JP2004257340A - Power recovery pump device and flow rate controller using it - Google Patents

Power recovery pump device and flow rate controller using it Download PDF

Info

Publication number
JP2004257340A
JP2004257340A JP2003050579A JP2003050579A JP2004257340A JP 2004257340 A JP2004257340 A JP 2004257340A JP 2003050579 A JP2003050579 A JP 2003050579A JP 2003050579 A JP2003050579 A JP 2003050579A JP 2004257340 A JP2004257340 A JP 2004257340A
Authority
JP
Japan
Prior art keywords
pump
power recovery
water
flow rate
mechanically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050579A
Other languages
Japanese (ja)
Inventor
Hisanori Kuroda
尚紀 黒田
Noriyasu Suzuki
規安 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2003050579A priority Critical patent/JP2004257340A/en
Publication of JP2004257340A publication Critical patent/JP2004257340A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover power while controlling heat medium such as cold water or hot water under the condition of constant water supplying pressure while controlling variable flow rate without performing pump rotation speed control by an inverter, and to save electrical power at high efficiency. <P>SOLUTION: A water feeding pump 7 for feeding the heat medium is mechanically connected to a prime mover 15 for driving the water feeding pump 7 by a coupling 17. A rotating shaft 15b of the prime mover 15 is mechanically connected to a shaft 16a of a power recovery hydraulic turbine 16 by a contactable and separable centrifugal clutch 18. A return bypass passage 19 branched from a discharge side of the water feeding pump 7 is connected to a suction side of the water feeding pump 7 through the power recovery hydraulic turbine 16, and a control valve 20 is provided in the middle of the return bypass passage 19. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、戻り配管を利用することなく、送り配管部位のみでポンプの動力を回収するようにした動力回収ポンプ装置、および流体を一定の送水圧力条件の下で変流量制御としながら送給するための流量制御装置に関する。
【0002】
【従来の技術】
従来よりビル等の建物内では、例えば図4に示される空調方式及び地域冷暖房方式等が採用されている。この空調方式は、戻りヘッダー50からの冷水又は温水が一次送水ポンプ51,51により送られ、冷凍機52、ボイラを用いた熱交換器53等の冷温水熱源を通過し所定温度とされた後、第1送りヘッダー54に至り、その後二次送水ポンプ55,55…により第2送りヘッダー57に送られる。そして、この第2送りヘッダー57を介して各部位(部屋)に配置された熱交換器(空調機)58,58…に送給された後、戻りヘッダー50に循環するようになっている。
【0003】
前記空調方式では、第1送りヘッダー54と第2送りヘッダー57との間に配置された二次送水ポンプ55,55…はインバーター56を備え、前記第2送りヘッダー57と戻りヘッダー50との間に差圧センサ61が設けられるとともに、戻りヘッダー50の入側戻り配管に流量センサ60が設けられている。
【0004】
例えば各部屋に設置された熱交換器(空調機)58,58…において、必要熱交換量に応じて制御二方弁59、59…が制御されることにより、二次側の熱媒循環量が変化すると、前記流量センサ60が流量を検出し、最小運転台数となるように台数制御コントローラ62より制御するとともに、差圧センサ61により第2の送りヘッダー57と戻りヘッダー50との差圧を検出し、予め設定された必要差圧となるように、二次送水ポンプ55,55…のインバーター56、56…に対し回転数制御をかけることにより、一定の送水圧力条件の下で変流量制御を行うようになっている。
【0005】
一方で近年は、ポンプ用原動機の消費エネルギーを最小に抑えるための動力回収装置が提案されている。この動力回収装置は、図5に示されるように、開放型管路において、冷温水ポンプ60が下階に設置され、空調機63は上階に設置されることを利用し、冷温水の戻り配管側にポンプを利用した水車62を取り付けるとともに、この水車62の軸力をポンプの原動機(電動機)61と接続し、上階から下階に落下する前記冷温水の落下エネルギーを回収し、前記原動機61の消費エネルギーを節減するものである。この動力回収装置は、下記特許文献1に示されるように、空調機に対応する負荷部分を逆浸透膜とする淡水化装置においても、逆浸透膜モジュールからの高圧の濃縮液体により水車を駆動しエネルギーを回収する場合にも応用されている。
【0006】
【特許文献1】
特開昭57−4286号公報
【0007】
【発明が解決しようとする課題】
前記空調方式におけるポンプ設備は、必要熱交換量が低減した際に、ポンプ台数を減少することにより電力使用量の低減を図るものであるが、流量が少なくなると同時に送水圧力が常に一定になるように、インバーターでポンプ回転数を上げるように制御するため、ポンプの消費電力が増大する(回転数の3乗に比例する。)。従って、熱交換器(空調機)58の負荷が少なくなった割りに省エネ効果が望めないなどの問題があった。また、インバーターを用いると高調波の問題が発生し、その対策が必要になるなどの問題もある。
【0008】
一方、前述した動力回収ポンプ装置の場合は、空調機からの戻り配管をポンプ原動機位置まで導管しなければならず、配管施工上の制約を受けるとともに、多数のポンプが設置されている場合には、冷温水の落下エネルギーが分散されるため、回収効率が著しく低下するなどの問題があった。
【0009】
そこで本発明の第1課題は、水車を駆動させてエネルギーを回収する動力回収ポンプ装置において、戻り配管を利用することなく、送り配管部位のみでポンプの動力を回収することにある。
【0010】
次いで第2課題は、流量制御装置において、インバーターによるポンプの回転数制御を行うことなく、冷水又は温水等の流体を一定の送水圧力条件の下で変流量制御としながら動力を回収し、高い効率で電力の省エネルギー化を図ることにある。
【0011】
【課題を解決するための手段】
前記課題を解決するために請求項1に係る本発明として、送水ポンプと、この送水ポンプを駆動させる原動機とを機械的に連結するとともに、前記原動機の回転軸と動力回収水車の軸とを機械的に連結し、かつ前記送水ポンプの吐出側から分岐させたリターンバイパス路を前記動力回収水車を中継して前記送水ポンプの吸込側に接続したことを特徴とする動力回収ポンプ装置が提供される。
【0012】
上記請求項1記載の本発明では、送水ポンプの吐出側と吸込側とにリターンバイパス路を設けるとともに、このリターンバイパス路の中間に動力回収水車を配置するようにしたため、送り配管部位のみでポンプの動力を回収できるようになる。また、戻り配管は何ら配管施工上の制約を受けることが無くなり、送り配管毎にポンプが設置されている場合であっても、送り配管毎に前記構成を採用することにより、動力の回収効率が低下することも無くなる。
【0013】
次いで、第2課題を解決するために請求項2に係る本発明として、流体を一定の送水圧力条件の下で変流量制御としながら送給するための流量制御装置であって、
前記流体を送給するための送水ポンプと、この送水ポンプを駆動させる原動機とを機械的に連結するとともに、前記原動機の回転軸と動力回収水車の軸とを機械的に連結し、かつ前記送水ポンプの吐出側から分岐させたリターンバイパス路を前記動力回収水車を中継させて前記送水ポンプの吸込側に接続し、かつ前記リターンバイパス路の途中に制御弁を設けたことを特徴とする流量制御装置が提供される。
【0014】
上記請求項2記載の本発明では、上記請求項1記載の発明の利点に加えて、リターンバイパスの途中に配置した制御弁の開閉操作によって送給量および送水圧を任意に調整できるようになるため、一定の送水圧力条件の下で変流量制御としながら、動力を回収することが可能となり、高い効率で電力の省エネルギー化を図ることができる。
【0015】
請求項3に係る本発明として、前記送水ポンプと、原動機とはカップリングにより機械的に連結されている請求項1記載の動力回収ポンプ装置または請求項2記載の流量制御装置が提供される。
【0016】
請求項4に係る本発明として、前記原動機の回転軸と、動力回収水車の軸とは遠心クラッチにより接離自在に連結されている請求項1、3いずれかに記載の動力回収ポンプ装置または請求項2〜3いずれかに記載の流量制御装置が提供される。
【0017】
請求項5に係る本発明として、前記流量制御装置は、ヘッダー間に複数の流路が形成されるとともに、これら各流路にそれぞれ配置されている請求項2〜4いずれかに記載の流量制御装置が提供される。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら詳述する。
図1は本発明に係る空調システムの全体図、図2は送水ポンプ部の要部拡大図である。
【0019】
図1に示される本空調システム1では、戻りヘッダー2からの冷水又は温水が一次送水ポンプ3、3により送られ、冷凍機4、ボイラを用いた熱交換器5等の冷温水発生器を通過し所定温度とされた後、第1送りヘッダー6に至り、その後二次送水ポンプ7,7…により第2送りヘッダー8に送られる。そして、この第2送りヘッダー8を介して各部位に配置された熱交換器(空調機)9,9…に送給された後、戻りヘッダー2に循環するようになっている。
【0020】
前記第1送りヘッダー6と第2送りヘッダー8との間に配置された二次送水ポンプ7には、動力回収機能付きの流量制御装置10が設けられている。前記流量制御装置10は、詳細には図2に示されるように、送水ポンプ7の羽根軸と、この送水ポンプ7を駆動させる原動機15の原動軸15aとをカップリング17等により機械的に連結するとともに、前記原動機15の背面側に突出した回転軸15bと動力回収水車16の軸16aとを、好ましくは接離自在とされる遠心クラッチ18等により機械的に連結し、かつ前記送水ポンプ7の吐出側から分岐させたリターンバイパス路19を前記動力回収水車16を中継させて前記送水ポンプ7の吸込側に接続し、かつ前記リターンバイパス路19の途中に制御弁20を設けた構造となっている。ここで、前記動力回収水車16としては、例えば一般的な渦巻きポンプを使用することができ、この渦巻きポンプを通常とは逆に接続、すなわち吐出側に水を流入させ、吸込側から吐出させて羽根車を逆転させるように配置すればよい。なお、前記制御弁20の位置は、同図の例では動力回収水車16の吐出側バイパス路に設けたが、動力回収水車16の吸込側バイパス路に設けるようにしてもよい。
【0021】
一方、前記第2送りヘッダー8部に圧力センサ11が設けられるとともに、戻りヘッダー2の手前の戻り配管に流量センサ12が設けられ、これらの計測信号が弁制御コントローラ13に入力されるようになっている。
【0022】
前記空調システムの運転は、例えば最大負荷運転時には、前記制御弁20を全閉として、冷水又は温水等の熱媒を第2送りヘッダー8側に送水する。熱交換器(空調機)9において、必要熱交換量に応じて制御二方弁14,14…が制御されることにより二次側の熱媒循環量が変化(低減)すると、前記流量センサ12が流量を検出し、弁制御コントローラー13により制御弁20が送水低減量に応じて開制御される。前記制御弁20が開かれ、リターンバイパス路19に冷水又は温水の熱媒が流れるようになると、動力回収水車16が回転され、原動機15の動力が低減されるようになる。
【0023】
また、前記制御弁20の開閉制御は、圧力センサ11の計測値に基づいて制御弁20を開閉制御し、リターンバイパス流量を変化させることにより送水圧を一定に制御する。仮に、インバーターを用いて回転数制御を行う場合は、図3に示されるように、運転ポイントはA点からB点に(流量:Q2、揚程H1)になるが、本動力回収ポンプを用いる場合は、ポンプの運転ポイントはA点のまま(流量:Q1、揚程H1)のままで、流量Q2を二次側に送水し、残りの(Q1−Q2)の流量をリターンバイパスして回収ポンプへ流すことで動力を回収する。なお、図示例のように、送水ポンプ7を複数台配置した並列運転の場合でも、吐出圧を一定としたまま、最大流量までの変流量制御が可能である。
【0024】
(他の実施形態例)
(1)上記形態例では、本発明を空調システムを例に採り説明を行ったが、本動力回収ポンプ装置は、変流量制御を行うポンプ一般に適用することが可能である。
【0025】
(2)上記形態例では、ポンプの運転台数制御を行っていないが、運転台数制御と共に本発明に係る動力回収ポンプによる流量制御を行うようにしてもよい。
【0026】
【発明の効果】
以上詳説のとおり、請求項1、3,4記載の本発明によれば、水車を駆動させてエネルギーを回収する動力回収ポンプ装置において、戻り配管を利用することなく、送り配管部位のみでポンプの動力を回収することが可能となる。
【0027】
また、請求項2〜5記載の本発明によれば、流量制御装置において、インバーターによるポンプの回転数制御を行うことなく、冷水又は温水等の流体を一定の送水圧力条件の下で変流量制御しながら動力を回収し、高い効率で電力の省エネルギー化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る空調システム図である。
【図2】送水ポンプ部の要部拡大図である。
【図3】ポンプの特性曲線図(横軸:流量、縦軸:全揚程)である。
【図4】従来の空調システム図である。
【図5】従来の動力回収ポンプ装置の構成図である。
【符号の説明】
1…空調システム、2…戻りヘッダー、3…一次送水ポンプ、4…冷凍機、5…熱交換器、6…第1送りヘッダー、7…二次送水ポンプ、8…第2送りヘッダー、9…熱交換器(空調機)、10…流量制御装置、11…差圧センサ、12…流量センサ、13…弁制御コントローラ、15…原動機、16…動力回収水車、17…カップリング、18…遠心クラッチ、19…リターンバイパス路、20…制御弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a power recovery pump device that recovers the power of a pump only at a feed pipe portion without using a return pipe, and feeds a fluid with variable flow rate control under a constant water feed pressure condition. To a flow control device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a building such as a building, for example, an air conditioning system and a district cooling / heating system shown in FIG. 4 have been adopted. In this air conditioning system, cold or hot water from a return header 50 is sent by primary water pumps 51, 51, passes through a cold / hot water heat source such as a refrigerator 52, a heat exchanger 53 using a boiler, etc., and is heated to a predetermined temperature. , To the first feed header 54, and then sent to the second feed header 57 by the secondary water pumps 55, 55. Then, after being supplied to the heat exchangers (air conditioners) 58, 58... Arranged in each part (room) via the second feed header 57, the heat is circulated to the return header 50.
[0003]
In the air conditioning system, the secondary water pumps 55, 55... Disposed between the first feed header 54 and the second feed header 57 include an inverter 56, and are provided between the second feed header 57 and the return header 50. Is provided with a differential pressure sensor 61, and a flow rate sensor 60 is provided on an inlet-side return pipe of the return header 50.
[0004]
For example, in the heat exchangers (air conditioners) 58, 58,... Installed in each room, the control two-way valves 59, 59,. When the flow rate changes, the flow rate sensor 60 detects the flow rate, and is controlled by the number control controller 62 so as to be the minimum number of operation units, and the differential pressure between the second feed header 57 and the return header 50 is detected by the differential pressure sensor 61. By controlling the rotation speed of the inverters 56, 56,... Of the secondary water pumps 55, 55. It is supposed to do.
[0005]
On the other hand, recently, a power recovery apparatus for minimizing the energy consumption of a pump prime mover has been proposed. As shown in FIG. 5, this power recovery device utilizes the fact that a cold / hot water pump 60 is installed on a lower floor and an air conditioner 63 is installed on an upper floor in an open type pipeline, A water wheel 62 using a pump is attached to the piping side, and the axial force of the water wheel 62 is connected to a motor (electric motor) 61 of the pump to collect the energy of the cold and hot water falling from the upper floor to the lower floor. This saves energy consumed by the prime mover 61. As described in Patent Document 1 below, this power recovery device also drives a water turbine with a high-pressure concentrated liquid from a reverse osmosis membrane module in a desalination device using a load portion corresponding to an air conditioner as a reverse osmosis membrane. It is also applied to recovering energy.
[0006]
[Patent Document 1]
JP-A-57-4286
[Problems to be solved by the invention]
The pump equipment in the air-conditioning system is intended to reduce the amount of electric power consumption by reducing the number of pumps when the required heat exchange amount is reduced. In addition, since the inverter is controlled to increase the pump rotation speed, the power consumption of the pump increases (in proportion to the cube of the rotation speed). Therefore, there is a problem that the energy saving effect cannot be expected even though the load on the heat exchanger (air conditioner) 58 is reduced. In addition, when an inverter is used, a problem of harmonics occurs, and there is a problem that measures need to be taken.
[0008]
On the other hand, in the case of the power recovery pump device described above, the return pipe from the air conditioner must be piped to the position of the pump prime mover, which is subject to restrictions on piping construction, and when a large number of pumps are installed, In addition, since the falling energy of cold and hot water is dispersed, there has been a problem that the recovery efficiency is significantly reduced.
[0009]
Therefore, a first object of the present invention is to recover the power of a pump only at a feed pipe portion without using a return pipe in a power recovery pump device that drives a water turbine to recover energy.
[0010]
The second problem is that the flow control device recovers power while controlling the flow rate of a fluid such as cold water or hot water under a constant water supply pressure condition without controlling the rotation speed of the pump by an inverter, thereby achieving high efficiency. The purpose is to save energy of electricity.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, as a first aspect of the present invention, a water pump and a motor for driving the water pump are mechanically connected, and a rotating shaft of the motor and a shaft of a power recovery turbine are mechanically connected. A power recovery pump device is provided, wherein a return bypass path branched from the discharge side of the water supply pump is connected to the suction side of the water supply pump through the power recovery turbine. .
[0012]
According to the first aspect of the present invention, the return bypass is provided on the discharge side and the suction side of the water supply pump, and the power recovery turbine is disposed in the middle of the return bypass. Power can be recovered. In addition, the return pipe is not subject to any restrictions on the pipe construction, and even when a pump is installed for each feed pipe, by adopting the above-described configuration for each feed pipe, power recovery efficiency is improved. It does not drop.
[0013]
Next, in order to solve the second problem, as a second aspect of the present invention, a flow rate control device for feeding a fluid while performing variable flow rate control under a constant water pressure condition,
A water supply pump for supplying the fluid, and a motor that drives the water supply pump are mechanically connected, and a rotating shaft of the motor and a shaft of a power recovery turbine are mechanically connected, and Flow rate control characterized in that a return bypass passage branched from the discharge side of the pump is connected to the suction side of the water supply pump by relaying the power recovery turbine, and a control valve is provided in the middle of the return bypass passage. An apparatus is provided.
[0014]
According to the second aspect of the present invention, in addition to the advantages of the first aspect, it is possible to arbitrarily adjust the supply amount and the water supply pressure by opening and closing a control valve disposed in the middle of the return bypass. Therefore, it is possible to recover the power while controlling the variable flow rate under a constant water supply pressure condition, and it is possible to save the power with high efficiency.
[0015]
According to a third aspect of the present invention, there is provided a power recovery pump device according to the first aspect or a flow rate control device according to the second aspect, wherein the water pump and the prime mover are mechanically connected by a coupling.
[0016]
According to a fourth aspect of the present invention, there is provided the power recovery pump device or the power recovery pump device according to any one of the first to third aspects, wherein a rotating shaft of the prime mover and a shaft of the power recovery turbine are connected to and separated from each other by a centrifugal clutch. Item 3. A flow control device according to any one of Items 2 to 3.
[0017]
According to a fifth aspect of the present invention, in the flow rate control device, the flow rate control device according to any one of claims 2 to 4, wherein a plurality of flow paths are formed between the headers, and the flow control apparatus is disposed in each of the flow paths. An apparatus is provided.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall view of an air conditioning system according to the present invention, and FIG. 2 is an enlarged view of a main part of a water supply pump unit.
[0019]
In the air conditioning system 1 shown in FIG. 1, cold water or hot water from the return header 2 is sent by primary water pumps 3 and 3 and passes through a cold / hot water generator such as a refrigerator 4 and a heat exchanger 5 using a boiler. After reaching a predetermined temperature, the temperature reaches the first feed header 6 and is then sent to the second feed header 8 by the secondary water pumps 7, 7,. Then, after being sent to the heat exchangers (air conditioners) 9, 9... Arranged at the respective parts via the second feed header 8, they are circulated to the return header 2.
[0020]
The secondary water pump 7 disposed between the first feed header 6 and the second feed header 8 is provided with a flow control device 10 having a power recovery function. As shown in detail in FIG. 2, the flow control device 10 mechanically connects a blade shaft of the water supply pump 7 and a driving shaft 15a of a motor 15 for driving the water supply pump 7 by a coupling 17 or the like. At the same time, the rotating shaft 15b protruding to the rear side of the prime mover 15 and the shaft 16a of the power recovery turbine 16 are mechanically connected by a centrifugal clutch 18 or the like which is preferably freely detachable. A return bypass passage 19 branched from the discharge side of the power supply water turbine 16 is connected to the suction side of the water supply pump 7 by relaying the power recovery turbine 16, and a control valve 20 is provided in the return bypass passage 19. ing. Here, as the power recovery turbine 16, for example, a general spiral pump can be used, and the spiral pump is connected in reverse to the usual case, that is, water flows into the discharge side and is discharged from the suction side. What is necessary is just to arrange so that an impeller may be reversed. Although the position of the control valve 20 is provided on the discharge-side bypass of the power recovery turbine 16 in the example shown in the figure, it may be provided on the suction-side bypass of the power recovery turbine 16.
[0021]
On the other hand, a pressure sensor 11 is provided in the second feed header 8, and a flow sensor 12 is provided in a return pipe before the return header 2, and these measurement signals are input to the valve controller 13. ing.
[0022]
In the operation of the air conditioning system, for example, at the time of maximum load operation, the control valve 20 is fully closed, and a heat medium such as cold water or hot water is sent to the second feed header 8 side. In the heat exchanger (air conditioner) 9, when the control-side two-way valves 14, 14... Are controlled in accordance with the required heat exchange amount to change (reduce) the secondary-side heat medium circulation amount, the flow rate sensor 12 Detects the flow rate, and the valve control controller 13 controls the opening of the control valve 20 according to the reduced water supply amount. When the control valve 20 is opened and the cooling water or hot water heat medium flows through the return bypass passage 19, the power recovery turbine 16 is rotated, and the power of the prime mover 15 is reduced.
[0023]
The control of opening and closing of the control valve 20 controls the opening and closing of the control valve 20 based on the measurement value of the pressure sensor 11, and controls the water supply pressure by changing the return bypass flow rate. If the rotational speed control is performed using an inverter, as shown in FIG. 3, the operating point changes from point A to point B (flow rate: Q2, head H1). The pump operates at the point A (flow rate: Q1, head H1), sends the flow rate Q2 to the secondary side, and returns the remaining (Q1-Q2) flow rate to the recovery pump by return bypass. Power is collected by flowing. In addition, even in the case of parallel operation in which a plurality of water pumps 7 are arranged as in the illustrated example, variable flow control up to the maximum flow rate can be performed while the discharge pressure is kept constant.
[0024]
(Another embodiment example)
(1) In the above embodiment, the present invention has been described by taking an air conditioning system as an example. However, the present power recovery pump device can be applied to a general pump that performs variable flow control.
[0025]
(2) Although the control of the number of operating pumps is not performed in the above embodiment, the flow rate control by the power recovery pump according to the present invention may be performed together with the control of the number of operating pumps.
[0026]
【The invention's effect】
As described in detail above, according to the present invention as set forth in claims 1, 3, and 4, in a power recovery pump device that drives a water turbine to recover energy, a pump is provided only at a feed pipe portion without using a return pipe. Power can be recovered.
[0027]
Further, according to the present invention as set forth in claims 2 to 5, in the flow control device, the flow rate of the fluid such as cold water or hot water is controlled under a constant water supply pressure condition without controlling the rotation speed of the pump by the inverter. While recovering power, energy can be saved with high efficiency.
[Brief description of the drawings]
FIG. 1 is an air conditioning system diagram according to the present invention.
FIG. 2 is an enlarged view of a main part of a water pump unit.
FIG. 3 is a characteristic curve diagram of a pump (horizontal axis: flow rate, vertical axis: total head).
FIG. 4 is a diagram of a conventional air conditioning system.
FIG. 5 is a configuration diagram of a conventional power recovery pump device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air conditioning system, 2 ... Return header, 3 ... Primary water pump, 4 ... Refrigerator, 5 ... Heat exchanger, 6 ... 1st feed header, 7 ... Secondary water pump, 8 ... 2nd feed header, 9 ... Heat exchanger (air conditioner), 10: Flow control device, 11: Differential pressure sensor, 12: Flow sensor, 13: Valve control controller, 15: Motor, 16: Power recovery turbine, 17: Coupling, 18: Centrifugal clutch , 19: return bypass passage, 20: control valve

Claims (5)

送水ポンプと、この送水ポンプを駆動させる原動機とを機械的に連結するとともに、前記原動機の回転軸と動力回収水車の軸とを機械的に連結し、かつ前記送水ポンプの吐出側から分岐させたリターンバイパス路を前記動力回収水車を中継して前記送水ポンプの吸込側に接続したことを特徴とする動力回収ポンプ装置。A water pump and a motor that drives the water pump were mechanically connected, and a rotating shaft of the motor and a shaft of a power recovery turbine were mechanically connected and branched from the discharge side of the water pump. A power recovery pump device, wherein a return bypass passage is connected to the suction side of the water supply pump by relaying the power recovery turbine. 流体を一定の送水圧力条件の下で変流量制御としながら送給するための流量制御装置であって、
前記流体を送給するための送水ポンプと、この送水ポンプを駆動させる原動機とを機械的に連結するとともに、前記原動機の回転軸と動力回収水車の軸とを機械的に連結し、かつ前記送水ポンプの吐出側から分岐させたリターンバイパス路を前記動力回収水車を中継させて前記送水ポンプの吸込側に接続し、かつ前記リターンバイパス路の途中に制御弁を設けたことを特徴とする流量制御装置。
A flow control device for supplying a fluid while performing variable flow control under a constant water supply pressure condition,
A water supply pump for supplying the fluid, and a motor that drives the water supply pump are mechanically connected, and a rotating shaft of the motor and a shaft of a power recovery turbine are mechanically connected, and Flow rate control characterized in that a return bypass passage branched from the discharge side of the pump is connected to the suction side of the water supply pump by relaying the power recovery turbine, and a control valve is provided in the middle of the return bypass passage. apparatus.
前記送水ポンプと、原動機とはカップリングにより機械的に連結されている請求項1記載の動力回収ポンプ装置または請求項2記載の流量制御装置。The power recovery pump device according to claim 1 or the flow control device according to claim 2, wherein the water pump and the motor are mechanically connected by a coupling. 前記原動機の回転軸と、動力回収水車の軸とは遠心クラッチにより接離自在に連結されている請求項1、3いずれかに記載の動力回収ポンプ装置または請求項2〜3いずれかに記載の流量制御装置。The power recovery pump device according to claim 1, wherein the rotation shaft of the prime mover and the shaft of the power recovery turbine are connected to and separated from each other by a centrifugal clutch. Flow control device. 前記流量制御装置は、ヘッダー間に複数の流路が形成されるとともに、これら各流路にそれぞれ配置されている請求項2〜4いずれかに記載の流量制御装置。The flow control device according to any one of claims 2 to 4, wherein the flow control device has a plurality of flow paths formed between the headers and is disposed in each of the flow paths.
JP2003050579A 2003-02-27 2003-02-27 Power recovery pump device and flow rate controller using it Pending JP2004257340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050579A JP2004257340A (en) 2003-02-27 2003-02-27 Power recovery pump device and flow rate controller using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050579A JP2004257340A (en) 2003-02-27 2003-02-27 Power recovery pump device and flow rate controller using it

Publications (1)

Publication Number Publication Date
JP2004257340A true JP2004257340A (en) 2004-09-16

Family

ID=33115950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050579A Pending JP2004257340A (en) 2003-02-27 2003-02-27 Power recovery pump device and flow rate controller using it

Country Status (1)

Country Link
JP (1) JP2004257340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190476A (en) * 2009-02-18 2010-09-02 Hitachi Cable Ltd Cold water circulation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150843U (en) * 1973-04-25 1974-12-27
JPS50136249U (en) * 1974-04-23 1975-11-10
JPS5553087U (en) * 1978-10-05 1980-04-09
JPS574286A (en) * 1980-06-11 1982-01-09 Agency Of Ind Science & Technol Method for starting of desalting device by reverse-osmosis method provided with energy recovery device
JPH0875223A (en) * 1994-09-09 1996-03-19 Shinryo Corp Control system for air conditioning
JP2002213802A (en) * 2001-01-22 2002-07-31 Yokogawa Electric Corp Air-conditioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49150843U (en) * 1973-04-25 1974-12-27
JPS50136249U (en) * 1974-04-23 1975-11-10
JPS5553087U (en) * 1978-10-05 1980-04-09
JPS574286A (en) * 1980-06-11 1982-01-09 Agency Of Ind Science & Technol Method for starting of desalting device by reverse-osmosis method provided with energy recovery device
JPH0875223A (en) * 1994-09-09 1996-03-19 Shinryo Corp Control system for air conditioning
JP2002213802A (en) * 2001-01-22 2002-07-31 Yokogawa Electric Corp Air-conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190476A (en) * 2009-02-18 2010-09-02 Hitachi Cable Ltd Cold water circulation system

Similar Documents

Publication Publication Date Title
CN102713461B (en) Heat-pump system
CN201436513U (en) Household air-conditioning heat pump water-heating system
CN102422100A (en) Air conditioning apparatus
CN101221007B (en) Air source heat pump hot water units
JP2012211712A (en) Liquid cooling system
KR100978800B1 (en) An auxiliary Heat Source Equipment and the Control of Heat Pump System
US9939181B2 (en) Micro-combined heat and power heat pump defrost procedure
CN101749812A (en) Multifunctional Air Conditioning System
CN107238152A (en) A kind of variable-frequency multi-connection type fluorine water system
CN101392958A (en) Air source heat pump boiler
JP3733371B2 (en) Temperature control system
US20120085107A1 (en) Heat transfer processes and equipment for industrial applications
EP2783165A1 (en) A system for heating supply air with simultaneous defrosting of a water-exhaust air heat exchanger
CN201059703Y (en) Refrigeration system of air conditioner hot-water multipurpose apparatus
CN102753896B (en) Conditioner
JP3593480B2 (en) Seawater cooling system
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP3708660B2 (en) Liquid piping equipment for heat utilization
KR101078070B1 (en) Hot and cool water, heating and cooling heat-pump system
JP2004257340A (en) Power recovery pump device and flow rate controller using it
WO2022068515A1 (en) Heat pipe system
CN102269457A (en) Direct current heat exchange full effective hot water air conditioning system
CN1322275C (en) Air conditioner
CN100449218C (en) Method and device for recovering energy
KR101078162B1 (en) Hot and cool water, heating and cooling heat-pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100604