made in view of the above-mentioned points, and involves obtaining a phosphate glass raw material that forms a phosphate of the group (I) element through a gas phase chemical reaction between a compound of the group (I) element and a phosphorus compound, and adding other types of phosphoric acid to this raw material. It is an object of the present invention to provide a method for producing phosphoric acid glass in which a phosphoric acid compound is melted and vitrified in a mixed state.

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

■族元素の一種であるガリウム(Ga)は燐酸とGaP
O4という組成の塩を作ることが周知である。
Gallium (Ga), a type of group element, is associated with phosphoric acid and GaP.
It is well known to make a salt of the composition O4.

しかし従来のGaPO4の製造方法は三酸化ガリウム(
Ga20いと燐酸(H3PO,)とを高温下で反応せし
める方法であって、前述したように高純度の燐酸塩を得
ることができない。
However, the conventional method for producing GaPO4 is gallium trioxide (
This is a method in which Ga20 and phosphoric acid (H3PO,) are reacted at high temperatures, and as described above, it is not possible to obtain a highly pure phosphate.

またGaPO4は高融点(約1670℃)であり、単独
では容易にガラス化しない。
Furthermore, GaPO4 has a high melting point (approximately 1670° C.) and is not easily vitrified when used alone.

そこで本発明者らは三塩化ガリウム(GaC13)とオ
キシ塩化燐(POC’13)との混合蒸気を火炎加水分
解することにより粉末状の反応生成物すなわちスートを
得た。
Therefore, the present inventors obtained a powdery reaction product, that is, soot, by subjecting a mixed vapor of gallium trichloride (GaC13) and phosphorus oxychloride (POC'13) to flame hydrolysis.

このスートは後述するように少な(とも大部分がGaP
O4であることが確認された。
As will be explained later, this suit is small (mostly GaP
It was confirmed that it was O4.

この反応に用いた装置の概略構造を添付図面に示した。The schematic structure of the apparatus used for this reaction is shown in the attached drawing.

図において容器1には液状のPOCl3が、容器2には
同じく液状のGaCl3がそれぞれ収容されている。
In the figure, container 1 contains liquid POCl3, and container 2 contains liquid GaCl3.

該両容器1,2にはバブリング用ガスたとえばアルゴン
(Ar)の導入管3,4が挿入されていて、バブリング
によりPOCl3およびGaCl3の蒸気がArに担持
され、反応ガス導出管5,6からそれぞれ容器外へ導出
される。
Introducing pipes 3 and 4 for bubbling gas, such as argon (Ar), are inserted into both containers 1 and 2, and the vapors of POCl3 and GaCl3 are supported on Ar by bubbling, and are discharged from reaction gas outlet pipes 5 and 6, respectively. Extracted from the container.

なおPOCl3容器1は40℃に、GaCl3容器2は
140℃に図示しない恒温槽によりそれぞれ保たれる。
Note that the POCl3 container 1 is maintained at 40° C., and the GaCl3 container 2 is maintained at 140° C. in a constant temperature bath (not shown).

上記反応ガス導出管5,6からそれぞれ導出された、原
料を担持するArは途中で混合され、さらに酸素導入管
7から導入された02 と合わされて単一の混合ガス導
入管8を通ってトーチ9に入る。
Ar carrying the raw materials, which are led out from the reaction gas lead-out pipes 5 and 6, are mixed along the way, and further combined with 02 introduced from the oxygen lead-in pipe 7, and passed through the single mixed gas lead-in pipe 8 to the torch. Enter 9.

トーチ9には上記原料を担持するArおよび02の他に
、02およびH2が導入管10,11からそれぞれ導入
され、点火により酸水素炎12を発生する。
In addition to Ar and 02 carrying the above raw materials, 02 and H2 are introduced into the torch 9 from introduction pipes 10 and 11, respectively, and ignited to generate an oxyhydrogen flame 12.

該酸水素炎の高熱によりPOCl3およびGaCl3の
加水分解反応が生じて反応生成物であるスート13が析
出するから、これをるつぼ14で受けてその内部に蓄積
する。
The high heat of the oxyhydrogen flame causes a hydrolysis reaction of POCl3 and GaCl3, and the reaction product, soot 13, is precipitated, which is received by the crucible 14 and accumulated therein.

該スート13をX線回収法により検査した結果、その全
部または大部分が燐酸ガリウム(GaPO4)であるこ
とが判明した。
As a result of inspecting the soot 13 using an X-ray recovery method, it was found that all or most of it was gallium phosphate (GaPO4).

周知のようにGaCl3、POCl3等は半導体工業に
使用される極めて純度の高いものが入手可能であるから
、上述のようにして得られたスートは不要成分の含有量
がきわめて少なく、光伝送線用ガラスの素材として好適
である。
As is well known, extremely high purity GaCl3, POCl3, etc. used in the semiconductor industry are available, so the soot obtained as described above has an extremely low content of unnecessary components and is suitable for optical transmission lines. Suitable as a material for glass.

この実験結果に基づき、本発明者らは以下に述べる実施
態様により光伝送線用ガラスの試作実験を行なった。
Based on the results of this experiment, the present inventors conducted a trial production experiment of glass for optical transmission lines according to the embodiment described below.

実施例 ■ 前述のようにして製作したGaP0.に、P2O5とG
eO2との複合酸化物スートを重量比で36:64にな
るように混合し、溶融させてガラス化した。
Example ■ GaP0. , P2O5 and G
The composite oxide soot with eO2 was mixed at a weight ratio of 36:64, and was melted and vitrified.

ただし上記複合酸化物は最初に述べたようにPおよびG
eのハロゲン化合物を気相で混合し酸化することにより
得たもので、その混合比は、P2O5:GeO2に換算
して40:60であり、スート状態となったときにもP
2O5の減少量はごくわずかであることを本発明者らは
すでに確認済みである。
However, as mentioned above, the above composite oxide contains P and G.
It is obtained by mixing and oxidizing the halogen compound of e in the gas phase, and the mixing ratio is 40:60 in terms of P2O5:GeO2, and even when it is in a soot state, P
The present inventors have already confirmed that the amount of decrease in 2O5 is very small.

さてGaP0.を仮に1/2(Ga203+P2O5)
のごとくみなせばGa2O3が57重量%、P2O5が
43重量%の比率となるため、上述のガラスの組成は重
量比でP2O5:24%、GeO2:56%、Ga2O
3:20%に該当する。
Now, GaP0. Temporarily 1/2 (Ga203+P2O5)
Considering this, the ratio of Ga2O3 is 57% by weight and P2O5 is 43% by weight, so the composition of the above glass is P2O5: 24%, GeO2: 56%, Ga2O
3: corresponds to 20%.

このガラスは約1500℃で溶融させることによりガラ
ス化したこのガラスの屈折率は1,588、光の伝送損
失は3.8dB/kmで、耐水性も良好であり、光伝送
線の構成材料として充分使用可能である。
This glass is vitrified by melting it at approximately 1,500°C, and has a refractive index of 1,588, an optical transmission loss of 3.8 dB/km, and good water resistance, making it suitable as a constituent material for optical transmission lines. Fully usable.

実施例 ■ この実施例においてはGaPO4のスート53重量%と
、P2O5とGeO2の複合酸化物スート47重量%と
を混合し、溶融させてガラス化した。
Example 2 In this example, 53% by weight of GaPO4 soot and 47% by weight of a composite oxide soot of P2O5 and GeO2 were mixed, melted, and vitrified.

こうして得られたガラスの組成はP2O5:42重量%
、GeO2:28重量%、Ga2O3:30重量%とな
り、屈折率は1.574で実施例■の場合のものよりも
約1%弱低いものとなった。
The composition of the glass thus obtained was P2O5: 42% by weight
, GeO2: 28% by weight, and Ga2O3: 30% by weight, and the refractive index was 1.574, which was about 1% lower than that of Example (2).

またこのガラスの耐水性は実施例■の場合と同様に良好
であった。
Further, the water resistance of this glass was as good as in Example (2).

以上の結果から、実施例Iのガラスを芯ガラス、同一じ
実施例■のガラスを被覆層(Cladding)用ガラ
スとして被覆型光学繊維を製作した場合には開口数0.
21のものが得られることが理論上明らかである。
From the above results, when a coated optical fiber is manufactured using the glass of Example I as the core glass and the same glass of Example 2 as the cladding glass, the numerical aperture is 0.
It is theoretically clear that 21 products can be obtained.

以上の実施例においてはGaP0.の合成を火炎加水分
解によって行なったが、水素を使用しない気相酸化法に
よっても同様の結果が得られる。
In the above embodiments, GaP0. was synthesized by flame hydrolysis, but similar results can be obtained by gas-phase oxidation without using hydrogen.

また原料としてもGaCl3とPOCl3とに限らず、
一般にGaとPとの気化可能な化合物を用いて気相で反
応を行わせればやはり同等の効果が得られるものと思わ
れる。
In addition, the raw materials are not limited to GaCl3 and POCl3,
Generally, it is thought that equivalent effects can be obtained if the reaction is carried out in the gas phase using a vaporizable compound of Ga and P.

以上説明した本発明に係る製造法によれば、高純度の燐
酸化合物を製作することができるから、光伝送線用ガラ
スその他の高純度ガラスの製造に適用してきわめて有利
であり、P2O5の化学的活性および易蒸発性から生ず
る問題を回避することができる。
According to the manufacturing method according to the present invention explained above, it is possible to manufacture a highly pure phosphoric acid compound, so it is extremely advantageous to apply to the manufacturing of optical transmission line glass and other high-purity glasses. problems arising from chemical activity and easy evaporation can be avoided.

さらに気相化学反応によって得た■族元素の燐酸化合物
にSiまたはGeの複合酸化物を混合して溶融すれば、
光学的性質および耐水性の良好なガラスが得られ、この
ガラスは1500℃内外で充分ガラス化し、しかもアル
カリ分を含まないので石英容器による紡糸に好都合であ
る等、種々の利点が得られる。
Furthermore, if a composite oxide of Si or Ge is mixed and melted into a phosphoric acid compound of group (I) element obtained by a gas phase chemical reaction,
A glass with good optical properties and water resistance can be obtained, and this glass can be sufficiently vitrified at temperatures around 1500° C. Moreover, since it does not contain alkali, it is convenient for spinning in a quartz container, and various other advantages can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の製造方法の一実施例におけるガリウ
ムの燐酸化合物の製造工程を説明するための概略系統図
である。 1:POCl3容器、2:GaCl3容器、3および4
:バブリング用ガス導入管、5および6:反応ガス導出
管、7:0□導入管、8:混合ガス導入管、9:トーチ
、10:トーチへの02導入管、11:同じ<H2導入
管、12:酸水素炎、13:Ga燐酸化物スート、14
:るつぼ。
The accompanying drawing is a schematic system diagram for explaining the manufacturing process of a gallium phosphate compound in one embodiment of the manufacturing method of the present invention. 1: POCl3 container, 2: GaCl3 container, 3 and 4
: Gas introduction tube for bubbling, 5 and 6: Reaction gas outlet tube, 7: 0□ introduction tube, 8: Mixed gas introduction tube, 9: Torch, 10: 02 introduction tube to the torch, 11: Same<H2 introduction tube , 12: Oxyhydrogen flame, 13: Ga phosphorus oxide soot, 14
: Crucible.

Claims (1)

【特許請求の範囲】[Claims] 1 ガリウムの化合物と燐の化合物とを気相において反
応せしめて得たガリウムの燐酸化合物をゲルマニウムと
燐との複合酸化物とともに溶融することによりガラス化
することを特徴とする燐酸ガラスの製造方法。
1. A method for producing phosphate glass, which comprises vitrifying a gallium phosphate compound obtained by reacting a gallium compound and a phosphorus compound in a gas phase together with a composite oxide of germanium and phosphorus.
JP54130634A 1979-10-08 1979-10-08 Method for manufacturing phosphoric acid glass Expired JPS5815448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54130634A JPS5815448B2 (en) 1979-10-08 1979-10-08 Method for manufacturing phosphoric acid glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54130634A JPS5815448B2 (en) 1979-10-08 1979-10-08 Method for manufacturing phosphoric acid glass

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12263477A Division JPS5456621A (en) 1977-10-12 1977-10-12 Method of making phosphate glass and raw meterial therefor

Publications (2)

Publication Number Publication Date
JPS5595643A JPS5595643A (en) 1980-07-21
JPS5815448B2 true JPS5815448B2 (en) 1983-03-25

Family

ID=15038931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54130634A Expired JPS5815448B2 (en) 1979-10-08 1979-10-08 Method for manufacturing phosphoric acid glass

Country Status (1)

Country Link
JP (1) JPS5815448B2 (en)

Also Published As

Publication number Publication date
JPS5595643A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
US4666247A (en) Multiconstituent optical fiber
US4616901A (en) Doped optical fiber
US4432781A (en) Method for manufacturing fused quartz glass
US4645524A (en) Method for making sodium-containing glass
JPS6136129A (en) Manufacture of glass preform for optical fiber
CA1239042A (en) Doped optical fiber
JPS5858294B2 (en) Method for manufacturing glass for optical transmission bodies
JPS5815448B2 (en) Method for manufacturing phosphoric acid glass
JPS603017B2 (en) Manufacturing method of glass for optical transmitters
JPH01145346A (en) Production of optical fiber preform
JPH0324415B2 (en)
JPS6143290B2 (en)
GB1598760A (en) Optical fibre preforms and their manufacture
EP0371629A1 (en) Optical fibre manufacture
JPS6289B2 (en)
JPS593420B2 (en) optical transmission line
JPS6129893B2 (en)
JPS6150888B2 (en)
JPS6144725A (en) Method of treating quartz porous glass layer
JPS603016B2 (en) Manufacturing method of glass for optical transmission lines
JPS6138137B2 (en)
JPS583981B2 (en) Method of manufacturing non-porous fused glass objects
JPS583979B2 (en) Method for manufacturing glass for optical transmission lines
JPS59137333A (en) Manufacture of base material for optical fiber
JPS5850937B2 (en) Optical fiber manufacturing method