JPS5815030B2 - How to start up a reverse osmosis desalination plant equipped with an energy recovery device - Google Patents

How to start up a reverse osmosis desalination plant equipped with an energy recovery device

Info

Publication number
JPS5815030B2
JPS5815030B2 JP55077701A JP7770180A JPS5815030B2 JP S5815030 B2 JPS5815030 B2 JP S5815030B2 JP 55077701 A JP55077701 A JP 55077701A JP 7770180 A JP7770180 A JP 7770180A JP S5815030 B2 JPS5815030 B2 JP S5815030B2
Authority
JP
Japan
Prior art keywords
pressure
reverse osmosis
control valve
valve
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077701A
Other languages
Japanese (ja)
Other versions
JPS574286A (en
Inventor
吉岡潤一郎
国定勇一
小泉淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55077701A priority Critical patent/JPS5815030B2/en
Publication of JPS574286A publication Critical patent/JPS574286A/en
Publication of JPS5815030B2 publication Critical patent/JPS5815030B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electromagnetic Pumps, Or The Like (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明はエネルギー回収装置を備えた逆浸透法による海
水などの原水淡水化装置の始動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for starting a desalination apparatus for raw water such as seawater using reverse osmosis, which is equipped with an energy recovery device.

逆浸透法は、浸透圧以上の圧力を半透膜の海水などの原
水側にかけることによって原水から淡水をこしわける方
法で、省エネルギーの見地よりして近年注目されている
淡水化法であるが、エネルギーの利用効率をさらに高め
るために、逆浸透装置から排出される高圧の濃縮水が持
っているエネルギーを回収して、高圧ポンプの補助、駆
動力とすることが提案された。
Reverse osmosis is a method of separating fresh water from raw water by applying pressure higher than osmotic pressure to the raw water side, such as seawater, of a semipermeable membrane, and is a desalination method that has been attracting attention in recent years from the standpoint of energy conservation. In order to further increase the efficiency of energy use, it has been proposed to recover the energy contained in the high-pressure concentrated water discharged from the reverse osmosis device and use it to assist and drive the high-pressure pump.

しかしながら、海水の浸透圧は約25 kg f /c
rj。
However, the osmotic pressure of seawater is approximately 25 kg f/c
rj.

と高く高圧操作を必要とするが、装置の始動に際して逆
浸透膜モジュールへの原水の供給圧力を急激に上昇させ
るとモジュールの耐圧性に悪影響を及ぼすという問題が
ある。
However, there is a problem in that if the supply pressure of raw water to the reverse osmosis membrane module is suddenly increased when starting the device, the pressure resistance of the module will be adversely affected.

また、逆浸透膜モジュール交換等の際に系内に空気が混
入し、その空気がエネルギー回収タービンに流入すると
タービンが焼付を起こすという問題があ″る。
Additionally, there is a problem that air gets mixed into the system when replacing the reverse osmosis membrane module, and if that air flows into the energy recovery turbine, the turbine may seize up.

本発明はかかる問題を解決するためになされたもので、
高圧ポンプと逆浸透膜モジュールを結ぶ管路の途中に設
けた圧力コントロール弁と並列に該圧力コントロール弁
より小口径のバイパス弁を設け、始動時にはバイパス弁
で原液の流れを制御し、その後圧力コントロール弁で制
御し、かつ、逆浸透膜モジュールからの濃縮水管路に接
続したエネルギー回収タービンと並列にオリフィスを有
するバイパス管路に濃縮水を通し、その小口径のバイパ
ス弁を操作することにより、系の急激な圧力上昇を防止
し、円滑な始動を可能としたものである。
The present invention was made to solve such problems,
A bypass valve with a smaller diameter than the pressure control valve is installed in parallel with the pressure control valve installed in the middle of the pipeline connecting the high-pressure pump and the reverse osmosis membrane module.The bypass valve controls the flow of the stock solution at startup, and then the pressure is controlled. By passing the concentrated water through a bypass line that is controlled by a valve and has an orifice in parallel with the energy recovery turbine connected to the concentrated water line from the reverse osmosis membrane module, the system is activated by operating the small diameter bypass valve. This prevents a sudden pressure rise and enables smooth startup.

以下図面を参照し本発明の実施例について説明する。Embodiments of the present invention will be described below with reference to the drawings.

図示されていない原水ポンプにより汲み上げられた原水
例えば海水は原水槽1に入り、ブースターポンプ2によ
り昇圧されて弁■を経てストレーナ−3を通り弁■を経
てターボ式の高圧ポンプ4に送られる(その管路をLl
として示す)。
Raw water, such as seawater, pumped up by a raw water pump (not shown) enters the raw water tank 1, is pressurized by a booster pump 2, passes through a strainer 3 via a valve (), and is sent to a turbo-type high-pressure pump 4 via a valve (2). Ll that conduit
).

高圧ポンプ4はモーター5により駆動され、海水を50
〜60kgf/iに昇圧して高圧ポンプ出口弁■1、詳
細を後述する圧力コントロール弁PCVを経て逆浸透膜
モジュール6に送る(その管路をに2として示す)。
The high pressure pump 4 is driven by a motor 5 and pumps seawater at 50%
The pressure is increased to ~60 kgf/i and sent to the reverse osmosis membrane module 6 via the high pressure pump outlet valve (1) and the pressure control valve PCV (details of which will be described later) (the pipeline is shown as (2)).

得られた淡水は管路L3を通って回収され、高圧の濃縮
水は詳細を後述する流量コントロール弁FC■、タービ
ン人口弁v2を経てエネルギー回収タービン7を回わす
(その管路をに4. K5として示す)。
The obtained fresh water is recovered through the pipe L3, and the high-pressure concentrated water passes through the flow rate control valve FC■, the details of which will be described later, and the turbine population valve v2, and then rotates the energy recovery turbine 7 (the pipe is connected to 4. (denoted as K5).

タービン7とモータ5との間には遠心クラッチ8が設け
られており、詳細を後述する態様でタービン7によりモ
ーター5を駆動しエネルギーを回収する。
A centrifugal clutch 8 is provided between the turbine 7 and the motor 5, and the turbine 7 drives the motor 5 to recover energy in a manner described in detail later.

また、逆浸透膜モジュール6からエネルギー回収タービ
ン7に至る管路L4にバイパス管路L5を接続し、その
管路ムにタービンバイパス弁■3および減圧オリフィス
OR2を設ける。
Further, a bypass line L5 is connected to a line L4 leading from the reverse osmosis membrane module 6 to the energy recovery turbine 7, and a turbine bypass valve 3 and a pressure reducing orifice OR2 are provided in the line L5.

この減圧オリフィスOR2は濃縮水をバイパス管路−か
ら回収タービン7に流入するように切換える際に問題が
生じないCu値を有するものでなければならな(/ N
oすなわち、オリフィスOR2のCu値が過大であると
This decompression orifice OR2 must have a Cu value that does not cause problems when switching the concentrated water from the bypass line to the recovery turbine 7.
o That is, the Cu value of orifice OR2 is excessive.

濃縮水流量に対応したオリフィスOR2の上流側の圧力
が、タービン性能曲線の流量から定まる入口圧力よりも
低くなり、タービン人口弁■2を開き、タービンバイパ
ス弁■3を閉じタービン7の回転数が上昇してモータ5
とタービン7との間の遠心クラッチ8が連結すると逆流
が生じるこ々になる。
The pressure on the upstream side of the orifice OR2 corresponding to the flow rate of concentrated water becomes lower than the inlet pressure determined from the flow rate of the turbine performance curve, and the turbine artificial valve ■2 is opened and the turbine bypass valve ■3 is closed and the rotation speed of the turbine 7 is reduced. Rise and motor 5
If the centrifugal clutch 8 between the engine and the turbine 7 is connected, a backflow may occur.

従って、減圧オリフィスOR2のCu値はタービンと同
量の流量を流した時に、タービン性能曲線より定まる圧
力が確保できる値とする必要があり、本発明に使用され
る装置の系内圧力は40〜60kgf/iであるのでC
u = 0.1〜0.2 Q (ただし、Qはタービン
の定格流量(m’/ hr) )の値が最適である。
Therefore, the Cu value of the pressure reducing orifice OR2 must be set to a value that can secure the pressure determined by the turbine performance curve when the same flow rate as the turbine flows, and the system pressure of the device used in the present invention is 40~ Since it is 60kgf/i, C
The optimal value is u = 0.1 to 0.2 Q (where Q is the rated flow rate (m'/hr) of the turbine).

その地図において、LSはレベルスイッチ、PSは圧力
スイッチ、PCは圧力変換器、差圧変換器、ORは減圧
オリフィス、S■は安全弁、K1は流量記録形、K2は
圧力記録計、■は弁を示す。
In the map, LS is a level switch, PS is a pressure switch, PC is a pressure converter, differential pressure converter, OR is a pressure reducing orifice, S is a safety valve, K1 is a flow rate recorder, K2 is a pressure recorder, and ■ is a valve. shows.

周知の如くターボ式の高圧ポンプでは、その吐出流量お
よび吐出圧力は一定の性能曲線によって決定される。
As is well known, in a turbo-type high-pressure pump, its discharge flow rate and discharge pressure are determined by a certain performance curve.

一方、かかる装置においては所定の膜透過水量を得るた
めに、逆浸透膜モジュール入口の圧力と流量とを所定値
に制御する必要があり、そのために、高圧ポンプ4と逆
浸透膜モジュール6とを結ぶ管路L2の途中に圧力コン
トロール弁)PCVを設け、この圧力コントロール弁P
CVをそれと逆浸透膜モジュール6との間に設けた圧力
検知器PTにより制御し、また逆浸透膜モジュール6と
エネルギー回収タービン7とを結ぶ管路りの途中に流量
コントロール弁FCVを設け、この1流量コントロール
弁FC■を圧力コントロール弁PC■と圧力検知器PT
との間に設けた流量検知器(オリフィス)OR1により
逆浸透膜モジュール6への流入流量が一定となるように
制御する。
On the other hand, in such a device, in order to obtain a predetermined amount of water permeating through the membrane, it is necessary to control the pressure and flow rate at the inlet of the reverse osmosis membrane module to a predetermined value. A pressure control valve (PCV) is provided in the middle of the connecting pipe L2, and this pressure control valve P
The CV is controlled by a pressure sensor PT provided between the reverse osmosis membrane module 6 and the reverse osmosis membrane module 6, and a flow rate control valve FCV is provided in the middle of the pipeline connecting the reverse osmosis membrane module 6 and the energy recovery turbine 7. 1 Flow control valve FC■, pressure control valve PC■ and pressure detector PT
A flow rate detector (orifice) OR1 provided between the reverse osmosis membrane module 6 controls the flow rate to be constant.

今、逆浸透膜モジュール入口の圧力が増大すれンは圧力
コントロール弁PCVは閉じ、その結果逆浸透膜モジュ
ール人口圧は下がり、逆に逆浸透膜モジュール人口の圧
力が減少するば圧力コントロール弁PCVは開き、その
結果逆浸透膜モジュール入口圧は上がる。
Now, when the pressure at the reverse osmosis membrane module inlet increases, the pressure control valve PCV closes, and as a result, the reverse osmosis membrane module population pressure decreases, and conversely, when the reverse osmosis membrane module population pressure decreases, the pressure control valve PCV closes. opens, resulting in an increase in reverse osmosis membrane module inlet pressure.

また逆浸透膜モジュール人口1の流量が増大すれば流量
コントロール弁FCVは閉じ、その結果逆浸透膜モジュ
ール入口圧は上がり、逆に逆浸透膜モジュール人口の流
量が減少すれば流量コントロール弁FCVは開き、その
結果逆浸透膜モジュール入口圧は下がる。
Furthermore, if the flow rate of reverse osmosis membrane module population 1 increases, the flow rate control valve FCV closes, and as a result, the reverse osmosis membrane module inlet pressure increases, and conversely, if the flow rate of the reverse osmosis membrane module population decreases, the flow rate control valve FCV opens. , As a result, the reverse osmosis membrane module inlet pressure decreases.

ン このようにして逆浸透膜モジュール入口の圧力と流
量とを所定値に制御する。
In this way, the pressure and flow rate at the reverse osmosis membrane module inlet are controlled to predetermined values.

ところで、かかる装置においては、運転スタート時に系
内の圧力を急上昇させると、逆浸透膜モジュール6の耐
圧性に悪影響を及ぼす。
By the way, in such an apparatus, if the pressure in the system is suddenly increased at the start of operation, the pressure resistance of the reverse osmosis membrane module 6 will be adversely affected.

本発明で1はこれに対処すべく、圧力コントロール弁P
CVと並列に該圧力コントロール弁より小口径の例えば
ニードル弁などのバイパス弁VB1を設け、この弁を徐
開することにより系列の、圧力の急上昇を防止し、また
同時にタービンと並列にバイパス管)路を設け、モジュ
ール内に滞留している空気をタービンの方へ流さないよ
うにする。
In the present invention, 1 is a pressure control valve P to cope with this.
A bypass valve VB1, such as a needle valve, with a smaller diameter than the pressure control valve is provided in parallel with the CV, and by gradually opening this valve, a sudden rise in pressure in the series is prevented, and at the same time, a bypass pipe is provided in parallel with the turbine. A channel is provided to prevent air trapped inside the module from flowing toward the turbine.

ここで、バイパス弁は圧力コントロール弁の115〜1
/15のCu値を有する弁であることが好ましい。
Here, the bypass valve is 115 to 1 of the pressure control valve.
Preferably, the valve has a Cu value of /15.

本装置のスタートは次の手順で行う。To start this device, follow the steps below.

まず、す−ビン人口弁v2、圧力コントロール弁PCV
およびバイパス弁VB1を閉じ、タービンバイパス弁v
3および流量コントロール弁FCVを40%程度開けて
おく。
First, the subbin population valve v2, pressure control valve PCV
and close the bypass valve VB1, and close the turbine bypass valve v
3 and the flow rate control valve FCV should be opened by about 40%.

そして、高圧ポンプ4のモーター5を起動し、次いでバ
イパス弁VBIを徐々に開はタービンバイパス管路−に
設けた減圧オリフィスCR2の絞り作用を利用し、また
流量コントロール弁の開度を変えて、逆浸透膜モジュー
ル6に流入する原水の圧力および流量を徐々に上昇させ
る。
Then, the motor 5 of the high-pressure pump 4 is started, and the bypass valve VBI is gradually opened by using the throttling action of the pressure reducing orifice CR2 provided in the turbine bypass pipe, and by changing the opening degree of the flow control valve. The pressure and flow rate of raw water flowing into the reverse osmosis membrane module 6 are gradually increased.

この時の圧力上昇速度は1 ky f /ff1−se
c程度以下とする。
The pressure increase rate at this time is 1 ky f /ff1-se
It should be about c or less.

そして、バイパス弁VB1の開度が全開になり逆浸透膜
モジュール入口の圧力が所定の値になった時点で圧力コ
ントロール弁PCVを操作して開き、バイパス弁VB1
を閉じる。
Then, when the bypass valve VB1 is fully opened and the pressure at the inlet of the reverse osmosis membrane module reaches a predetermined value, the pressure control valve PCV is operated to open the bypass valve VB1.
Close.

次いで、モジュール内の空気が十分に追出されたことを
確認してタービン人口弁■2を徐々に開き、タービンバ
イパス弁v3を閉じる。
Next, after confirming that the air in the module has been sufficiently expelled, the turbine artificial valve (2) is gradually opened, and the turbine bypass valve (v3) is closed.

それ以後は圧力コントロール弁PCVおよび流量コント
ロール弁FCVの作動により逆浸透膜モジュール6への
原水の供給圧力および流量は自動的に制御される。
Thereafter, the pressure and flow rate of raw water supplied to the reverse osmosis membrane module 6 are automatically controlled by operating the pressure control valve PCV and the flow rate control valve FCV.

また、運転に際して逆浸透膜モジュールの交換等により
、系内に空気が混入していても、空気はタービンバイパ
ス弁■3より戻り管路−に流出させられ、エネルギー回
収タービン7に流入することはない。
In addition, even if air gets mixed into the system due to replacement of the reverse osmosis membrane module during operation, the air will flow out from the turbine bypass valve 3 to the return pipe and will not flow into the energy recovery turbine 7. do not have.

以上述べたように本発明は高圧ポンプと逆浸透膜モジュ
ールを結ぶ管路の途中に設けた圧力コントロール弁と並
列に該圧力コントロール弁より小口径のバイパス弁を設
け、かつ、逆浸透膜モジュールからの濃縮水管路に接続
したエネルギー回収タービンと並列にオリフィスを有す
るバイパス管路を設け、その小口径のバイパス弁を操作
して運転スタート時の系の圧力上昇を徐々に行うことに
より、逆浸透膜モジュールの耐圧性に影響を及ぼす系内
の圧力の急上昇を防止することができる。
As described above, the present invention provides a bypass valve with a smaller diameter than the pressure control valve in parallel with the pressure control valve provided in the middle of the pipeline connecting the high-pressure pump and the reverse osmosis membrane module, and A bypass pipe with an orifice is installed in parallel with the energy recovery turbine connected to the concentrated water pipe of the reverse osmosis membrane. It is possible to prevent a sudden increase in pressure within the system that would affect the pressure resistance of the module.

また、系内に空気が混入していても、空気は戻り管路に
流出させられ、エネルギー回収タービンに流入すること
がなくタービンが焼付くことはなG)。
Furthermore, even if air is mixed into the system, the air will flow out to the return line and will not flow into the energy recovery turbine, preventing the turbine from seizing up.

特に本発明によれば、高圧ポンプとして通常の遠心ポン
プを用い、小流量で圧力が高く、大流量で圧力が低いよ
うな場合でも好適に圧力の制御ができ、したがって定容
量ポンプを用いて液体を逃がすことをしないですむから
、効率が向上する。
In particular, according to the present invention, when a normal centrifugal pump is used as a high-pressure pump, the pressure can be suitably controlled even when the pressure is high at a small flow rate and low at a large flow rate. Efficiency is improved because there is no need to release the

【図面の簡単な説明】[Brief explanation of drawings]

図面はエネルギー回収装置を備えた逆浸透法による原水
淡水化装置のフローシートである。 1・・・・・・原水槽、2・・・・・・ブースターポン
プ、3・・・・・・ストレーナ−14・・・・・・高圧
ポンプ、5・・・・・・モーター、6・・・・・・逆浸
透膜モジュール、7・・・・・・動力回収タービン、8
・・・・・・遠心クラッチ、FCv・・・・・・圧力コ
ントロール弁、FCv・・・・・・流量コントロール弁
、VBl 、VB2・・・・・・バイパス弁、PT・・
・・・・圧力検知器、ORI 、OR2、OR3・・・
・・・オリフィス、LS・・・・・・レベルスイッチ、
PS・・・・・・圧力スイッチ、PC・・・・・・圧力
変換器、差圧変換器、K1・・・・・・流量記録計、K
2・・・・・・圧力記録計、澹・・・・・温度記録計、
v 、 vl、 v2. v、・・・・・弁。
The drawing is a flow sheet of a raw water desalination plant using reverse osmosis and equipped with an energy recovery device. 1... Raw water tank, 2... Booster pump, 3... Strainer-14... High pressure pump, 5... Motor, 6... ... Reverse osmosis membrane module, 7 ... Power recovery turbine, 8
... Centrifugal clutch, FCv ... Pressure control valve, FCv ... Flow control valve, VBl, VB2 ... Bypass valve, PT ...
...Pressure detector, ORI, OR2, OR3...
...orifice, LS...level switch,
PS...Pressure switch, PC...Pressure transducer, differential pressure converter, K1...Flow rate recorder, K
2...Pressure recorder, Kan...Temperature recorder,
v, vl, v2. v, ... Valve.

Claims (1)

【特許請求の範囲】 1 高圧ポンプにより昇圧した原水を逆浸透膜モジュー
ルに送り原水より淡水を得ると共に、逆浸透膜モジュー
ルよりの高圧の濃縮水でエネルギー回収タービンを駆動
してエネルギーを回収するようにしたエネルギー回収装
置を用いた逆浸透法による淡水化装置の始動方法におい
て、高圧ポンプと逆浸透膜モジュールとを結ぶ管路の途
中に圧力コントロール弁と、その圧力コントロール弁と
並列に該圧力コントロール弁より小口径のバイパス弁が
設けられ、始動の時に圧力コントロール弁を閉じてバイ
パス弁に原水を通し、その後圧力コントロール弁により
原水の流れを制御し、かつ、逆浸透膜モジュールからの
濃縮水管路に接続したエネルギー回収タービンと並列に
オリフィスを有するバイパス管路に濃縮水を通し、その
バイパス弁を操作して運転スタート時の系の圧力上昇を
徐々に行うことを特徴とするエネルギー回収装置を備え
た逆浸透法による淡水化装置の始動方法。 2 小口径のバイパス弁のCv値が圧力コントロール弁
のCv値の115ないし1/15である特許請求の範囲
の第1項記載のエネルギー回収装置を備えた逆浸透法に
よる淡水化装置の始動方法。
[Claims] 1. Fresh water is obtained from the raw water by sending the raw water pressurized by a high-pressure pump to a reverse osmosis membrane module, and at the same time, energy is recovered by driving an energy recovery turbine with high-pressure concentrated water from the reverse osmosis membrane module. In a method for starting a desalination equipment using a reverse osmosis method using an energy recovery device, a pressure control valve is installed in the middle of a pipeline connecting a high-pressure pump and a reverse osmosis membrane module, and the pressure control valve is installed in parallel with the pressure control valve. A bypass valve with a smaller diameter than the valve is provided, and at startup, the pressure control valve is closed and raw water is passed through the bypass valve, and then the flow of raw water is controlled by the pressure control valve, and the concentrated water pipe from the reverse osmosis membrane module is The system is equipped with an energy recovery device characterized in that concentrated water is passed through a bypass pipe having an orifice in parallel with an energy recovery turbine connected to the system, and the bypass valve is operated to gradually increase the pressure in the system at the start of operation. How to start up a desalination plant using reverse osmosis. 2. A method for starting a desalination device using a reverse osmosis method equipped with an energy recovery device according to claim 1, wherein the Cv value of the small-diameter bypass valve is 115 to 1/15 of the Cv value of the pressure control valve. .
JP55077701A 1980-06-11 1980-06-11 How to start up a reverse osmosis desalination plant equipped with an energy recovery device Expired JPS5815030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55077701A JPS5815030B2 (en) 1980-06-11 1980-06-11 How to start up a reverse osmosis desalination plant equipped with an energy recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55077701A JPS5815030B2 (en) 1980-06-11 1980-06-11 How to start up a reverse osmosis desalination plant equipped with an energy recovery device

Publications (2)

Publication Number Publication Date
JPS574286A JPS574286A (en) 1982-01-09
JPS5815030B2 true JPS5815030B2 (en) 1983-03-23

Family

ID=13641195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55077701A Expired JPS5815030B2 (en) 1980-06-11 1980-06-11 How to start up a reverse osmosis desalination plant equipped with an energy recovery device

Country Status (1)

Country Link
JP (1) JPS5815030B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0089982B1 (en) * 1981-10-02 1987-12-23 LOGAN, Donald Andrew Play enclosure for children
GB2146263B (en) * 1983-04-11 1987-07-01 Ebara Corp Control apparatus for reverse osmosis process system
WO1985001221A1 (en) * 1983-09-19 1985-03-28 Ebara Corporation Membrane separator
JPS60102477U (en) * 1983-12-19 1985-07-12 株式会社荏原製作所 Pump device with power recovery device
US4680109A (en) * 1985-05-17 1987-07-14 Ebara Corporation Membrane separator
JPH029489A (en) * 1988-06-29 1990-01-12 Himeji Kishiyou Kk Water making device
JP2004257340A (en) * 2003-02-27 2004-09-16 Shin Nippon Air Technol Co Ltd Power recovery pump device and flow rate controller using it
AU2011338029A1 (en) * 2010-12-02 2013-06-20 Toray Industries, Inc. Reverse osmosis membrane separator, start-up method therefor, and method for producing permeate
JP7115239B2 (en) * 2018-11-12 2022-08-09 株式会社島津テクノリサーチ Analyzer and concentrator used for said analyzer
JP6720428B1 (en) * 2019-01-16 2020-07-08 オルガノ株式会社 Pure water production apparatus and operating method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220981A (en) * 1975-08-11 1977-02-17 Sumitomo Electric Ind Ltd Process for controling pressure of reverse osmotic filtering apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220981A (en) * 1975-08-11 1977-02-17 Sumitomo Electric Ind Ltd Process for controling pressure of reverse osmotic filtering apparatus

Also Published As

Publication number Publication date
JPS574286A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
US6468431B1 (en) Method and apparatus for boosting interstage pressure in a reverse osmosis system
US20080105617A1 (en) Two pass reverse osmosis system
EP2536484B1 (en) Control scheme for a reverse osmosis system using a hydraulic energy management integration system
US4243523A (en) Water purification process and system
JPH0631273A (en) Method and device for purifying water
JP2010063976A (en) Membrane separation apparatus and method of operating the same
JPS5815030B2 (en) How to start up a reverse osmosis desalination plant equipped with an energy recovery device
CN103237592B (en) The production method of reverse osmosis membrane separator, its starting method and permeate
US20210162345A1 (en) Reverse osmosis system
CN206103718U (en) Avoid water purification machine that TDS exceeds standard
US3493495A (en) Apparatus and process for the osmotic separation of water from a saline solution
JP2019171320A (en) Desalination system
JP3274738B2 (en) Valve structure of pressurized water purifier
CN105217733B (en) A kind of the nanometer filtering film water processing system and method for two-way flow
CN110255737A (en) A kind of water purifier and method with pure water displacement concentrated water
CN204625366U (en) Water purifying equipment
CN110342667A (en) A kind of water purifier and method reducing pure water TDS value
US10906000B2 (en) Method and system for performing reverse osmosis with brine recirculation and energy recovery
CN215516743U (en) Water purification system and water purifier with same
CN221062304U (en) Reverse osmosis shuttering device with pressure stabilizing mechanism
CN209039150U (en) A kind of MBR system of novel energy-conserving
JPH10286564A (en) Operation method for reverse osmosis type pure water preparation equipment and the equipment
CN215975299U (en) Ultrafiltration and reverse osmosis integrated filtration system
CN211570298U (en) Water treatment ultrafiltration equipment
CN216918805U (en) Treated water purification and reuse device