JPS58152940A - Variable speed fluid coupling - Google Patents

Variable speed fluid coupling

Info

Publication number
JPS58152940A
JPS58152940A JP3383282A JP3383282A JPS58152940A JP S58152940 A JPS58152940 A JP S58152940A JP 3383282 A JP3383282 A JP 3383282A JP 3383282 A JP3383282 A JP 3383282A JP S58152940 A JPS58152940 A JP S58152940A
Authority
JP
Japan
Prior art keywords
variable speed
fluid coupling
scoop
tip
speed fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3383282A
Other languages
Japanese (ja)
Inventor
Shigeru Toida
滋 戸井田
Shinji Yoshida
吉田 眞二
Kyoichi Uchiyama
内山 恭一
Toto Takatani
高谷 任人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3383282A priority Critical patent/JPS58152940A/en
Publication of JPS58152940A publication Critical patent/JPS58152940A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D33/00Rotary fluid couplings or clutches of the hydrokinetic type
    • F16D33/06Rotary fluid couplings or clutches of the hydrokinetic type controlled by changing the amount of liquid in the working circuit
    • F16D33/08Rotary fluid couplings or clutches of the hydrokinetic type controlled by changing the amount of liquid in the working circuit by devices incorporated in the fluid coupling, with or without remote control

Abstract

PURPOSE:To reduce the resistance loss of a rake pipe, by forming a side face sectional shape in a point end part of the rake pipe in such a manner that an angle of a side face with the vertical direction increases toward the side of a discharge part from the side of the point end part. CONSTITUTION:A side face section of the point end part 17 of a rake pipe is formed to a shape such that an angle alpha of a side face 19 with the vertical direction 14 is increased toward the side of a discharge part 9 from the side of the part 17. In case of forming the side face of such section, a plane shape spread from an opening 18 along a tail 20 is formed such that the face 19 decreases side pressure in the outside for the flow direction of fluid. Accordingly, a scattered jet flow from the face 19 of the rake pipe is extremely reduced to remarkably decrease loss resistance of the rake pipe.

Description

【発明の詳細な説明】 本発明は火力発電所用などに利用される可変速流体継手
に関する本のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable speed fluid coupling used for thermal power plants and the like.

第1図はこの樵の可変速流体継手の概要を示すもので、
入力軸1に連結され九イ/ベラ羽根車2の回転により作
動油に遠心力を与え、この作動油がランチ羽根車3に流
入して出力軸4に入力軸1からの動力を伝達する。この
とき、仕切板6とケーシング7によって形成するすくい
管室5に回転軸に対して斜めに挿入されているすくい管
8を半径方向に移動させ、すくい雪量5内の回転液体を
すくうことによって出力軸4の回転数を制御する。
Figure 1 shows an overview of this woodcutter's variable speed fluid coupling.
Rotation of the nine-point/bell impeller 2 connected to the input shaft 1 applies centrifugal force to the hydraulic oil, which flows into the launch impeller 3 and transmits the power from the input shaft 1 to the output shaft 4 . At this time, the scooping tube 8 inserted diagonally with respect to the rotating shaft into the scooping tube chamber 5 formed by the partition plate 6 and the casing 7 is moved in the radial direction to scoop up the rotating liquid in the scooping snow amount 5. Controls the rotation speed of the output shaft 4.

最近、この種の可変速流体継手においては、高い伝達効
率が要求されているが、流体継手の内部効率は速度比に
のみ依存し、内部効率を改善するためにはすくい管が流
体をすくう際に発生するすくい管の抵抗損失や軸受損失
などの付加的損失をできるだけ少なくする必要がある。
Recently, high transmission efficiency has been required for this type of variable speed fluid coupling, but the internal efficiency of the fluid coupling depends only on the speed ratio, and in order to improve the internal efficiency, it is necessary to Additional losses such as scoop pipe resistance loss and bearing loss must be minimized as much as possible.

前記すくい管損失に影響をおよぼす従来のすくい管の形
状を第2図および第3図により説明する。
The shape of a conventional scoop pipe that affects the scoop pipe loss will be explained with reference to FIGS. 2 and 3.

第2図および第3図において、すくい管8は排出部9と
上面に開口11を有する先端部10から成っている。
In FIGS. 2 and 3, the scoop tube 8 consists of a discharge part 9 and a tip part 10 having an opening 11 in the upper surface.

ところで、発明者のモデル実験によると、従来のすくい
管の構造においては、第4図に示す如く開口11を有す
るすくい管先端部lOの流体の流れが著しく乱れており
、特にすくい管先端部10の側面12からのはね返υ量
が多く、すくい率が50%であplかなりの作動油がす
くい管を通らないで、出力軸4とケーシング7との隙間
から外部へ放出されていることが判明した。
By the way, according to the inventor's model experiments, in the conventional scoop tube structure, as shown in FIG. The amount of splashback from the side surface 12 is large, and when the rake ratio is 50%, a considerable amount of hydraulic oil is discharged to the outside from the gap between the output shaft 4 and the casing 7 without passing through the rake pipe. There was found.

また、前記すくい管先端部10の流れの乱れは、前記す
くい管先端部の側面12への流体の流れの衝突力が大き
くなシ、第4図に示す如く流体が噴fi13となって空
気中へ飛散するために発生することが判明し九。前記す
くい管先端部10の側面形状は、第5図および第6図に
示す如く側面12と垂直方向14とのなす角αが先端部
10側と排出部9側ではほぼ等しくなるようく形成され
ている。このような側面断面形状に形成し九場合、第7
図に示す如く先端部10の開口11から後尾15に沿っ
て展開した平面形状は、側面12が流体の流れ方向(図
示矢印方向)に対して外側の側面圧力が大きくなるよう
に形成されている。このときの側面12と水平方向16
とのなす角倉βを正とする。
Further, the turbulence of the flow at the tip 10 of the scoop tube is caused by the large collision force of the fluid flow against the side surface 12 of the tip of the scoop tube, and the fluid becomes a jet fi 13 and enters the air as shown in FIG. 9. It was found that this occurs due to splashing. The side surface shape of the scoop tube tip 10 is formed so that the angle α between the side surface 12 and the vertical direction 14 is approximately equal on the tip 10 side and the discharge section 9 side, as shown in FIGS. 5 and 6. ing. When formed with such a side cross-sectional shape, the seventh
As shown in the figure, the planar shape developed from the opening 11 of the tip portion 10 to the rear tail 15 is formed such that the side pressure on the side surface 12 on the outside is large with respect to the fluid flow direction (in the direction of the arrow shown in the figure). . Side surface 12 and horizontal direction 16 at this time
Let the angle of the angle β be positive.

このようにすくい管8の外側に発生する側面圧力が大き
い場合、すなわちβが正の場合にはすくい管8の抵抗損
失も大きくなシ、結局、継手全体の伝達効率が低下する
In this way, when the side pressure generated on the outside of the scoop pipe 8 is large, that is, when β is positive, the resistance loss of the scoop pipe 8 is also large, and the transmission efficiency of the entire joint eventually decreases.

本発明はすくい管の抵抗損失がすくい管先端部の流体の
乱れにあるという発明者の実験結果を考慮してなされた
もので、すくい管の抵抗損失を減少させることにより伝
達効率の高い可変速流体継手を提供することを目的とす
る。
The present invention was made in consideration of the inventor's experimental results that the resistance loss of the scoop tube is caused by the turbulence of the fluid at the tip of the scoop tube. The purpose is to provide a fluid coupling.

以下本発明の一実施例を図面によシ説明する。An embodiment of the present invention will be described below with reference to the drawings.

第8図〜第12図において、第2図〜第7図と同一符号
のものは同一部分を示す。
8 to 12, the same reference numerals as in FIGS. 2 to 7 indicate the same parts.

17は上面に開口18を有し、前記排出部9に固着され
るすくい管先端部で、このすくい管先端部17の側面断
面形状は、第10図および第11図に示す如く側面19
と垂直方向14とのなす角αが先端部17側から排出部
9側に向うにしだがつて大きくなるように形成されてい
る。
Reference numeral 17 denotes a tip end of a scoop tube which has an opening 18 on the upper surface and is fixed to the discharge portion 9. The side cross-sectional shape of the tip end portion 17 of the scoop tube has a side surface 19 as shown in FIGS. 10 and 11.
The angle α between the distal end portion 17 and the vertical direction 14 increases from the distal end portion 17 side toward the discharge portion 9 side.

このような側面断面形状に形成した場合、第12図に示
す如く開口18から後尾20に沿って展開した平面形状
は、側面19が流体の流れ方向に対して外側の側面圧力
が小さくなるように形成されている。このときの側面1
9と水平方向16とのなす角βは負とする。このβは、
モデル実験結果によると、0〜301′の範囲内で良好
なデータが得られている。しかし、βが余シ大きすぎる
とすくい管が浅くなってすくい率を低下させるため、こ
れらを考慮して実際にVio°〜10°が最適な値であ
る。し九がって、βを00として側面19を流れに対し
て平行にするか、βをlOoの範囲で負となるように形
成すればよい。
When formed in such a side cross-sectional shape, the planar shape developed from the opening 18 along the rear tail 20 as shown in FIG. It is formed. Side 1 at this time
The angle β formed by 9 and the horizontal direction 16 is negative. This β is
According to the model experiment results, good data are obtained within the range of 0 to 301'. However, if β is too large, the scoop pipe becomes shallow and the rake rate decreases, so taking these into consideration, the optimum value is actually between Vio° and 10°. Therefore, β may be set to 00 to make the side surface 19 parallel to the flow, or β may be formed to be negative in the range of lOo.

また、前記すくい管先端部17はすくい管の中心l1i
21に対して平行に設けられている。
Further, the tip portion 17 of the scoop tube is located at the center l1i of the scoop tube.
21.

上記のようなすくい管の形状についてモデル実験を行な
った結果、すくい管の側面19からはねかえる噴流は極
端に少なくなり、すくい管の損失 □抵抗が著しく減少
した。噴魂411bjl旨−目りわれる。このとき、す
くい管の先端部17の外側には自由表面を有する流れが
側面19に存在するが、側面19は流れが衝突しにくい
形状に形成されており、前記側面圧力が小さくなるため
、流体の流れの乱れが少なくなる。したがってすくい管
の開口18からのはねかえp量が少なくなるため、すく
い率が著しく改善される。
As a result of conducting model experiments on the shape of the scoop tube as described above, the amount of jets bouncing off the side surface 19 of the scoop tube was extremely reduced, and the loss □ resistance of the scoop tube was significantly reduced. Sukon 411 bjl effect - I'm noticed. At this time, a flow having a free surface exists on the side surface 19 outside the tip 17 of the scoop tube, but the side surface 19 is formed in a shape that makes it difficult for the flow to collide with it, and the side pressure becomes small, so the fluid flow is less turbulent. Therefore, since the amount of p that is bounced back from the opening 18 of the scoop tube is reduced, the rake rate is significantly improved.

第13図は本発明の可変速流体継手におけるすくい管の
他の実施例を示すもので、第13図において、第8図と
同一符号のものは同一部分を示す。
FIG. 13 shows another embodiment of the scoop pipe in the variable speed fluid coupling of the present invention. In FIG. 13, the same reference numerals as in FIG. 8 indicate the same parts.

前記すくい管先端部17の最先端面22の側面形状は、
回転流体の流れを最先端面22の点23ではくシ現象を
起させるように鋭角に形成されている。
The side shape of the most extreme surface 22 of the scoop tube tip 17 is as follows:
It is formed at an acute angle so as to cause the flow of the rotating fluid to occur at a point 23 on the most extreme surface 22.

すなわち、最先端面22と垂直方向14とのなす角rを
開口18から後尾20に向うにしたがって垂直方向14
から極端にはなれるように形成されている。
In other words, the angle r formed between the most extreme surface 22 and the vertical direction 14 becomes smaller as the angle r between the most extreme surface 22 and the vertical direction 14 increases from the opening 18 toward the rear end 20.
It is formed so that it can go from extreme to extreme.

前記角度rは作動油の流量によシ決定されるもので、例
えば流量が多いときには通常角度rを小さくすると、す
くい管先端部17の最先端面22が流体内に浸ってしま
うため、はく多現象が発生しなくなる。これらを考慮し
て予め浸り深さを計算し、はくり現象が可能になるよう
に適宜角[rを決定する。
The angle r is determined by the flow rate of the hydraulic oil. For example, when the flow rate is large, if the angle r is made small, the most extreme surface 22 of the scoop tube tip 17 will be immersed in the fluid, so it is difficult to avoid peeling. Multiple phenomena will no longer occur. Taking these into consideration, the immersion depth is calculated in advance, and the angle [r] is determined as appropriate to enable the peeling phenomenon.

このよ・うにすくい管の最先端面22を形成することに
より、すくい管の最先端面22の点23で流体の流れに
はぐり現象を起させることができるため、実験の結果、
すくい管が作動流体をすくう際に生ずる抵抗力を約30
%低減させることができる。
By forming the distal end surface 22 of the scoop tube in this way, it is possible to cause a gouge phenomenon in the fluid flow at the point 23 on the distal end surface 22 of the scoop tube, and as a result of the experiment,
The resistance force generated when the scoop pipe scoops up the working fluid is reduced by approximately 30
% can be reduced.

第14図は本発明の可変速流体継手におけるすくい官の
さらに他の実施例を示すもので、第14図において、#
!8図と同一符号のものは同一部分を示す。
FIG. 14 shows still another embodiment of the rake member in the variable speed fluid coupling of the present invention.
! The same reference numerals as in FIG. 8 indicate the same parts.

第14図において、すくい管先端部17を回転軸方向に
対して直角になるように、すくい管の中して排出部9に
固着する。
In FIG. 14, the scoop tube tip 17 is inserted into the scoop tube and fixed to the discharge part 9 so as to be perpendicular to the direction of the rotation axis.

このようにすくい管先端部17を配設することによシ、
すくい管先端部17の側面19への流体の流れの衝突が
小さくなるため、すくい管の損失抵抗がさらに減少する
By arranging the scoop pipe tip 17 in this way,
Due to the reduced impingement of the fluid flow against the side surface 19 of the scoop tube tip 17, the loss resistance of the scoop tube is further reduced.

本発明の可変速流体継手によれば、すくい管先端部の側
面断面形状を、すくい管の側面と垂直方向とのなす角が
先端部側から排出部側へ向うにしたがって大きくなるよ
うに形成したので、すくい管の抵抗損失を低減すること
ができるため、継手全体の伝達効率が大幅に向上する。
According to the variable speed fluid coupling of the present invention, the side cross-sectional shape of the tip of the scoop tube is formed such that the angle formed between the side surface of the scoop tube and the vertical direction increases from the tip side toward the discharge section side. Therefore, the resistance loss of the scoop pipe can be reduced, and the transmission efficiency of the entire joint can be greatly improved.

同、本発明の実施例において、すくい管先端部の開口は
、略三角形状に形成しているが、楕円形状などに形状し
ても上記と同様の効果を奏する。
In the same embodiment of the present invention, the opening at the tip of the scoop tube is formed into a substantially triangular shape, but the same effect as described above can be obtained even if the opening is shaped into an elliptical shape or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変速流体継手の縦断面図、第2図は従
来の可変速流体継手におけるすくい管の側面図、第3図
は第2図の平面図、第4図は従来のすくい管先端部にお
ける流体の流れを説明するための図、第5図は第3図の
5−5線矢視断面図、第6図は第3図の6−6線矢視断
面図、第7図はすくい管先端部における開口から後尾に
沿う展開平面図、第8図は本発明の可変速流体継手にお
けるすくい管の側面図、第9図は第8図の平面図、第1
O図は第9図の10−10線矢視断面図、第11図は第
9図の11−11線矢視断面図、第12図はすくい管先
端部における開口から後尾に沿う展開平面図、第13図
は本発明の可変速流体継手におけるすくい管の他の実施
例を示す側面図、第14図は本発明の可変速流体継手に
おけるすくい管の他の実施例を示す平面図である。 9・・・排出部、17・・・すくい管先端部、18・・
・開口、19・・・側面、20・・・後尾。 fJ/   図 ¥i z  図 【 4 図 第5図  ¥:J6図 ¥J 7 図 ′jfJ3  図 viq   図 ¥Is   73  図 g
Figure 1 is a longitudinal cross-sectional view of a conventional variable speed fluid coupling, Figure 2 is a side view of a scoop pipe in a conventional variable speed fluid coupling, Figure 3 is a plan view of Figure 2, and Figure 4 is a conventional scoop pipe. 5 is a sectional view taken along the line 5-5 in FIG. 3, FIG. 6 is a sectional view taken along the line 6-6 in FIG. 3, and FIG. 8 is a side view of the scoop tube in the variable speed fluid coupling of the present invention. FIG. 9 is a plan view of FIG. 8.
Figure O is a sectional view taken along the line 10-10 in Figure 9, Figure 11 is a sectional view taken along the line 11-11 in Figure 9, and Figure 12 is a developed plan view taken from the opening at the tip of the scoop pipe to the rear. , FIG. 13 is a side view showing another embodiment of the scoop pipe in the variable speed fluid coupling of the present invention, and FIG. 14 is a plan view showing another embodiment of the scoop pipe in the variable speed fluid coupling of the present invention. . 9... Discharge part, 17... Scoop pipe tip, 18...
- Opening, 19... side, 20... rear. fJ/ Figure\iz Figure[4 Figure 5\:J6Figure\J 7 Figure'jfJ3 Figure viq Figure\Is 73 Figure g

Claims (1)

【特許請求の範囲】 1、ポンプ羽根車とタービン羽根車を備え、先端部と排
出部からなるすくい管が回転軸方向に対して斜めに移動
する構造の可変速流体継手において、前記すくい管先端
部の側面断面形状を、側面と垂直方向となす角が先端部
側から排出部側へ向うKしたがって大きくなるように形
成したことを特徴とする可変速流体継手。 2、前記すくい管先熾部の最先湖面の側面形状を、鋭角
に形成したことを特徴とする特許請求の範囲第1項記載
の可変速流体継手。 とを特徴とする特許請求の範囲第1項または第2項記載
の可変速流体継手。
[Scope of Claims] 1. In a variable speed fluid coupling having a pump impeller and a turbine impeller and having a structure in which a scoop tube consisting of a tip end and a discharge section moves obliquely with respect to the rotational axis direction, the tip of the scoop tube A variable speed fluid coupling characterized in that the cross-sectional shape of the side surface of the part is formed such that the angle formed by the side surface and the direction perpendicular to the side surface becomes larger as K goes from the tip end side to the discharge part side. 2. The variable speed fluid coupling according to claim 1, wherein the side surface of the tip end of the scoop tube tip is formed at an acute angle. The variable speed fluid coupling according to claim 1 or 2, characterized in that:
JP3383282A 1982-03-05 1982-03-05 Variable speed fluid coupling Pending JPS58152940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3383282A JPS58152940A (en) 1982-03-05 1982-03-05 Variable speed fluid coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3383282A JPS58152940A (en) 1982-03-05 1982-03-05 Variable speed fluid coupling

Publications (1)

Publication Number Publication Date
JPS58152940A true JPS58152940A (en) 1983-09-10

Family

ID=12397458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3383282A Pending JPS58152940A (en) 1982-03-05 1982-03-05 Variable speed fluid coupling

Country Status (1)

Country Link
JP (1) JPS58152940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996100B2 (en) 2002-03-29 2015-03-31 Koninklijke Philips N.V. Monitoring system comprising electrodes with projections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718821A (en) * 1980-07-04 1982-01-30 Hitachi Ltd Variable speed hydraulic joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718821A (en) * 1980-07-04 1982-01-30 Hitachi Ltd Variable speed hydraulic joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996100B2 (en) 2002-03-29 2015-03-31 Koninklijke Philips N.V. Monitoring system comprising electrodes with projections

Similar Documents

Publication Publication Date Title
US4036584A (en) Turbine
US3692425A (en) Compressor for handling gases at velocities exceeding a sonic value
JPS5629099A (en) Diffuser for centrifugal fluid machinery
JP3872966B2 (en) Axial fluid machine
CA2112926A1 (en) Erosion resistant mixing impeller
CA1277868C (en) Pump construction
US2819838A (en) Centrifugal compressors
JPS58152940A (en) Variable speed fluid coupling
US4267775A (en) Arrangement in ram air turbines
JPS5916803B2 (en) Gas self-priming stirring blade
JPS5527502A (en) Fluid power transmission apparatus
JP2969321B2 (en) Axial flow pump
JPS57116194A (en) Centrifugal pump
JPS5718495A (en) Eddy flow fan
JPS641679B2 (en)
JPS5786596A (en) Vortex flow blower
JPS5654992A (en) Centrifugal impeller
JPS5676727A (en) Fluid joint
SU635286A1 (en) Pump
KR960023833A (en) Impeller of Centrifugal Pump
SU1516619A1 (en) Screw/centrifugal pump
MIYASHIRO et al. A Study of Supercavitating Pumps: 1st Report, Pump Performance and Cavitation on Impeller Blades
JPS58592B2 (en) Uzumaki Pumpnos Ikomi Yuro
JPS63652B2 (en)
JPS56126695A (en) Centrifugal fan