JPS583979B2 - Method for manufacturing glass for optical transmission lines - Google Patents

Method for manufacturing glass for optical transmission lines

Info

Publication number
JPS583979B2
JPS583979B2 JP54098567A JP9856779A JPS583979B2 JP S583979 B2 JPS583979 B2 JP S583979B2 JP 54098567 A JP54098567 A JP 54098567A JP 9856779 A JP9856779 A JP 9856779A JP S583979 B2 JPS583979 B2 JP S583979B2
Authority
JP
Japan
Prior art keywords
glass
gas
optical transmission
mixed gas
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54098567A
Other languages
Japanese (ja)
Other versions
JPS5641843A (en
Inventor
西嶋由人
川端良雄
中村理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP54098567A priority Critical patent/JPS583979B2/en
Publication of JPS5641843A publication Critical patent/JPS5641843A/en
Publication of JPS583979B2 publication Critical patent/JPS583979B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光伝送線用ガラス、特にりん酸系ガラスの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glass for optical transmission lines, particularly phosphate glass.

光伝送線の材料である光伝送線用ガラスは、上記光伝送
線の伝送損失を少なくするために、所定の元素以外の不
純物をできるだけ含まないようにして、高純度な形で得
ることが必要である。
Glass for optical transmission lines, which is a material for optical transmission lines, must be obtained in a highly pure form by containing as few impurities as possible other than the specified elements in order to reduce the transmission loss of the optical transmission lines. It is.

ここで光伝送線の材料の一つであるりん酸系ガラスは、
その融点が約1400℃と比較的低く、不純物含有量の
少ない石英るつぼを用いて溶融できるのでガラスファイ
バの材料として適当である。
Here, phosphate glass, which is one of the materials for optical transmission lines, is
Its melting point is relatively low at about 1400° C., and it can be melted in a quartz crucible with low impurity content, making it suitable as a material for glass fibers.

またりん酸系ガラスは、その原料であるオキシ塩化りん
(POCl3)、三塩化ガリウム(GaCl3)、四塩
化硅素(SICl4)、四塩化ゲルマニウム(GeCl
4)、三塩化硼素(BC73)等のカラス形成用塩化物
が半導体工業で用いられて旬り、容易に高純度な形で入
手できる。
In addition, phosphate glass is made from its raw materials phosphorus oxychloride (POCl3), gallium trichloride (GaCl3), silicon tetrachloride (SICl4), and germanium tetrachloride (GeCl3).
4) Crow-forming chlorides such as boron trichloride (BC73) are popularly used in the semiconductor industry and are readily available in highly purified form.

また上記POCl3,GaCl3,SiCl4,GeC
l4BCl3を火炎加水分解して得られる五酸化りん(
P205)、酸化ガリウム(Ga203)、酸化硅素(
sio2)、酸化ゲルマニウム(Geo2)、酸化硼素
(B203)、等のガラス形成酸化物も高純度な形で得
られる。
In addition, the above POCl3, GaCl3, SiCl4, GeC
Phosphorous pentoxide obtained by flame hydrolysis of 14BCl3 (
P205), gallium oxide (Ga203), silicon oxide (
Glass-forming oxides such as germanium oxide (Geo2), boron oxide (B203), etc. are also obtained in highly pure form.

しかしこれらの酸化物は水分を含有しており、溶融ガラ
スとするときに分解して水酸基を発生し、この水酸基が
0.98μm.1.26μm,1.43μmなどの波長
の光を吸収し、そのため所望の伝送特性を有する光ファ
イバを得ることができない。
However, these oxides contain water, and when made into molten glass, they decompose to generate hydroxyl groups, and these hydroxyl groups have a diameter of 0.98 μm. It absorbs light of wavelengths such as 1.26 μm and 1.43 μm, so it is impossible to obtain an optical fiber having desired transmission characteristics.

したがって従来例えばりん酸系ガラスファイバのコアガ
ラスの製造法としては、上記酸化物のうちP205,G
a2o3)Si02,Ge02を所定の屈折率値を得る
ように秤量したのち、溶融るつぼ中に充填し、加熱溶融
して該溶融ガラス中に塩素(Cl2)ガスを導入して、
ガラス中に含有されている水酸(OH)基を除去してい
る。
Therefore, conventionally, for example, as a method for producing core glass of phosphate-based glass fiber, among the above oxides, P205, G
a2o3) After weighing Si02 and Ge02 to obtain a predetermined refractive index value, they are filled into a melting crucible, heated and melted, and chlorine (Cl2) gas is introduced into the molten glass,
Hydroxyl (OH) groups contained in the glass are removed.

このようにガラス形成酸化物を溶融する際、Cl2ガス
を導入して、ガラス形成酸化物中の水分を除去して、形
成されるガラスファイバ中のOH基の含有量を減少させ
て、該ガラスファイバの光伝送損失を少なくする方法が
、本発明者等の一人により特願昭54−023742号
にで提案されている。
When melting the glass-forming oxide in this way, Cl2 gas is introduced to remove water in the glass-forming oxide and reduce the content of OH groups in the glass fiber to be formed. A method of reducing optical transmission loss in a fiber has been proposed by one of the present inventors in Japanese Patent Application No. 54-023742.

しかし上記のCl2ガスは市販のボンベ中に充填されて
いるCl2ガスを用いており、該Cl2カスは腐蝕性が
強く、ガス流量を制御するための減圧弁などの金属部品
を腐蝕し、そのためガス中に金属不純物が混入し、該不
純物が溶融ガラス中に混入する恐れがある。
However, the above-mentioned Cl2 gas uses Cl2 gas filled in commercially available cylinders, and the Cl2 gas is highly corrosive and corrodes metal parts such as pressure reducing valves for controlling the gas flow rate. Metal impurities may be mixed into the molten glass, and the impurities may be mixed into the molten glass.

すなわち上記のようなCl2ガスを用いて溶融ガラスを
攪拌し、該ガラスより光伝送用ガラスファイバを製造し
て、その伝送特性を調べたところ、0.98μmの波長
でのOH基による吸収損失は1dB/Km以下であり、
OH基含有量の少ない光ファイバが得られた。
That is, when molten glass was stirred using Cl2 gas as described above, a glass fiber for optical transmission was manufactured from the glass, and its transmission characteristics were investigated, the absorption loss due to OH groups at a wavelength of 0.98 μm was found to be 1 dB/Km or less,
An optical fiber with a low OH group content was obtained.

しかしCl2ガス中から混入した金属不純物によると想
定される不純物吸収が0.84μmの波長で2〜5dB
/Kmとかなり高い値を示した。
However, impurity absorption, which is assumed to be due to metal impurities mixed in from Cl2 gas, is 2 to 5 dB at a wavelength of 0.84 μm.
/Km, which was a fairly high value.

本発明は上述した問題点を除去するもので、高純度のC
l2ガスを得て、それを用いてOH基の含有量の少ない
光伝送線用ガラスを得、また溶融ガラス中に微量のガラ
ス形成酸化物を添加することを目的とするものである。
The present invention eliminates the above-mentioned problems and uses high-purity C.
The purpose is to obtain 12 gas and use it to obtain a glass for optical transmission lines with a low content of OH groups, and to add a trace amount of glass-forming oxide to the molten glass.

すなわち光伝送線の材料であるガラス形成酸化物を、る
つぼ中で加熱溶融してガラス化するに際し、ガラス形成
用酸化物に転換し得る塩化物の蒸気と酸素との混合ガス
をるつぼへ導入する経路に加熱手段を設ける。
In other words, when glass-forming oxide, which is a material for optical transmission lines, is heated and melted in a crucible to vitrify it, a mixed gas of chloride vapor and oxygen that can be converted into glass-forming oxide is introduced into the crucible. A heating means is provided in the path.

そして該加熱手段による加熱領域の下流に分岐して反応
生成物の収集容器を付設し、上記加熱手段を加熱状態に
して、上記混合カスを熱分解して得られる高純度のCl
2ガスにてガラスを溶融攪拌することを特徴とする新規
な光伝送線用ガラスの製造方法を提供せんとするもので
ある。
Then, a reaction product collection container is branched downstream of the heating region by the heating means, and the heating means is heated to produce high-purity Cl obtained by thermally decomposing the mixed scum.
The present invention aims to provide a novel method for producing glass for optical transmission lines, which is characterized by melting and stirring glass using two gases.

以下図面を用いて本発明の実施例につき詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

図は本発明の第1及び第2の実施例を実施するための装
置の概略図で、1は酸素(02)ガスの供給管で、2は
30℃に加熱したガラス形成用塩化物のPOCl3を収
容せる蒸発器で、3は02ガスとガス状のPOCl3と
の混合ガスを供給する導入管で、4は上記02とPOC
l3との混合ガスを熱分解するための加熱分解炉である
The figure is a schematic diagram of an apparatus for implementing the first and second embodiments of the present invention, where 1 is a supply pipe for oxygen (02) gas, and 2 is a POCl3 gas-forming chloride heated to 30°C. 3 is an introduction pipe that supplies a mixed gas of 02 gas and gaseous POCl3, and 4 is an evaporator that can accommodate the above 02 and POC
This is a thermal decomposition furnace for thermally decomposing the mixed gas with l3.

上記加熱分解炉の近傍でかつ上記混合カスの流れの下流
方向には上記混合カスの導入管とは分岐して、混合ガス
の熱分解によって生じる反応生成物5を収容する収容容
器6が設置してある。
In the vicinity of the thermal decomposition furnace and in the downstream direction of the flow of the mixed gas, a storage container 6 is installed which branches off from the introduction pipe for the mixed gas and accommodates a reaction product 5 produced by thermal decomposition of the mixed gas. There is.

また上記混合ガスの導入管の先端Aは、ガラス形成酸化
物を加熱溶融した溶融ガラス7中に挿入されている。
The tip A of the mixed gas introduction tube is inserted into molten glass 7 in which a glass-forming oxide is heated and melted.

上記溶融ガラスは石英蓋8を有する石英るつぼ9中に収
容され、上記溶融ガラスは加熱炉10によって加熱溶融
されている。
The molten glass is placed in a quartz crucible 9 having a quartz lid 8, and is heated and melted in a heating furnace 10.

上記のような装置を用いて第1の実施例について説明す
る。
A first example will be described using the above-mentioned apparatus.

まずりん酸系ガラスファイバのコアガラスを形成する場
合、P205を51.5g.Ga203を30.0g、
GeO2を14.99、8102を3.6gとなるよう
に秤量し、上記石英るつぼ9中に充填し、石英蓋8を閉
じたのち、加熱路10中に設置する。
First, when forming the core glass of the phosphate glass fiber, 51.5 g of P205 was used. 30.0g of Ga203,
14.99 g of GeO2 and 3.6 g of 8102 were weighed and filled into the quartz crucible 9. After closing the quartz lid 8, the crucible was placed in the heating path 10.

そして加熱炉の温度を1400℃にして上記るつぼ中に
充填したガラス形成酸化物を加熱溶融して溶融ガラスと
する。
Then, the temperature of the heating furnace is set to 1400° C., and the glass-forming oxide filled in the crucible is heated and melted to obtain molten glass.

また同時に混合ガスの加熱分解炉4の温度を800℃ま
で上昇させる。
At the same time, the temperature of the mixed gas thermal decomposition furnace 4 is raised to 800°C.

その後ガラスが溶融し混合ガス分解炉の温度が800℃
に到達した時点で02供給肯1より02ガスを250m
l/分の流量で30℃に加熱したPOCl3を充填せる
蒸発器2中に導入する。
After that, the glass melts and the temperature of the mixed gas decomposition furnace reaches 800℃.
When reaching 02 gas from 02 supply point 1, 250m
POCl3 heated to 30° C. is introduced into the evaporator 2, which is filled with a flow rate of 1/min.

ここで30℃に加熱された液状のPOCl3に02ガス
を導入して攪拌することで、ガス状のPOCl3が発生
し、このガス状のPOCl3と02との混合ガスが、ガ
ス導入管3より混合ガスの加熱分解炉4中に導かれる。
By introducing 02 gas into the liquid POCl3 heated to 30°C and stirring it, gaseous POCl3 is generated, and the mixed gas of this gaseous POCl3 and 02 is mixed from the gas introduction pipe 3. The gas is guided into the thermal decomposition furnace 4 .

この加熱分解炉中で上記混合ガスは第(1)式に示すよ
うな熱分解反応を起こしガス状のP205とCl2を生
成する。
In this thermal decomposition furnace, the mixed gas undergoes a thermal decomposition reaction as shown in equation (1) to generate gaseous P205 and Cl2.

2POCl3+3/202→P205+3Cl2・・・
・・・(1)このガス状のP205は加熱分解炉よりガ
スの流れの下流側へ流れ出ると直ちに固化して、固体の
微粉末状のP205・5となり、収容容器6中に収容さ
れる。
2POCl3+3/202→P205+3Cl2...
(1) When this gaseous P205 flows out of the thermal decomposition furnace to the downstream side of the gas flow, it immediately solidifies into solid fine powder P205.5, which is stored in the storage container 6.

そして熱分解によって生成された高純度なCl2カスお
よび02ガスが、上記混合ガス導入管3をを通って先端
部Aより溶融ガラス7中へ導入され、上記Cl2および
02の気泡によって溶融ガラスが攪拌されて、溶融ガラ
ス中のOH基と第(2)式のように反応して塩化水素(
HCl)と酸素(0。
Highly purified Cl2 gas and 02 gas generated by the thermal decomposition are introduced into the molten glass 7 from the tip A through the mixed gas introduction pipe 3, and the molten glass is stirred by the Cl2 and 02 bubbles. It reacts with the OH groups in the molten glass as shown in equation (2) to form hydrogen chloride (
HCl) and oxygen (0.

)とを発生する。) and occur.

20H+Cl2→2HCl+02・・・・・・・・・・
・・(2)このようにして生成されたHCl及び02ガ
スは、上記石英蓋8とガス導入管の隙間Cより外部へ導
出される。
20H+Cl2→2HCl+02・・・・・・・・・・
(2) The HCl and 02 gases thus generated are led out from the gap C between the quartz lid 8 and the gas introduction tube.

このように高純度なPOCl3を熱分解して省られる水
分および金属不純物の含有量の少ない高純度なCl2ガ
スを用いて溶融ガラスを2時間損拌することで、微量な
水分が混入しない状態でカラス中のOH基が除去される
In this way, by stirring the molten glass for 2 hours using high-purity Cl2 gas with low moisture and metal impurity content, which is saved by thermally decomposing high-purity POCl3, it is possible to create a molten glass without contaminating trace amounts of moisture. The OH groups in the glass are removed.

同時に、金属不糾物による吸収損失の少ないガラスが得
られる。
At the same time, a glass with less absorption loss due to metal impurities can be obtained.

また本実施例とは別にPOCl3を熱分解したKに生成
されるP205を溶融ガラス中に微量添加して、ガラス
組式を容易に制御する場合に有効な第2の実施例につい
て説明する。
In addition to this embodiment, a second embodiment will be described which is effective in easily controlling the glass assembly type by adding a small amount of P205, which is produced from K obtained by thermally decomposing POCl3, into the molten glass.

第2の実施例を用いてりん酸系ガラスファイバのコアガ
ラスを形成する場合、P205を50.5g、Ga20
3を3o.og、Ge02を14.9g、S102を3
.6g石英るつぼ9中に充填したのち加熱炉10に設置
し、加熱炉9温度を1400℃に上昇させて、るつぼ中
のガラス形成酸化物を加熱溶融する。
When forming the core glass of the phosphate glass fiber using the second example, 50.5 g of P205, 50.5 g of Ga20
3 to 3o. og, 14.9g of Ge02, 3g of S102
.. After filling a 6 g quartz crucible 9, it is placed in a heating furnace 10, and the temperature of the heating furnace 9 is raised to 1400° C. to heat and melt the glass-forming oxide in the crucible.

上記ガラス溶融した時点で上記混合ガスの熱分解炉を非
加熱状態にして02ガスとPOCl3との混合ガス25
0mlを混合ガス導入管に導入する。
When the glass is melted, the pyrolysis furnace for the mixed gas is put into a non-heated state, and the mixed gas 25 of 02 gas and POCl3 is heated.
Introduce 0ml into the mixed gas introduction tube.

上記混合ガスはるつぼ内の加熱領域Bで、第(1)式で
示したと同様な反応を起こして、ガス状のP205を発
生し、P205は溶融ガラス中に溶解し、Cl2は気泡
状となって溶融ガラスを攪拌しガラス中のOH基と反応
して第(2)式で示したと同様にHClガス及び02ガ
スを発生してOH基を除去する。
The above mixed gas causes a reaction similar to that shown in equation (1) in the heating area B in the crucible, generating gaseous P205, P205 is dissolved in the molten glass, and Cl2 becomes bubbles. The molten glass is stirred and reacts with the OH groups in the glass to generate HCl gas and 02 gas in the same manner as shown in equation (2), thereby removing the OH groups.

ここで混合ガスを上記したような条件で20分間溶融る
つぼ中に導入すれば1.5gのP205が生成される。
If the mixed gas is introduced into the melting crucible for 20 minutes under the conditions described above, 1.5 g of P205 will be produced.

しかして20分間混合ガスを前述した条件で溶融るつぼ
中に導入することで、1.5gのP205かガラス成分
中に添加されることになりP205が、51.5重量係
、Ga203が30.0重量係、GeO2が14.9重
量φ、S102が3.6重量係のガラス組成となる。
By introducing the mixed gas into the melting crucible for 20 minutes under the conditions described above, 1.5 g of P205 will be added to the glass component, so P205 will be 51.5% by weight and Ga203 will be 30.0% by weight. The glass composition has a weight ratio of GeO2 of 14.9 weight φ and S102 of 3.6 weight ratio.

したがって上記のようにガラス中にガラス形成酸化物を
微量添加して所望の特性のガラスとする場合に本発明の
方法は有効である。
Therefore, the method of the present invention is effective when adding a small amount of glass-forming oxide to glass to obtain glass with desired characteristics as described above.

次に所定の時間の20分間混合ガスの加熱炉を非加熱状
態としたのち、一旦混合ガスの供給を停止する。
Next, after the mixed gas heating furnace is kept in a non-heating state for a predetermined time of 20 minutes, the supply of the mixed gas is temporarily stopped.

そして混合ガスの加熱炉の温度を上昇させて、加熱炉の
温度が800℃に到達したとき、再び混合ガスを前述し
たのと同様な流量で1時間40分供給する。
Then, the temperature of the mixed gas heating furnace is increased, and when the temperature of the heating furnace reaches 800° C., the mixed gas is again supplied at the same flow rate as described above for 1 hour and 40 minutes.

このようにすれば、熱分解して生成したCl2ガスのみ
が、溶融ガラス中に導入されて該ガラスを攪拌する。
In this way, only the Cl2 gas generated by thermal decomposition is introduced into the molten glass and stirs the glass.

そして(2)式で示したのと同様な反応で溶融ガラス中
に存在する微量のOH基を除去する。
Then, a trace amount of OH groups present in the molten glass is removed by a reaction similar to that shown in formula (2).

以上述べたように本発明の方法によればCl2ガスが水
分及び金属不純物を含まない状態で容易に得られ、これ
を用いてガラスを攪拌すれば従来の方法より水分及び金
属不純物を含まない状態でガラス中のOH基を除去でき
る。
As described above, according to the method of the present invention, Cl2 gas can be easily obtained in a state that does not contain water and metal impurities, and if glass is stirred using this gas, it will be in a state that does not contain water and metal impurities than in the conventional method. The OH groups in the glass can be removed.

また高純度のCl2を形成するときに用いるPOCl3
の熱分解によって生ずるP205を所望量俗融ガラス中
に添加でき、ガラス形成の成分を容易に制御することも
できる。
Also, POCl3 used when forming high purity Cl2
A desired amount of P205 produced by the thermal decomposition of P205 can be added to the common molten glass, and the components of glass formation can also be easily controlled.

以上述べたような本発明の方法によってOH基を除去し
たガラスを用いて光伝送用ガラスファイバを製造すれば
、OH基による光吸収のピークが表れる0.98μmの
波長でも、光伝送損失が1dB/Km以下であり、かつ
また金属不純物に起因する不純物吸収の少ないガラスフ
ァイバが得られる効果を生ずる。
If a glass fiber for optical transmission is manufactured using glass from which OH groups have been removed by the method of the present invention as described above, the optical transmission loss will be 1 dB even at a wavelength of 0.98 μm, where the peak of light absorption by OH groups appears. /Km or less, and also produces the effect of obtaining a glass fiber that absorbs less impurities caused by metal impurities.

以上の実施例では、ガラス形成塩化物としてPOCl3
を用いたが、他のガラス形成塩化物、たとえばGaCl
3,GeCl4,StCl4等を用いても同様の効果が
得られる。
In the above examples, POCl3 is used as the glass-forming chloride.
was used, but other glass-forming chlorides such as GaCl
Similar effects can be obtained by using 3, GeCl4, StCl4, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法を実施するための装置の概略図であ
る。 1・・・・・・02ガス供給管、2・・・・・・POC
l3の蒸発器、3・・・・・・02とPOCl3の混合
ガス導入管、4・・・・・・加熱分解炉、5・・・・・
・反応生成物、6・・・・・・収容容器、7・・・・・
・溶融ガラス、8・・・・・石英蓋、9・・・・・・石
英るつぼ、10・・・・・・加熱炉、A・・・・・・ガ
ス導入管の先端、B・・・・・・加熱領域、C・・・・
・・間隙。
The drawing is a schematic illustration of an apparatus for carrying out the method of the invention. 1...02 Gas supply pipe, 2...POC
13 evaporator, 3... 02 and POCl3 mixed gas introduction pipe, 4... thermal decomposition furnace, 5...
・Reaction product, 6... Storage container, 7...
- Molten glass, 8...Quartz lid, 9...Quartz crucible, 10...Heating furnace, A...Tip of gas introduction tube, B... ...Heating area, C...
··gap.

Claims (1)

【特許請求の範囲】 1 光伝送線の材料であるガラス形成酸化物をるつぼ中
で加熱溶融してガラス化するに際し、水分除去用ガスに
て攪拌しつつ加熱溶融する製造方法において、ガラス形
成用酸化物に転換し得る塩化物の蒸気と酸素との混合ガ
スを前記るつぼへ導入する経路に加熱手段を設け、該加
熱手段による加熱領域の下流に分岐して反応生成物の収
集容器を付設し、上記加熱手段を加熱状態にしたとき、
上記混合ガスの熱分解によって得られる塩素を上記水分
除去用ガスとして溶融ガラスを攪拌することを特徴とす
る光伝送線用ガラスの製造方法。 2 上記加熱手段を加熱状態にする以前に所定期間非加
熱状態として上記混合ガスをるつぼに導入する工程を含
むことを特徴とする特許請求の範囲第1項に記載の光伝
送線用ガラスの製造方法。
[Scope of Claims] 1. In a manufacturing method in which a glass-forming oxide, which is a material for an optical transmission line, is heat-melted and vitrified in a crucible, the glass-forming oxide is heated and melted while being stirred with a water removal gas. A heating means is provided in a path for introducing a mixed gas of chloride vapor and oxygen that can be converted into an oxide into the crucible, and a reaction product collection container is attached downstream of the heating area by the heating means. , when the heating means is heated,
A method for manufacturing optical transmission line glass, characterized in that molten glass is stirred using chlorine obtained by thermal decomposition of the mixed gas as the moisture removing gas. 2. Manufacturing the glass for optical transmission line according to claim 1, which includes a step of introducing the mixed gas into a crucible in a non-heated state for a predetermined period before the heating means is brought into a heated state. Method.
JP54098567A 1979-07-31 1979-07-31 Method for manufacturing glass for optical transmission lines Expired JPS583979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54098567A JPS583979B2 (en) 1979-07-31 1979-07-31 Method for manufacturing glass for optical transmission lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54098567A JPS583979B2 (en) 1979-07-31 1979-07-31 Method for manufacturing glass for optical transmission lines

Publications (2)

Publication Number Publication Date
JPS5641843A JPS5641843A (en) 1981-04-18
JPS583979B2 true JPS583979B2 (en) 1983-01-24

Family

ID=14223248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54098567A Expired JPS583979B2 (en) 1979-07-31 1979-07-31 Method for manufacturing glass for optical transmission lines

Country Status (1)

Country Link
JP (1) JPS583979B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468646A (en) * 1977-11-11 1979-06-01 Fujitsu Ltd Production of stock for optical transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468646A (en) * 1977-11-11 1979-06-01 Fujitsu Ltd Production of stock for optical transmission

Also Published As

Publication number Publication date
JPS5641843A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
US5970751A (en) Fused SiO2 -TiO2 glass method
CA2037102C (en) Method of making fused silica
US5879649A (en) Method for purifying polyalkylsiloxanes and the resulting products
JPH05229833A (en) Method of making nonporous object of high purity molten silica glass
JPS61247633A (en) Production of glass base material for optical fiber
EP1030822B1 (en) FUSED SiO2-TiO2 GLASS METHOD
AU5798798A (en) Germanium doped silica forming feedstock and method
US4432781A (en) Method for manufacturing fused quartz glass
US4042404A (en) Fused P2 O5 type glasses
JPH0637311B2 (en) Method for producing sodium-containing glass or ceramic article
US4272488A (en) Apparatus for producing and casting liquid silicon
US4176166A (en) Process for producing liquid silicon
JPS583979B2 (en) Method for manufacturing glass for optical transmission lines
EP0034053B1 (en) Method of producing phosphate glass and optical bodies formed therefrom
KR900004122B1 (en) Method and apparatus for producing optical fiber preform
JP5894828B2 (en) Manufacturing method of glass base material
KR101343683B1 (en) Process for producing optical fiber base and apparatus therefor
JPS6086039A (en) Production of fluorine-containing silica glass
JPS6143290B2 (en)
JPS603017B2 (en) Manufacturing method of glass for optical transmitters
JPS6289B2 (en)
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JPS5815448B2 (en) Method for manufacturing phosphoric acid glass
JPS6140835A (en) Method and apparatus for manufacturing optical fiber
JPS6251216B2 (en)