JPS63652B2 - - Google Patents

Info

Publication number
JPS63652B2
JPS63652B2 JP9065980A JP9065980A JPS63652B2 JP S63652 B2 JPS63652 B2 JP S63652B2 JP 9065980 A JP9065980 A JP 9065980A JP 9065980 A JP9065980 A JP 9065980A JP S63652 B2 JPS63652 B2 JP S63652B2
Authority
JP
Japan
Prior art keywords
scoop
flow
scoop tube
tip
variable speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9065980A
Other languages
Japanese (ja)
Other versions
JPS5718821A (en
Inventor
Kyoichi Uchama
Takeshi Yokomori
Yoshiaki Nakauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9065980A priority Critical patent/JPS5718821A/en
Publication of JPS5718821A publication Critical patent/JPS5718821A/en
Publication of JPS63652B2 publication Critical patent/JPS63652B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)
  • Joints Allowing Movement (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は例えば発電所用流体変速機として利用
される可変速流体継手に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a variable speed fluid coupling used, for example, as a fluid transmission for a power plant.

〔発明の背景〕[Background of the invention]

従来のこの種の可変速流体継手においては、第
1図に示すような出力軸回転数の不連続点が存在
する場合がある。
In this type of conventional variable speed fluid coupling, there may be discontinuities in the output shaft rotational speed as shown in FIG.

すなわち、すくい管先端半径位置がA点におい
ては、すくい管位置のわずかな移動に対して出力
軸回転数が急激に変動する不連続点(これをスキ
ツプ現象とよぶ)が発生する。現状では、この不
連続点を完全に除去することは非常に困難であ
り、不連続点を回避して使用する制御が行なわれ
ていた。
That is, when the radial position of the tip of the scoop tube is at point A, a discontinuous point (this is called a skip phenomenon) occurs where the output shaft rotational speed changes rapidly in response to a slight movement of the scoop tube position. At present, it is very difficult to completely eliminate these discontinuous points, and control has been performed to avoid and use the discontinuous points.

このため、信頼性および制御性の点で問題を有
していた。
Therefore, there were problems in terms of reliability and controllability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は不連続点の発生を防止すること
により信頼性および制御性の向上を図るようにし
た可変速流体継手を提供することにある。
An object of the present invention is to provide a variable speed fluid coupling that improves reliability and controllability by preventing the occurrence of discontinuities.

〔発明の概要〕[Summary of the invention]

発明者のモデル実験によると、前記不連続点
は、すくい管が一定の半径位置で、かつ負荷の大
小にかかわらず発生し、羽根車形状を変更した場
合でもその影響を受けず、後述するすくい管室内
における回転流体の流れの急変により発生するこ
とが明らかになつた。本発明は、この不連続点の
発生原因がすくい管室内の流れの急変にあるとの
発生原因がすくい管室内の流れの急変にあるとい
う発明者の実験結果を考慮してなされたもので、
すくい管先端部の回転流体液面に沿つた断面形状
を、すくい管の両側壁部の幅が上流側から下流側
へ向つて減少するように形成した点に特徴があ
る。
According to the inventor's model experiments, the discontinuity point occurs at a constant radial position of the scoop pipe and regardless of the magnitude of the load, and is not affected even if the impeller shape is changed, It has been revealed that this occurs due to a sudden change in the flow of rotating fluid within the tube chamber. The present invention was made in consideration of the inventor's experimental results that the cause of the discontinuity point is due to a sudden change in the flow inside the scoop tube chamber.
A feature is that the cross-sectional shape of the tip of the scoop tube along the rotating fluid surface is formed such that the width of both side wall portions of the scoop tube decreases from the upstream side to the downstream side.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は可変速流体継手全体を説明するための
概略図で、入力軸1に連結されるインペラ羽根車
2の回転により作動油に遠心力を与え、この作動
油がランナ羽根車3に流入して出力軸4に動力の
伝達が行なわれる。このとき、すくい管室5に設
けられた後述する形状のすくい管6を半径方向に
移動させ、すくい管室5内の回転流体7をすくう
ことによつて出力軸回転数を無段階に制御する。
FIG. 2 is a schematic diagram for explaining the entire variable speed fluid coupling. Rotation of the impeller impeller 2 connected to the input shaft 1 applies centrifugal force to the hydraulic oil, and this hydraulic oil flows into the runner impeller 3. Power is transmitted to the output shaft 4. At this time, the output shaft rotational speed is steplessly controlled by moving the scoop tube 6 provided in the scoop tube chamber 5 and having a shape to be described later in the radial direction to scoop up the rotating fluid 7 in the scoop tube chamber 5. .

ところで、前記出力軸回転数における不連続点
は、すくい管室5内に存在する2種類の回転流体
7の流れが一方の流れから他方の流れに移行する
際に発生することが発明者の実験結果より明らか
になつた。
By the way, the inventor's experiments have shown that the discontinuity point in the output shaft rotational speed occurs when the flows of the two types of rotating fluids 7 existing in the scoop tube chamber 5 transition from one flow to the other flow. This became clear from the results.

以下実験結果について説明する。 The experimental results will be explained below.

すくい管室5内の回転流体7の流れは第3図お
よび第4図に示す如く2種類の流れが存在し、す
くい管6の半径位置範囲によつていずれかの流れ
状態が発生する。このため、一方の流れ状態から
他方の流れ状態へ移行するすくい管位置において
は流れの急変が発生する。
There are two types of flows of the rotating fluid 7 in the scoop tube chamber 5 as shown in FIGS. 3 and 4, and one of the flow states occurs depending on the radial position range of the scoop tube 6. Therefore, a sudden change in flow occurs at the scoop pipe position where one flow state transitions to the other flow state.

前記第3図は側面からみたすくい管6における
一方の流れ状態を示すもので、すくい管6の外部
流れはすくい管壁面に付着しており、このような
流れを付着流れとよぶ。また、第4図は第3図と
同じく側面からみたすくい管6における他方の流
れ状態を示すもので、すくい管6の外部流れは先
端部および側面部から剥離し、剥離した領域(図
示B)には大気中から空気が入り込んで自由流線
Cが形成されており、このような流れ状態を剥離
流れと呼ぶことにする。そしてこの付着流れおよ
び剥離流れは、不連続点が発生するすくい管位置
より小なる半径位置範囲では付着流れ状態とな
り、不連続点が発生するすくい管位置より大なる
半径位置範囲では剥離流れ状態となる。
FIG. 3 shows one flow state in the scoop tube 6 when viewed from the side. The external flow of the scoop tube 6 adheres to the scoop tube wall surface, and such a flow is called an attached flow. In addition, FIG. 4 shows the other flow state in the scoop tube 6 seen from the side as in FIG. Air enters from the atmosphere to form a free streamline C, and this flow state is called a separated flow. The adhesion flow and separation flow become adhering flow in a radial position range smaller than the scoop pipe position where the discontinuity point occurs, and become a separation flow state in a radial position range larger than the scoop pipe position where the discontinuity point occurs. Become.

第5図は不連続点が発生する従来の断面卵形状
のすくい管を示すもので、このすくい管の断面卵
形状は上流側すなわちすくい管の先端側から下流
側すなわちすくい管の後尾に向う流れ方向Yに沿
つてすくい管の両側壁部の幅bが増加し最大値に
達してから減少するように形成されている。
Figure 5 shows a conventional scoop tube with an egg-shaped cross section in which discontinuities occur. The width b of both side wall portions of the scoop pipe increases along the direction Y, reaches a maximum value, and then decreases.

第6図は断面卵形状すくい管の側壁部の圧力分
布を示すもので、第6図に示す圧力係数Cpは次
式で表わされる。
FIG. 6 shows the pressure distribution on the side wall of the scoop tube having an egg-shaped cross section, and the pressure coefficient Cp shown in FIG. 6 is expressed by the following equation.

Cp=(P−Po)/1/2ρU2 ここで、P:側壁面上の圧力、Po:大気圧、 ρ:流体密度、U:すくい管先端側の
一様流れの流速。
Cp=(P-Po)/1/2ρU 2Where , P: Pressure on the side wall surface, Po: Atmospheric pressure, ρ: Fluid density, U: Uniform flow velocity at the tip of the scoop tube.

第6図から明らかなように、圧力Pは幅bが最
大となる点D附近において最小となう、大気圧
Poより低下して負圧状態となる。すくい管先端
部の流れは自由表面を介して大気に接しているか
ら圧力Pが一定の負圧状態に達すると自由表面か
ら空気が侵入し、第4図に示すようにすくい管先
端部および側壁部から自由流線Cが形成され、す
くい管部の流れの状態は著しく変化する。第7図
は断面卵形状すくい管における流れ状態を示すも
ので、前記幅bが最大となる位置から自由流線C
が形成される。
As is clear from Fig. 6, the pressure P becomes the minimum near the point D where the width b is maximum.
The pressure drops below Po and becomes a negative pressure state. Since the flow at the tip of the scoop tube is in contact with the atmosphere through the free surface, when the pressure P reaches a certain negative pressure state, air enters from the free surface, and the flow at the tip of the scoop tube and the side wall as shown in Figure 4. A free streamline C is formed from the section, and the flow condition in the scoop tube section changes significantly. FIG. 7 shows the flow state in an oval-shaped scoop tube in cross section, and shows the free streamline C from the position where the width b is maximum.
is formed.

本発明はすくい管6を特別な形状にすることに
よつてすくい管の外部側壁面上における負圧状態
を除去することに着目して発明されたもので、す
くい管6の形状を次に述べるような形状に規定す
ることにより所期の目的を達成できることが実験
の結果判明した。
The present invention was invented with a focus on eliminating the negative pressure state on the external side wall surface of the scoop tube by forming the scoop tube 6 into a special shape.The shape of the scoop tube 6 will be described below. As a result of experiments, it was found that the desired purpose could be achieved by defining the shape as follows.

前に戻つて第8図および第9図は本発明の可変
速流体継手におけるすくい管6の要部を示す拡大
図で、すくい管6は先端部8と排出管9とから構
成されている。この先端部8の上面には回転流体
7が流入するすくい口10が形成され、回転流体
7と接する底部11は回転流体7とある角度をな
すように形成されている。
8 and 9 are enlarged views showing essential parts of the scoop pipe 6 in the variable speed fluid coupling of the present invention, and the scoop pipe 6 is composed of a tip end 8 and a discharge pipe 9. A rake 10 into which the rotating fluid 7 flows is formed on the top surface of the tip 8, and a bottom 11 in contact with the rotating fluid 7 is formed to form a certain angle with the rotating fluid 7.

また、先端部8の回転流体7の液面に沿つた断
面形状は、第10図に示す如くすくい管の両側壁
12の幅bがすくい口10から後尾13まで滑ら
かに減少している。尚、この先端部8の断面形状
は、すくい口10に対する回転流体7の流入位置
がすくい管半径位置によつて変るため、前記半径
位置範囲にて維持されるように形成されている。
Further, the cross-sectional shape of the tip portion 8 along the liquid surface of the rotating fluid 7 is such that the width b of both side walls 12 of the scoop tube decreases smoothly from the scoop opening 10 to the rear end 13, as shown in FIG. Note that the cross-sectional shape of the tip portion 8 is formed so that the inflow position of the rotating fluid 7 into the scoop opening 10 changes depending on the radial position of the scoop pipe, so that the cross-sectional shape is maintained within the above-mentioned radial position range.

このようにすくい管6を形成することによつ
て、すくい管先端部8の側壁部の圧力分布は第1
1図に示す如くなり、圧力Pは負圧状態にならな
い。
By forming the scoop tube 6 in this way, the pressure distribution on the side wall of the scoop tube tip 8 becomes the first.
As shown in Figure 1, the pressure P does not become a negative pressure state.

このため、第12図に示す如くすくい口10の
位置から回転流体7が剥離する流れとなり、従来
のように付着流れから剥離流れに移行することな
くすべてのすくい管半径位置範囲において常に剥
離流れの状態を維持することができるため、不連
続点の発生を防止できる。
Therefore, as shown in FIG. 12, the rotating fluid 7 separates from the position of the rake opening 10, and the flow is always separated in all the radial position ranges of the scoop pipe without transitioning from adhering flow to separated flow as in the conventional case. Since the state can be maintained, the occurrence of discontinuous points can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明の可変速流体継手は、すくい管先端部の
回転流体液面に沿つた断面形状を、両側壁部の幅
が上流側から下流側へ向つて減少するように形成
したので、出力軸回転数の不連続点を防止するこ
とができるため、信頼性および制御性の大幅な向
上を図ることができる。
In the variable speed fluid coupling of the present invention, the cross-sectional shape of the tip of the scoop pipe along the rotating fluid surface is formed such that the width of both side walls decreases from the upstream side to the downstream side, so that the output shaft rotates. Since discontinuous points in the number can be prevented, reliability and controllability can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不連続点を説明するためのすくい管位
置―出力軸回転数特性図、第2図は可変速流体継
手の全体構成を説明するための概略断面図、第3
図はすくい管先端部における付着流れを説明する
ための図、第4図はすくい管先端部における剥離
流れを説明するための図、第5図は従来のすくい
管先端部を説明するための図、第6図は第5図に
示す従来の可変速流体継手におけるすくい管先端
部の圧力分布を示す図、第7図は第5図に示す従
来のすくい管におけるすくい管先端部の剥離流れ
を説明するための図、第8図〜第10図は本発明
の可変速流体継手におけるすくい管を説明するた
めの図で、第8図は側面図、第9図は平面図、第
10図は第8図のE―E線矢視断面図、第11図
は本発明の可変速流体継手におけるすくい管先端
部の圧力分布を示す図、第12図は本発明の可変
速流体継手におけるすくい管先端部の剥離流れを
説明するための図である。 6……すくい管、7……回転流体、8……すく
い管先端部、10……すくい口、12……側壁
部。
Figure 1 is a scoop pipe position-output shaft rotational speed characteristic diagram to explain the discontinuity point, Figure 2 is a schematic sectional view to explain the overall configuration of the variable speed fluid coupling, and Figure 3
The figure is a diagram for explaining the adhesion flow at the tip of the scoop tube, FIG. 4 is a diagram for explaining the separation flow at the tip of the scoop tube, and FIG. 5 is a diagram for explaining the conventional tip of the scoop tube. , Figure 6 shows the pressure distribution at the tip of the scoop tube in the conventional variable speed fluid coupling shown in Figure 5, and Figure 7 shows the separation flow at the tip of the scoop tube in the conventional scoop tube shown in Figure 5. Figures 8 to 10 are diagrams for explaining the scoop pipe in the variable speed fluid coupling of the present invention, where Figure 8 is a side view, Figure 9 is a plan view, and Figure 10 is a side view. FIG. 8 is a sectional view taken along the line E--E, FIG. 11 is a diagram showing the pressure distribution at the tip of the scoop tube in the variable speed fluid coupling of the present invention, and FIG. 12 is a scoop tube in the variable speed fluid coupling of the present invention. It is a figure for explaining the separation flow of a tip part. 6... scoop pipe, 7... rotating fluid, 8... scoop tube tip, 10... scoop mouth, 12... side wall part.

Claims (1)

【特許請求の範囲】[Claims] 1 すくい管の半径位置を調節し、羽根車内の作
動流体の充填量を加減することによつて出力軸回
転数を制御する可変速流体継手において、前記す
くい管先端部の回転流体液面に沿つた断面形状
を、すくい管の両側壁部の幅が上流側から下流側
へ向つて減少するように形成したことを特徴とす
る可変速流体継手。
1. In a variable speed fluid coupling that controls the output shaft rotation speed by adjusting the radial position of the scoop pipe and adjusting the filling amount of working fluid in the impeller, 1. A variable speed fluid coupling characterized in that the cross-sectional shape of the scoop pipe is formed such that the width of both side wall portions of the scoop pipe decreases from the upstream side to the downstream side.
JP9065980A 1980-07-04 1980-07-04 Variable speed hydraulic joint Granted JPS5718821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9065980A JPS5718821A (en) 1980-07-04 1980-07-04 Variable speed hydraulic joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9065980A JPS5718821A (en) 1980-07-04 1980-07-04 Variable speed hydraulic joint

Publications (2)

Publication Number Publication Date
JPS5718821A JPS5718821A (en) 1982-01-30
JPS63652B2 true JPS63652B2 (en) 1988-01-08

Family

ID=14004649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9065980A Granted JPS5718821A (en) 1980-07-04 1980-07-04 Variable speed hydraulic joint

Country Status (1)

Country Link
JP (1) JPS5718821A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152940A (en) * 1982-03-05 1983-09-10 Hitachi Ltd Variable speed fluid coupling

Also Published As

Publication number Publication date
JPS5718821A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
Permutt et al. Hemodynamics of collapsible vessels with tone: the vascular waterfall
US2484554A (en) Centrifugal impeller
EP0548149B1 (en) Flow controlling device for a discharge system such as a drainage system
US4775341A (en) Foil system for jet propelled aquatic vehicle
JP2010535664A (en) Air spill valve
EP0011506B1 (en) Single vane rotodynamic impeller
US4029430A (en) Short subsonic diffuser for large pressure ratios
US3156190A (en) Pump impeller
JPS63652B2 (en)
US3411451A (en) Centrifugal pump inlet elbow
CN218062787U (en) Impeller, fan and dust catcher
JP3595948B2 (en) Fluid retarder
JPH0613878B2 (en) Centrifugal compressor
US1771939A (en) Propeller, pump, or fan
JPS638879Y2 (en)
JPH0121198Y2 (en)
CN218093583U (en) Impeller, fan and dust catcher
JPS58152940A (en) Variable speed fluid coupling
JPH0754752A (en) Runner vane of axial flow water turbine
CN218062785U (en) Impeller, fan and dust catcher
EP0040769A1 (en) Arrangement for lowering the surge limit of a rotary type compressor
JPH02157496A (en) Blower
JPH0223300A (en) Propeller fan
JPS639733A (en) Fluid joint
JPS5849682B2 (en) Turbine casing manufacturing method