JPS638879Y2 - - Google Patents
Info
- Publication number
- JPS638879Y2 JPS638879Y2 JP1981165828U JP16582881U JPS638879Y2 JP S638879 Y2 JPS638879 Y2 JP S638879Y2 JP 1981165828 U JP1981165828 U JP 1981165828U JP 16582881 U JP16582881 U JP 16582881U JP S638879 Y2 JPS638879 Y2 JP S638879Y2
- Authority
- JP
- Japan
- Prior art keywords
- casing
- impeller
- spiral
- blower
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
- F04D29/4226—Fan casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【考案の詳細な説明】
本考案は送風機、特にその外周上に多数の羽根
を配設した羽根車を渦巻形ケーシング内に配置し
た遠心形送風機の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a blower, particularly a centrifugal blower in which an impeller with a large number of blades arranged on its outer periphery is arranged inside a spiral casing.
本考案の目的はケーシングの形状を改良して、
実装空間を拡大する事なく風量を増加できるよう
にした送風機を得るにある。 The purpose of this invention is to improve the shape of the casing,
To obtain a blower capable of increasing air volume without expanding the mounting space.
本考案送風機は、円周上に多数の小羽根を配設
した羽根車と、この羽根車の周囲に風の案内を形
成する渦巻形のケーシングとを備えた遠心形送風
機において、渦巻形ケーシングの形状を渦巻の進
行角度に応じて一定比率で半径が増大する内壁の
理論形状に対し該内壁と滑らかに連接する1個又
は複数個の膨らみ部分を形成し、この膨らみがケ
ーシングの設定外郭寸法を越えない大きさである
ことを特徴とする。 The blower of the present invention is a centrifugal blower equipped with an impeller having a large number of small blades arranged on the circumference and a spiral casing that forms a wind guide around the impeller. The theoretical shape of the inner wall whose radius increases at a constant rate according to the advancing angle of the spiral is formed with one or more bulges that smoothly connect with the inner wall, and this bulge controls the set outer dimensions of the casing. It is characterized by a size that cannot be exceeded.
以下図面に従い従来技術と本考案遠心形送風機
の実施例について説明する。 The prior art and embodiments of the centrifugal blower of the present invention will be described below with reference to the drawings.
第1図は従来技術に基づく遠心形送風機の断面
図で1は渦巻形ケーシング、2は羽根車、3はこ
の羽根車2の外周に配設した多数の羽根である。
羽根車2を原動機例えば電動機等で矢印4方向に
回転せしめると羽根車2内の空気は羽根3に押さ
れて羽根車2の回転に依る遠心力で羽根車2の外
側に移動しケーシング1の内側に沿つて矢印5の
ように流動しケーシング1の排出口6より排出さ
れる。 FIG. 1 is a sectional view of a centrifugal blower based on the prior art, in which 1 is a spiral casing, 2 is an impeller, and 3 is a large number of blades arranged around the outer circumference of the impeller 2.
When the impeller 2 is rotated in the direction of arrow 4 by a prime mover such as an electric motor, the air inside the impeller 2 is pushed by the blades 3 and moves to the outside of the impeller 2 due to the centrifugal force caused by the rotation of the impeller 2. It flows along the inside as shown by the arrow 5 and is discharged from the discharge port 6 of the casing 1.
第1図の送風機のケーシング1の形状は渦巻の
角度の進行に従い風量が増加するためケーシング
1の内壁と羽根車2の外周との隙間glは渦巻の始
点部分1−1で最小のgl1であるが渦巻の角度が
矢印4方向に進行するに従い単調に増加し出口近
くの部分1−2では大きくgl2となるような或る
理論的な形状としている。而して第1図のような
送風機で風量を増加するには
(1) 羽根車2の回転速度を上げる。 The shape of the casing 1 of the blower in Fig. 1 is a theoretical shape in which the gap gl between the inner wall of the casing 1 and the outer periphery of the impeller 2 is minimum gl1 at the start point 1-1 of the spiral, and increases monotonically as the spiral angle progresses in the direction of the arrow 4, becoming large at gl2 at the part 1-2 near the outlet. To increase the air volume with a blower such as that shown in Fig. 1, (1) the rotational speed of the impeller 2 is increased.
(2) 羽根車2の直径を大きくする。(2) Increase the diameter of impeller 2.
(3) ケーシング1の外郭寸法を大きくする。(3) Increase the outer dimensions of casing 1.
(4) 羽根車2とケーシング1の軸方向長さを長く
する。(4) Increase the axial length of the impeller 2 and casing 1.
等の手段が有効であるが、(1)の手段は電動機の出
力を増加せしめる必要があり、より大出力の電動
機を必要とする。(2)は羽根車2の所用動力が増加
し、より大出力の電動機を必要とする。(3),(4)は
共に外形寸法が大きくなる。等の問題があり、外
郭寸法が限定された条件での風量増加は簡単に実
現することができない。Although the above methods are effective, the method (1) requires increasing the output of the electric motor, which requires a motor with higher output. In case (2), the required power of the impeller 2 increases and a higher output electric motor is required. Both (3) and (4) have larger external dimensions. Due to these problems, it is not easy to increase the air volume under conditions where the outer dimensions are limited.
本考案は上記のような従来技術の遠心形送風機
の欠点を除きそのケーシングの外郭寸法を変更す
ることなく風量を増加させる構成を提供するもの
でその一実施例を第2図に示す。 The present invention eliminates the drawbacks of the prior art centrifugal blower as described above and provides a configuration for increasing the air volume without changing the outer dimensions of the casing. An embodiment thereof is shown in FIG. 2.
第2図において1′は本考案に基づく改良され
たケーシング、2は従来と同様の羽根車である。
本考案の改良されたケーシング1′においてはそ
の内壁の形状を理論曲線Sに対しケーシング1′
の渦巻の始点部分1′−1とこれより矢印4方向
に90゜進んだ部分1′−2の間aでケーシング1′
の内壁と羽根車2の外周間の間隙を拡げ、前記部
分1′−2とこれより更に90゜矢印4方向に進んだ
部分1′−3の間b、同じく前記部分1′−3とこ
れより矢印4方向に90゜進んだ渦巻の終端部分
1′−4の間cでケーシング1′の内壁を変形して
風の流路を拡大せしめ、全体を滑らかな曲線で接
続した形状とし、ケーシングの部分1′−1と
1′−3との間の外郭寸法Aと部分1′−2と1′
−4との間の外郭寸法Bを理論曲線Sの場合の対
応する寸法と同様ならしめる。この流路拡大部
a,b,cの作用効果は次の通りである。 In FIG. 2, 1' is an improved casing based on the present invention, and 2 is an impeller similar to the conventional one.
In the improved casing 1' of the present invention, the shape of the inner wall of the casing 1' is adjusted to the theoretical curve S.
The casing 1' is located between the starting point part 1'-1 of the spiral and the part 1'-2 proceeding 90 degrees from this point in the direction of arrow 4.
The gap between the inner wall of the impeller 2 and the outer periphery of the impeller 2 is widened, and the space between the portion 1'-2 and the portion 1'-3 further advanced by 90 degrees in the direction of the arrow 4, and the portion b between the portion 1'-3 and this The inner wall of the casing 1' is deformed between the terminal part 1' and 4 of the spiral, which has proceeded 90 degrees in the direction of the arrow 4, to enlarge the air passage, and the whole is connected with a smooth curve. Outer dimension A between parts 1'-1 and 1'-3 and parts 1'-2 and 1'
-4 is made similar to the corresponding dimension in the case of the theoretical curve S. The effects of the flow path enlarged portions a, b, and c are as follows.
従来ケーシング1の内壁と羽根車2の外周との
隙間glは前に述べたように渦巻の始点近くで最も
小さく渦巻の終端近くで最大となるように進行角
度に対し単調に増加する理論曲線に従つた形状を
採用していた。この理由は羽根3の遠心力でケー
シング1の内側に送られる空気の量はケーシング
1の渦巻角度が進行するに従い比例的に加算され
て増大すると考えたからであるが、実際にはケー
シング1内の空気の流れは一様ではなく場所によ
つて密度の違いや、速度の違いを生じており複雑
で必らずしも理論通りの風量の増大はしていな
い。 Conventionally, the gap GL between the inner wall of the casing 1 and the outer periphery of the impeller 2 follows a theoretical curve that increases monotonically with the advancing angle, being smallest near the starting point of the vortex and largest near the end of the vortex, as described above. It adopted a conforming shape. The reason for this is that the amount of air sent into the inside of the casing 1 by the centrifugal force of the blades 3 was thought to increase proportionally as the spiral angle of the casing 1 progresses, but in reality, the amount of air inside the casing 1 increases. The flow of air is not uniform, with differences in density and speed depending on the location, making it complex and not necessarily increasing the amount of air as expected.
本考案においてはケーシング1′内の部分的に
流路を拡大したa,b,cの部分で、羽根3で遠
心方向に押し出される空気の量は、前述の通りケ
ーシングの内壁が膨らみの分だけ外側へ遠ざかつ
ており、空気の密度の高まりが少なく、即ち空気
の流れに対する内壁の摩擦損が減少すると考えら
れ、当該部分の空気の量は増加し、羽根車外周と
の間に流動する空気の全量が増加する事になり、
従つて吐出口より外部へ吐き出される風量が増加
する。 In the present invention, the amount of air pushed out in the centrifugal direction by the blades 3 at portions a, b, and c, where the flow paths are partially enlarged in the casing 1', is equal to the bulge of the inner wall of the casing, as described above. It is thought that the area is moving away from the outside, and the increase in air density is small, which means that the friction loss of the inner wall against the air flow is reduced.The amount of air in this area increases, and the amount of air flowing between it and the outer circumference of the impeller increases. The total amount will increase,
Therefore, the amount of air discharged to the outside from the discharge port increases.
又この膨らみの個所は実装空間を大きくするこ
とがなければ多い方が効果的である。 Also, it is more effective to have more bulges without increasing the mounting space.
この効果は、渦巻き状の理論形状による空気の
流れの均一化が風量増加に寄与するという考えか
ら離れるべき事を示唆するもので、風量アツプは
羽根車とケーシング内壁との間の空間に流動する
空気の全量増に伴うものとして捉える事が妥当と
考えられ、しかも外郭寸法A,Bは不変であるか
ら従来技術に依る理論曲線Sの送風機と同一の外
郭寸法とすることができる。 This effect suggests that we should move away from the idea that the uniformity of air flow due to the theoretical spiral shape contributes to an increase in air volume. It is considered appropriate to regard this as a result of an increase in the total amount of air, and since the outer dimensions A and B remain unchanged, the outer dimensions can be set to be the same as the blower of the theoretical curve S according to the prior art.
第3図は従来のケーシング1と本考案のケーシ
ング1′を用いた送風機の風量特性を示し、第3
図より明らかなように本考案に依る改良された送
風機は電動機の出力を変更することなく1.1〜1.2
倍の風量を得ることができる。 Figure 3 shows the air volume characteristics of the blower using the conventional casing 1 and the casing 1' of the present invention.
As is clear from the figure, the improved blower according to the present invention can reach 1.1 to 1.2 without changing the motor output.
You can get double the air volume.
第1図は従来の送風機の説明図、第2図は本考
案の送風機の説明図、第3図はその特性比較線図
である。
1,1′……ケーシング、2……羽根車、3…
…羽根、6……排出口。
FIG. 1 is an explanatory diagram of a conventional blower, FIG. 2 is an explanatory diagram of the blower of the present invention, and FIG. 3 is a characteristic comparison diagram thereof. 1,1'...casing, 2...impeller, 3...
...Blade, 6...Exhaust port.
Claims (1)
の羽根車の周囲に風の案内を形成する渦巻形のケ
ーシングとを具えた遠心形送風機において、渦巻
形ケーシングの形状を渦巻の進行角度に応じて一
定比率で半径が増大する内壁の理論形状に対し該
内壁と滑らかに連接する1個又は複数個の膨らみ
部分を形成し、この膨らみがケーシングの設定外
郭寸法を越えない大きさであることを特徴とする
送風機。 In a centrifugal blower equipped with an impeller with a large number of small blades arranged on the circumference and a spiral casing that forms a wind guide around the impeller, the shape of the spiral casing is determined by the progression of the spiral. One or more bulges are formed that smoothly connect with the theoretical shape of the inner wall whose radius increases at a constant rate depending on the angle, and the bulge is of a size that does not exceed the set outer dimensions of the casing. A blower characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981165828U JPS5870498U (en) | 1981-11-09 | 1981-11-09 | Blower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981165828U JPS5870498U (en) | 1981-11-09 | 1981-11-09 | Blower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5870498U JPS5870498U (en) | 1983-05-13 |
JPS638879Y2 true JPS638879Y2 (en) | 1988-03-16 |
Family
ID=29958015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981165828U Granted JPS5870498U (en) | 1981-11-09 | 1981-11-09 | Blower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870498U (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6375821B2 (en) * | 2014-09-22 | 2018-08-22 | ダイキン工業株式会社 | Centrifugal blower and air cleaner equipped with the same |
WO2016139732A1 (en) * | 2015-03-02 | 2016-09-09 | 三菱電機株式会社 | Sirocco fan and indoor unit of air conditioner using this sirocco fan |
JP7258099B2 (en) * | 2017-10-31 | 2023-04-14 | 三菱電機株式会社 | Air conditioning equipment and refrigeration cycle equipment |
WO2019087298A1 (en) * | 2017-10-31 | 2019-05-09 | 三菱電機株式会社 | Centrifugal blower, blowing device, air conditioner, and refrigeration cycle device |
US11274678B2 (en) | 2018-05-21 | 2022-03-15 | Mitsubishi Electric Corporation | Centrifugal blower, air-sending device, air-conditioning device, and refrigeration cycle device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561906A (en) * | 1968-01-31 | 1971-02-09 | Svenska Flaektfabriken Ab | Centrifugal fan |
-
1981
- 1981-11-09 JP JP1981165828U patent/JPS5870498U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3561906A (en) * | 1968-01-31 | 1971-02-09 | Svenska Flaektfabriken Ab | Centrifugal fan |
Also Published As
Publication number | Publication date |
---|---|
JPS5870498U (en) | 1983-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3584968A (en) | Fan construction | |
US3275223A (en) | Fluid moving means | |
JP2004332734A (en) | Compressor | |
JPS60145497A (en) | Centrifugal blower | |
JP2001271790A (en) | Centrifugal impeller and air cleaner | |
US2981464A (en) | Multiple propeller fan | |
US3059833A (en) | Fans | |
CN208886870U (en) | A kind of range hood | |
JP3841391B2 (en) | Turbo machine | |
JPS638879Y2 (en) | ||
US4511308A (en) | Axial and mixed flow fans and blowers | |
JPS61229989A (en) | Centrifugal pump | |
JP3391199B2 (en) | Centrifugal fan | |
WO2023202327A1 (en) | Combined fan blade structure and air outlet device | |
CN110857791A (en) | Range hood with current collector | |
US3178100A (en) | Fan | |
JPH05149297A (en) | Centrifugal fan | |
CN110857789A (en) | Fume exhaust fan | |
JPH01247798A (en) | High speed centrifugal compressor | |
JP3607769B2 (en) | Centrifugal blower | |
JP2540439Y2 (en) | Axial blower | |
CN2213877Y (en) | Back bend impeller | |
CN213450897U (en) | Fan | |
JP3161127B2 (en) | Blower | |
JPS6229799A (en) | Electrically-driven blower |