JP3593480B2 - Seawater cooling system - Google Patents

Seawater cooling system Download PDF

Info

Publication number
JP3593480B2
JP3593480B2 JP32364599A JP32364599A JP3593480B2 JP 3593480 B2 JP3593480 B2 JP 3593480B2 JP 32364599 A JP32364599 A JP 32364599A JP 32364599 A JP32364599 A JP 32364599A JP 3593480 B2 JP3593480 B2 JP 3593480B2
Authority
JP
Japan
Prior art keywords
seawater
pipe
temperature
heat exchanger
fresh water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32364599A
Other languages
Japanese (ja)
Other versions
JP2001141329A (en
Inventor
良平 箕輪
俊浩 浅沼
隆 森知
元博 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32364599A priority Critical patent/JP3593480B2/en
Publication of JP2001141329A publication Critical patent/JP2001141329A/en
Application granted granted Critical
Publication of JP3593480B2 publication Critical patent/JP3593480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は海水を用いて冷凍機や蒸気タービンの復水器を冷却する海水冷却システムに関する。
【0002】
【従来の技術】
近年、大気汚染防止が可能でエネルギーを効率的に利用できるという利点から地域冷暖房システムが採用されてきている。特に、湾岸近傍や海上造成地等のウォーターフロントに建設される各種建物では、1個の熱発生設備であるエネルギプラントを用いて空調することにより、設備の低コスト化、低メンテナンス化、省スペース化が可能になる。このようなウォーターフロントにある施設の空調においては、冷却源として回りに豊富に存在する海水が用いられている。この例が、熱供給 未利用エネルギー特集NO.3「海水熱利用によるコスモスクエア地区の熱供給」 社団法人日本熱供給事業協会 1993年 に記載されている。
【0003】
この文献では、空調用の冷凍機の冷却水に淡水を用いて循環させ、この淡水を海水と熱交換させて冷却に供している。淡水と海水を熱交換させる熱交換器では、海水側の熱交換器入口温度と出口温度の温度差を5〜6゜Cに設定している。そして、海水を海中に排出する際に環境破壊が生じないよう、冷凍機に汲み入れられる海水量を制御している。
【0004】
一方、この海水と熱交換する淡水については、熱交換器出口での淡水の温度が高くても冷凍機の性能低下がわずかであるので、冷却水の循環量を減らすために、出口温度を高く設定する傾向にある。冷却水量が減ると、冷却水を搬送するポンプ動力等の動力を低減できるとともに、配管口径も小径化でき、建設コストの大幅低減が可能になる。その結果、淡水と海水を熱交換する熱交換器においては、淡水側の温度差が海水側の温度差の2倍以上になっている。
【0005】
また、海水を冷却用に使用すると、ごみ等が熱交換器に付着するので、熱交換器の洗浄が必要になる。そこで、海水により汚れた熱交換器の汚れ除去の例が、冷凍 「NEDO未利用エネルギー活用プロジェクトの紹介」vol.73、No.853、第88頁〜92頁、1998年11月 に記載されている。
【0006】
【発明が解決しようとする課題】
ところで、淡水と海水を熱交換する熱交換器には、一般にプレート熱交換器が使用される。このプレート熱交換器では、プレート間に淡水と海水を交互に流している。プレート熱交換器の大きさは、海水と淡水間の出入り口温度差や流量がほぼ同程度のときに、最小になる。上述したように、従来の熱交換器における海水側の温度差は、淡水側の温度差の半分程度であるから、海水の循環量は淡水の循環量の約2倍になる。このため、海水と淡水を熱交換するプレート熱交換器では、伝熱に必要なプレート枚数より多くのプレートが海水を熱交換器内で導くのに必要になる。その結果、熱交換器の大きさが大きくなるという不具合があった。
【0007】
また、海水の温度差を小さくするために、海水を大量にプレート熱交換器に導くので、海水ポンプの動力が大きくなる。さらに、海水中の微生物が冷凍システム内に付着してスライムや藻が発生する恐れがあるので、海水取入口には海水をろ過するろ過器が必要であるが、海水量が増大すると、当然ろ過器も大型化し、コストが増大する。
【0008】
一方、海水による熱交換器の汚れを除去する文献記載の方法は、熱交換器内の海水を系外へ排出した後、温水あるいはオゾン水を通液してプレートに付着した海生生物を死滅させ、エアーバプリングによって汚れを除去するものである。この方法によれば、温水発生のためのボイラやオゾン発生装置等が必要となり、せっかく海水を使った利便性を損なう恐れがある。
【0009】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、海洋環境を保全しながら、冷凍機に用いられる海水冷却システムを小型化することにある。本発明の他の目的は、海洋環境の保全と冷凍機に必要な動力の低減の双方を実現することにある。本発明のさらに他の目的は、海洋環境の保全と冷凍機の建設製造コストの低減を両立させることにある。
【0010】
【課題を解決するための手段】
上記目的を達成するに、本発明では、抽気復水蒸気タービンと復水器と抽気復水蒸気タービンにより駆動されるターボ冷凍機と吸収冷凍機とを有する冷凍機システムと、この冷凍機システムを流通する淡水の冷却水を海水と熱交換する複数の熱交換器と、この複数の熱交換器に海水を供給し取水ポンプを有する海水取水配管と、このそれぞれの熱交換器から海水を海中に戻す海水戻し配管とを備えた海水冷却システムを構成する。そしてその第1の特徴は、海水戻し配管から流出する高温の海水に低温の海水を混合するための第2の海水取水配管を設け、この第2の海水取水配管を海水戻し配管に接続し、海水取水配管に海水ストレーナを設けたことにある。
【0013】
そして、熱交換器に流入する淡水の温度と流出する淡水の温度との温度差と、この熱交換器に流入する海水の温度と流出する海水の温度との温度差をほぼ同じにすることが望ましい。
【0014】
さらに第2の特徴は、複数の熱交換器の各々にこの熱交換器の内部を流通する海水を淡水に置換する置換手段を設けたことである。そして、置換手段は、海水取水配管に設けた第1の弁手段を有する第1のバイパス管と海水戻し配管に設けた第2の弁手段を有する第2のバイパス管と、海水取水手段に設けた第3の弁手段と、海水戻し配管に設けた第4の弁手段を有し、復水器の淡水側出口と淡水側入口とを接続する配管と、この配管中に介在させたポンプと、逆止弁と有し、熱交換器の海水を淡水に置換したときにはこの配管と復水器間を淡水が循環するようにしたものである。
【0015】
【発明の実施の形態】
以下、本発明の一実施例を、図面を用いて説明する。図1は本発明に係る空調システムの一実施例の系統図である。空調システムは、ウォータフロントや沖合いに埋め立てて造成された例えば空港に建設されたビル等を空調する空調設備である。空港ビル等を冷却する空調システムは、抽気復水タービン1、発電機2、復水器4、ターボ圧縮機7、蒸発器8、凝縮機9、吸収冷凍機13、複数台の淡水と海水の熱交換器17、…、17m(m:m番目を示す)、淡水ポンプ16、海水ポンプ18、海水バイパスポンプ20、海水ろ過器22、およびこれら各機器間を接続する蒸気配管3、5、6、淡水配管15、海水配管19、…、19m(m:m番目を示す)、21、23、24、等を備えている。
【0016】
冷却用の淡水は、淡水と海水の熱交換器17、…、17mにおいて海水により冷却された後、淡水ポンプ16で昇圧される。その後、淡水配管15を通ってターボ冷凍機の凝縮器9、吸収冷凍機13、復水器4の順に流れ、各機器を冷却する。その際、淡水自身は昇温し、淡水と海水の熱交換器17、…、17mに還流して再び海水で冷却される。以後、この循環を繰り返す。
【0017】
一方、海水は取水ポンプ21により海中から汲み上げられ、海水配管23、19、…、19mを経て海水ポンプ18、…、18mに供給される。海水ポンプ18、…、18mは、淡水と海水の熱交換器17、…、17mに海水を必要量供給する。淡水と海水の熱交換器17、…、17mにおける夏場の淡水の出口温度は、海水温度が25°C程度であるので28°C程度まで上昇する。
【0018】
28°Cまで上昇した淡水は、ターボ冷凍機の凝縮器9および吸収冷凍機13を冷却て昇温し、復水器4に流入する。復水器4では、蒸気タービン1から排出される蒸気を冷却して蒸気を液化する。淡水はこの蒸気タービンでさらに昇温し、約40°C〜45°Cになって淡水と海水の熱交換器17、…、17mに還流する。したがって、淡水と海水の熱交換器17、…、17mの淡水側の温度差は、12°C〜17°Cと大きくなる。
【0019】
海水は、海水ポンプ18、…、18mにより淡水と海水の熱交換器17、…、17mに約25°Cで供給される。そして、この熱交換器において、淡水と同じ温度差まで昇温し、37°C〜42°Cになって熱交換器17、…、17mから流出する。このように熱交換器の入口と出口の温度差を、淡水と海水とでほぼ同一にすると、淡水と海水の熱伝達率はほぼ同一であるから、熱交換器を小型化できる。このとき、熱交換器を流通する海水と淡水のそれぞれの流量もほぼ同じになる。
【0020】
ところで、熱交換器17、…、17mから流出した海水は温度が高いので、そのまま海に放流すると海の環境を乱すことになる。そこで、取水配管23から取水した冷たい海水の一部をバイパス配管21によりバイパスさせる。バイパス配管21には、海水バイパスポンプ20を介在させる。バイパス配管21を熱交換器17、…、17mから流出する海水の放流配管24に接続する。そして、熱交換器17、…、17mから流出する海水を冷たい取水したばかりの海水と混合させることにより、海中に放流される海水の温度を、環境に影響しない温度まで低下させることが可能になる。
【0021】
なお、海水ポンプとしては取水ポンプ18、…、18mのみとし、熱交換器17、…、17mの入口部からそれぞれのポンプの出口にバイパス配管を接続してもよい。ただし、この場合には、放流温度を下げるためにバイパスする海水も熱交換器を通過させるので、熱交換器を流通するのに必要な圧力まで昇圧する必要がある。
【0022】
また、海水ポンプとして、淡水と海水の熱交換器17、…、17mに海水を供給する揚程が15〜20m程度のポンプ18、…、18mと、揚程が約5mの海水バイパスポンプ20との2段のポンプを用いれば、バイパスさせる海水については昇圧する必要がなくなるので、バイパス海水の昇圧量は1段のときの1/3〜1/4まで減少する。したがって、総合したポンプ動力を低減できる。
【0023】
さらに、図2に示すように、主取水ラインにポンプ25を設け、バイパスライン21に制御弁26を設けるようにしてもよい。このようにすれば、冷却水と熱交換する海水量が少ないときや、冷却水と熱交換した海水の温度が低いときには、制御弁26を絞ってポンプ25の必要動力を低減することが可能になる。
【0024】
なお、海水にはごみが多く含まれているので、海水取水口にはポンプの運転に支障を起こすような大きなごみを取るスクリーンが、熱交換器に供給するラインには熱交換器にごみが詰まって海水が流れなくなるのを防止するための目の細かい自動洗浄式のろ過器がそれぞれ取り付けられている。
【0025】
本実施例によれば、熱交換器に供給される海水と熱交換器から海中に排出される海水を冷却するバイパス海水とに分けているので、バイパス海水の方はろ過せず、熱交換器に供給される海水のラインにのみ海水ろ過器を設ければ、海水ろ過器22を通過する海水量が従来に比べて約半分に減り、海水ろ過器22の容量が半分で済み、コスト低減が可能になる。
【0026】
さらに、海水バイパスポンプ20を、海水放流温度差が一定になるように冷却負荷に応じて回転数制御すれば、海水の無駄なバイパスが不要となり、ポンプ動力をより一層低減することができる。
【0027】
ところで、淡水と海水の熱交換器17、…、17mの海水側には、海生生物が付着したりして、熱伝達を阻害されることがある。このため、定期的に海水側を洗浄する必要がある。上述したように、海水側を淡水に置換した後、海生生物が死滅する温度まで淡水温度を上げて洗浄する方法が、海の環境保全の観点から採用されることが多い。海水を使用して冷却する場合、海水取水温度が25℃程度であることから、この温度付近が海生生物の生活温度域であり、これより20℃も高い45℃近くの温度になるとほとんどの海生生物は死滅すると考えられるからである。
【0028】
この方法では装置が複雑化するので、より簡便化した海水冷却システムの例を図3に示す。この図3に示した実施例は、淡水と海水の熱交換器17、…、17m回りを除いて、上記実施例と同じである。複数設けられた熱交換器17、…、17mの中の1台の熱交換器17だけを洗浄する場合を例に取る。
【0029】
洗浄対象のm個の熱交換器17、…、17mの中で、1台の熱交換器17だけ、海水側の止め弁38、39を閉じ、淡水止弁36、37を微開にする。このとき、他の熱交換器17m、…には淡水と海水の双方を通水し、冷凍機システムを運転状態にする。洗浄する熱交換器17の海水排出弁28を開き、この熱交換器17内の海水を抜取る。海水を抜取った後、淡水供給弁27を開き、熱交換器17内を淡水で満たす。
【0030】
このように各弁を設定すると、熱交換器17には冷凍機システムで暖められて高温になった淡水が少量流れる。そして、最終的には、熱交換器17全体の内部温度が、冷凍機システムから戻る淡水温度に達する。この戻りの淡水温度まで熱交換器17温度が上昇すると、熱交換器17に付着している海生生物は死滅する。やがて、海生生物は熱交換器17の伝熱面より剥離する。なお、熱交換器17の内部の加熱を淡水側から行うので、海生生物が付着している側が高温になり、海生生物が剥離しやすくなる。
【0031】
季節によっては海水温度が低くなり、冷凍機システムからの淡水戻り温度が低くなる場合がある。また、冷凍機システムの負荷が少なくなって、淡水戻り温度が低くなることもある。このような不具合を防ぐために、冷凍機システムの淡水戻り温度を検出する温度センサー29を設け、熱交換器の洗浄時にはこの温度センサー29が検出した温度に基づいて、温度調節器30が洗浄に必要な温度に上昇するように淡水流量を制御する。具体的には、温度調節器30が制御弁31を絞るように指令する。
【0032】
洗浄が完了したら、制御弁31を全開に戻す。また、淡水供給弁27と海水排出弁28を閉め、海水止め38、39および淡水止め弁36、37を全開にし、通常の運転に戻す。
【0033】
図4に上記実施例の変形例を示す。本変形例が、上記実施例と異なる点は、復水器4を循環する配管34を淡水循環路に設けたことにある。淡水と海水の熱交換器17、…、17mを洗浄するときに、冷凍機に還流する淡水の循環量を絞り過ぎると、冷凍機の冷却水出口温度が高くなり、冷凍機の運転に支障をきたすことがある。
【0034】
このとき、淡水の循環量を冷凍機の運転に支障が起きない程度まで絞る。復水器4の出口側淡水は、入口側に戻す配管34に設けられたバイパスポンプ32により復水器4を循環し、復水器4の淡水出口温度が洗浄に必要な温度まで上昇したら熱交換器17、…、17mに導くようにする。
【0035】
なお、配管34にはチェック弁33が設けられており、熱交換器17、…、17mを洗浄しない時には淡水が復水器4に戻らない様にする。また、バイパスポンプ32は淡水戻り温度が洗浄に必要な温度になるようにインバータを用いて回転数制御されている。なお、回転数制御の代わりに制御弁を取り付け、バイパス水量を調節してもよい。
【0036】
本実施例によれば、淡水と海水の熱交換器を洗浄するのに専用のボイラー等の加熱装置が不要になる。したがって、海水を冷却用に利用する冷凍機システムのコスト低減が図れる。また、ボイラー等の加熱源が不要であるから、メンテナンスが容易になり、ランニングコストも低減する。
【0037】
【発明の効果】
本発明によれば、冷却水を海水により冷却する海水冷却システムにおいて、循環する淡水の熱交換器入口温度を高め、熱交換後の海水を取水したばかりの海水と混合させたので、環境保全と空調システムの小型化が可能になる。また、小型化により消費動力の低減も可能になる。
【図面の簡単な説明】
【図1】本発明に係る海水冷却システムの一実施例のシステムフロー図。
【図2】本発明に係る海水冷却システムの他の実施例のシステムフロー図。
【図3】本発明に係る海水冷却システムのさらに他の実施例のシステムフロー図。
【図4】本発明に係る海水冷却システムのさらに他の実施例のシステムフロー図。
【符号の説明】
1…抽気腹水タービン、2…発電機、3…入口蒸気配管、4…復水器、5…復水蒸気配管、6…抽気蒸気配管、7…ターボ圧縮機、8…蒸発器、9…凝縮器、10…冷媒吐出配管、11…冷媒絞り装置、12…冷媒吸込み配管、13…吸収冷凍機、14…冷水配管、15…淡水配管、16…淡水ポンプ、17…熱交換器、17m…m番目の熱交換器、18…海水ポンプ、18m…m番目の海水ポンプ、19…熱交海水配管、19m…m番目の熱交海水配管、20…海水バイパスポンプ、21…海水バイパス配管、22…海水ろ過器、23…海水取水配管、24…海水放流配管。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a seawater cooling system that cools a condenser of a refrigerator or a steam turbine using seawater.
[0002]
[Prior art]
BACKGROUND ART In recent years, district cooling and heating systems have been adopted because of the advantages that air pollution can be prevented and energy can be used efficiently. In particular, in various buildings constructed on the waterfront, such as in the vicinity of the bay shore or in marine land, air-conditioning is performed using an energy plant, which is a single heat-generating facility, thereby reducing the cost, maintenance, and space of the facility. Becomes possible. In air conditioning of such a facility on the waterfront, abundant seawater is used as a cooling source. This example is the heat supply unused energy feature NO. 3 "Heat supply in Cosmosquare area using seawater heat" is described in Japan Heat Supply Association 1993.
[0003]
In this document, fresh water is circulated as cooling water for a refrigerator for air conditioning using fresh water, and the fresh water is exchanged with seawater for cooling. In the heat exchanger for exchanging heat between fresh water and seawater, the temperature difference between the inlet temperature and the outlet temperature of the heat exchanger on the seawater side is set to 5 to 6 ° C. The amount of seawater pumped into the refrigerator is controlled so that environmental destruction does not occur when discharging seawater into the sea.
[0004]
On the other hand, as for fresh water that exchanges heat with seawater, even if the temperature of the fresh water at the outlet of the heat exchanger is high, the performance of the refrigerator is slightly reduced. Tend to set. When the amount of cooling water is reduced, power such as pump power for transporting the cooling water can be reduced, and the pipe diameter can be reduced, so that the construction cost can be significantly reduced. As a result, in a heat exchanger that exchanges heat between freshwater and seawater, the temperature difference on the freshwater side is more than twice the temperature difference on the seawater side.
[0005]
Further, when seawater is used for cooling, dust and the like adhere to the heat exchanger, so that the heat exchanger needs to be washed. An example of removing dirt from a heat exchanger contaminated with seawater is described in the refrigeration "Introduction of NEDO Unused Energy Utilization Project" vol. 73, no. 853, pp. 88-92, November 1998.
[0006]
[Problems to be solved by the invention]
By the way, a plate heat exchanger is generally used as a heat exchanger for exchanging heat between fresh water and seawater. In this plate heat exchanger, fresh water and seawater alternately flow between the plates. The size of the plate heat exchanger is minimized when the inlet and outlet temperature differences and flow rates between seawater and freshwater are about the same. As described above, since the temperature difference on the seawater side in the conventional heat exchanger is about half of the temperature difference on the freshwater side, the circulation amount of seawater is about twice the circulation amount of freshwater. For this reason, in a plate heat exchanger that exchanges heat between seawater and freshwater, more plates than the number of plates required for heat transfer are required to guide seawater in the heat exchanger. As a result, there is a problem that the size of the heat exchanger becomes large.
[0007]
Further, since a large amount of seawater is guided to the plate heat exchanger in order to reduce the temperature difference of the seawater, the power of the seawater pump is increased. Furthermore, since microorganisms in seawater may adhere to the refrigeration system and generate slime and algae, a filter is required at the seawater inlet to filter seawater. The vessel also becomes large, and the cost increases.
[0008]
On the other hand, in the method described in the literature for removing dirt from the heat exchanger due to seawater, the seawater in the heat exchanger is discharged out of the system, and then hot water or ozone water is passed through to kill marine organisms attached to the plate. Then, dirt is removed by air bubbling. According to this method, a boiler for generating hot water, an ozone generator, and the like are required, and the convenience of using seawater may be impaired.
[0009]
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to reduce the size of a seawater cooling system used for a refrigerator while preserving the marine environment. It is another object of the present invention to realize both conservation of the marine environment and reduction of the power required for the refrigerator. Still another object of the present invention is to achieve both the conservation of the marine environment and the reduction of construction and manufacturing costs of refrigerators.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a refrigeration system having a bleed condensing steam turbine, a condenser, a turbo chiller driven by the bleed condensing steam turbine, and an absorption chiller, and the refrigeration system is distributed. A plurality of heat exchangers for exchanging freshwater cooling water with seawater, a seawater intake pipe that supplies seawater to the plurality of heat exchangers and has an intake pump, and seawater that returns seawater from the respective heat exchangers to the sea A seawater cooling system including a return pipe is configured. And the first feature is that a second seawater intake pipe for mixing low-temperature seawater with high-temperature seawater flowing out of the seawater return pipe is provided, and this second seawater intake pipe is connected to the seawater return pipe, Seawater strainer was installed in the seawater intake pipe.
[0013]
And, the temperature difference between the temperature of the fresh water that flows to the temperature of the fresh water flowing into the heat exchanger, to a temperature difference between the temperature of the seawater flows out temperature of seawater flowing into the heat exchanger at approximately the same Is desirable.
[0014]
Further, a second feature is that each of the plurality of heat exchangers is provided with a replacement means for replacing seawater flowing inside the heat exchanger with fresh water. The replacement means includes a first bypass pipe having a first valve means provided in the seawater intake pipe, a second bypass pipe having a second valve means provided in the seawater return pipe, and a seawater intake means. and third valve means have, have a fourth valve means provided in the seawater return pipe, a pipe connecting the fresh water side outlet and freshwater side inlet of the condenser, a pump interposed in the pipe And a check valve, so that when seawater in the heat exchanger is replaced with freshwater, freshwater circulates between the pipe and the condenser.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram of one embodiment of an air conditioning system according to the present invention. The air-conditioning system is an air-conditioning system that air-conditions a waterfront or a building that is buried offshore, for example, at an airport. An air conditioning system for cooling an airport building or the like includes a bleed condensing turbine 1, a generator 2, a condenser 4, a turbo compressor 7, an evaporator 8, a condenser 9, an absorption refrigerator 13, a plurality of fresh water and sea water. 17m (m: indicates the m-th), freshwater pump 16, seawater pump 18, seawater bypass pump 20, seawater filter 22, and steam pipes 3, 5, and 6 connecting these devices. , A freshwater pipe 15, a seawater pipe 19,..., 19m (m: indicates the m-th), 21, 23, 24, and the like.
[0016]
The cooling fresh water is cooled by sea water in the fresh water / sea water heat exchangers 17,..., 17m, and then pressurized by the fresh water pump 16. Then, it flows through the condenser 9 of the turbo refrigerator, the absorption refrigerator 13, and the condenser 4 through the fresh water pipe 15 in this order, and cools each apparatus. At that time, the temperature of the fresh water itself rises, and the fresh water is returned to the heat exchangers 17,..., 17m of the sea water and is cooled again by the sea water. Thereafter, this circulation is repeated.
[0017]
On the other hand, seawater is pumped from the sea by an intake pump 21 and supplied to seawater pumps 18, ..., 18m via seawater pipes 23, 19, ..., 19m. The seawater pumps 18,..., 18m supply the required amount of seawater to the heat exchangers 17,. The outlet temperature of freshwater in the summer in the freshwater / seawater heat exchangers 17,..., 17m rises to about 28 ° C because the seawater temperature is about 25 ° C.
[0018]
The fresh water that has risen to 28 ° C. cools the condenser 9 and the absorption refrigerator 13 of the centrifugal chiller, raises the temperature, and flows into the condenser 4. In the condenser 4, the steam discharged from the steam turbine 1 is cooled to liquefy the steam. The temperature of the fresh water is further increased by this steam turbine, and is returned to the heat exchanger 17,..., 17m of the fresh water and the seawater at about 40 ° C. to 45 ° C. Therefore, the temperature difference between the fresh water and sea water heat exchangers 17,..., 17m on the fresh water side is as large as 12 ° C. to 17 ° C.
[0019]
The seawater is supplied to the fresh water and seawater heat exchangers 17,..., 17m at about 25 ° C. by the seawater pumps 18,. Then, in this heat exchanger, the temperature rises to the same temperature difference as that of fresh water, and the temperature of the heat exchanger becomes 37 ° C. to 42 ° C. and flows out of the heat exchangers 17,. When the temperature difference between the inlet and the outlet of the heat exchanger is substantially the same between fresh water and seawater, the heat transfer coefficient of the freshwater and seawater is substantially the same, so that the heat exchanger can be downsized. At this time, the respective flow rates of seawater and freshwater flowing through the heat exchanger are also substantially the same.
[0020]
By the way, since the seawater flowing out of the heat exchangers 17,..., 17m has a high temperature, if it is discharged into the sea as it is, the sea environment is disturbed. Therefore, a part of the cold seawater taken from the water intake pipe 23 is bypassed by the bypass pipe 21. The seawater bypass pump 20 is interposed in the bypass pipe 21. The bypass pipe 21 is connected to the seawater discharge pipe 24 flowing out of the heat exchangers 17,..., 17m. Then, by mixing the seawater flowing out of the heat exchangers 17,..., 17m with the cold seawater that has just been taken, the temperature of the seawater discharged into the sea can be reduced to a temperature that does not affect the environment. .
[0021]
The seawater pumps may be only the intake pumps 18,..., 18m, and bypass pipes may be connected from the inlets of the heat exchangers 17,. However, in this case, since seawater that is bypassed to lower the discharge temperature is also passed through the heat exchanger, it is necessary to increase the pressure to a pressure required for flowing through the heat exchanger.
[0022]
Further, as seawater pumps, pumps 18, ..., 18m having a head of about 15 to 20m for supplying seawater to the heat exchangers 17, ..., 17m of fresh water and seawater, and a seawater bypass pump 20 having a head of about 5m are provided. If a staged pump is used, there is no need to increase the pressure of the seawater to be bypassed, so the boosted amount of the bypassed seawater is reduced to 1/3 to 1/4 of that in the single stage. Therefore, the total pump power can be reduced.
[0023]
Further, as shown in FIG. 2, a pump 25 may be provided in the main water intake line, and a control valve 26 may be provided in the bypass line 21. In this manner, when the amount of seawater that exchanges heat with the cooling water is small, or when the temperature of the seawater that exchanges heat with the cooling water is low, the control valve 26 can be throttled to reduce the required power of the pump 25. Become.
[0024]
Since seawater contains a lot of debris, the seawater intake has a screen that removes large debris that may interfere with the operation of the pump, and the line that supplies the heat exchanger contains debris in the heat exchanger. Each is fitted with a fine-grained, automatic-cleaning filter to prevent clogging and preventing seawater from flowing.
[0025]
According to this embodiment, since the seawater supplied to the heat exchanger and the bypass seawater for cooling the seawater discharged into the sea from the heat exchanger are separated, the bypass seawater is not filtered, and the heat exchanger is not filtered. If a seawater filter is provided only in the seawater line supplied to the seawater, the amount of seawater passing through the seawater filter 22 is reduced by about half compared with the conventional case, the capacity of the seawater filter 22 is reduced by half, and cost reduction is achieved. Will be possible.
[0026]
Furthermore, if the rotation speed of the seawater bypass pump 20 is controlled according to the cooling load so that the seawater discharge temperature difference becomes constant, a wasteful bypass of seawater becomes unnecessary, and the pump power can be further reduced.
[0027]
Meanwhile, marine organisms may adhere to the seawater side of the heat exchangers 17,..., 17m of freshwater and seawater, so that heat transfer may be hindered. Therefore, it is necessary to periodically clean the seawater side. As described above, a method of replacing the seawater side with freshwater and then increasing the temperature of the freshwater to a temperature at which marine organisms are killed and washing is often adopted from the viewpoint of marine environmental conservation. In the case of cooling using seawater, since the seawater intake temperature is about 25 ° C, the vicinity of this temperature is the living temperature range of marine organisms. Marine organisms are thought to die.
[0028]
Since the apparatus becomes complicated in this method, an example of a more simplified seawater cooling system is shown in FIG. The embodiment shown in FIG. 3 is the same as the above-described embodiment except for the heat exchangers 17,... A case where only one of the plurality of heat exchangers 17,..., 17m is cleaned is taken as an example.
[0029]
Among the m heat exchangers 17,..., 17m to be cleaned, only one heat exchanger 17 closes the seawater side stop valves 38, 39 and slightly opens the fresh water stop valves 36, 37. At this time, both the fresh water and the seawater are passed through the other heat exchangers 17m,... To put the refrigerator system into an operating state. The seawater discharge valve 28 of the heat exchanger 17 to be washed is opened, and the seawater in the heat exchanger 17 is drained. After extracting seawater, the freshwater supply valve 27 is opened, and the inside of the heat exchanger 17 is filled with freshwater.
[0030]
When each valve is set in this way, a small amount of fresh water heated by the refrigerator system and heated to a high temperature flows through the heat exchanger 17. Then, finally, the internal temperature of the entire heat exchanger 17 reaches the fresh water temperature returned from the refrigerator system. When the temperature of the heat exchanger 17 rises to the returned freshwater temperature, the marine organisms attached to the heat exchanger 17 die. Eventually, the marine organisms separate from the heat transfer surface of the heat exchanger 17. Since the inside of the heat exchanger 17 is heated from the freshwater side, the temperature of the side to which the marine organisms are attached becomes high, and the marine organisms are easily peeled.
[0031]
Depending on the season, the seawater temperature may be lower and the freshwater return temperature from the refrigerator system may be lower. Further, the load on the refrigerator system may be reduced, and the fresh water return temperature may be reduced. In order to prevent such a problem, a temperature sensor 29 for detecting a fresh water return temperature of the refrigerator system is provided, and a temperature controller 30 is required for cleaning based on the temperature detected by the temperature sensor 29 when cleaning the heat exchanger. The freshwater flow rate is controlled to increase the temperature. Specifically, the temperature controller 30 instructs the control valve 31 to be throttled.
[0032]
When the cleaning is completed, the control valve 31 is returned to the fully opened state. In addition, the fresh water supply valve 27 and the sea water discharge valve 28 are closed, and the sea water stops 38, 39 and the fresh water stop valves 36, 37 are fully opened to return to the normal operation.
[0033]
FIG. 4 shows a modification of the above embodiment. This modification differs from the above embodiment in that a pipe 34 for circulating the condenser 4 is provided in the freshwater circulation path. When washing the fresh water and seawater heat exchangers 17,..., 17m, if the circulation amount of fresh water flowing back to the refrigerator is excessively reduced, the cooling water outlet temperature of the refrigerator becomes high, which hinders the operation of the refrigerator. May come.
[0034]
At this time, the circulation amount of fresh water is reduced to such an extent that the operation of the refrigerator is not hindered. The fresh water on the outlet side of the condenser 4 circulates through the condenser 4 by a bypass pump 32 provided in a pipe 34 returning to the inlet side, and when the fresh water outlet temperature of the condenser 4 rises to a temperature required for washing, heat is generated. , 17m.
[0035]
The pipe 34 is provided with a check valve 33 to prevent fresh water from returning to the condenser 4 when the heat exchangers 17,..., 17m are not washed. The rotation speed of the bypass pump 32 is controlled using an inverter so that the fresh water return temperature becomes a temperature required for washing. Note that a control valve may be attached instead of the rotation speed control to adjust the amount of bypass water.
[0036]
According to this embodiment, a dedicated heating device such as a boiler is not required for cleaning the fresh water and seawater heat exchangers. Therefore, the cost of the refrigerator system that uses the seawater for cooling can be reduced. Further, since a heating source such as a boiler is not required, maintenance is facilitated and running costs are reduced.
[0037]
【The invention's effect】
According to the present invention, in the seawater cooling system that cools the cooling water with seawater, the temperature of the heat exchanger inlet of the circulating fresh water is increased, and the seawater after the heat exchange is mixed with the freshly taken seawater. The size of the air conditioning system can be reduced. In addition, power consumption can be reduced by miniaturization.
[Brief description of the drawings]
FIG. 1 is a system flow diagram of an embodiment of a seawater cooling system according to the present invention.
FIG. 2 is a system flow diagram of another embodiment of the seawater cooling system according to the present invention.
FIG. 3 is a system flow diagram of still another embodiment of the seawater cooling system according to the present invention.
FIG. 4 is a system flow diagram of still another embodiment of the seawater cooling system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Extraction ascites turbine, 2 ... Generator, 3 ... Inlet steam piping, 4 ... Condenser, 5 ... Condensing steam piping, 6 ... Extraction steam piping, 7 ... Turbo compressor, 8 ... Evaporator, 9 ... Condenser 10: refrigerant discharge pipe, 11: refrigerant expansion device, 12: refrigerant suction pipe, 13: absorption refrigerator, 14: cold water pipe, 15: fresh water pipe, 16: fresh water pump, 17: heat exchanger, 17m: m-th Heat exchanger, 18 ... seawater pump, 18m ... mth seawater pump, 19 ... heat exchange seawater pipe, 19m ... mth heat exchange seawater pipe, 20 ... seawater bypass pump, 21 ... seawater bypass pipe, 22 ... seawater Filter, 23: Seawater intake piping, 24: Seawater discharge piping.

Claims (3)

抽気復水蒸気タービンと復水器と前記抽気復水蒸気タービンにより駆動されるターボ冷凍機と吸収冷凍機とを有する冷凍機システムと、この冷凍機システムを流通する淡水の冷却水を海水と熱交換する複数の熱交換器と、この複数の熱交換器に海水を供給し取水ポンプを有する海水取水配管と、このそれぞれの熱交換器から海水を海中に戻す海水戻し配管とを備えた海水冷却システムにおいて、
前記海水戻し配管から流出する高温の海水に低温の海水を混合するための第2の海水取水配管を設け、この第2の海水取水配管を前記海水戻し配管に接続し、前記海水取水配管に海水ストレーナを設けたことを特徴とする海水冷却システム。
A refrigeration system having an bleed condensing steam turbine, a condenser, a turbo chiller and an absorption chiller driven by the bleed condensing steam turbine, and heat-exchanging fresh water cooling water flowing through the refrigerating system with seawater. In a seawater cooling system including a plurality of heat exchangers, a seawater intake pipe that supplies seawater to the plurality of heat exchangers and has a water intake pump, and a seawater return pipe that returns seawater from the respective heat exchangers to the sea. ,
A second seawater intake pipe for mixing low-temperature seawater with high-temperature seawater flowing out of the seawater return pipe is provided. This second seawater intake pipe is connected to the seawater return pipe, and seawater is supplied to the seawater intake pipe. Seawater cooling system characterized by having a strainer.
前記熱交換器に流入する淡水の温度と流出する淡水の温度との温度差と、この熱交換器に流入する海水の温度と流出する海水の温度との温度差がほぼ同じであることを特徴とする請求項1に記載の海水冷却システム。The temperature difference between the temperature of freshwater flowing into the heat exchanger and the temperature of freshwater flowing out, and the temperature difference between the temperature of seawater flowing into the heat exchanger and the temperature of seawater flowing out are substantially the same. The seawater cooling system according to claim 1, wherein 抽気復水蒸気タービンと復水器と前記抽気復水蒸気タービンにより駆動されるターボ冷凍機と吸収冷凍機とを有する冷凍機システムと、この冷凍機システムを流通する淡水の冷却水を海水と熱交換する複数の熱交換器と、この複数の熱交換器に海水を供給し取水ポンプを有する海水取水配管と、このそれぞれの熱交換器から海水を海中に戻す海水戻し配管とを備えた海水冷却システムにおいて、
前記複数の熱交換器の各々にこの熱交換器の内部を流通する海水を淡水に置換する置換手段を設け、前記置換手段は、前記海水取水配管に設けた第1の弁手段を有する第1のバイパス管と前記海水戻し配管に設けた第2の弁手段を有する第2のバイパス管と、前記海水取水手段に設けた第3の弁手段と、前記海水戻し配管に設けた第4の弁手段を有し、
前記復水器の淡水側出口と淡水側入口とを接続する配管と、この配管中に介在させたポンプと、逆止弁と有し、前記熱交換器の海水を淡水に置換したときにはこの配管と前記復水器間を淡水が循環するようにしたことを特徴とする海水冷却システム。
A refrigeration system having an bleed condensing steam turbine, a condenser, a turbo chiller and an absorption chiller driven by the bleed condensing steam turbine, and heat-exchanging fresh water cooling water flowing through the refrigerating system with seawater. In a seawater cooling system including a plurality of heat exchangers, a seawater intake pipe that supplies seawater to the plurality of heat exchangers and has a water intake pump, and a seawater return pipe that returns seawater from the respective heat exchangers to the sea. ,
Each of the plurality of heat exchangers is provided with replacement means for replacing seawater flowing inside the heat exchanger with fresh water, and the replacement means has a first valve means provided on the seawater intake pipe. A second bypass pipe having a second pipe means provided in the seawater return pipe, a third valve means provided in the seawater intake means, and a fourth valve provided in the seawater return pipe Having means,
A pipe connecting the freshwater-side outlet and the freshwater-side inlet of the condenser, a pump interposed in the pipe, and a check valve; this pipe is used when seawater of the heat exchanger is replaced with freshwater. And fresh water circulating between the condenser and the condenser.
JP32364599A 1999-11-15 1999-11-15 Seawater cooling system Expired - Fee Related JP3593480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32364599A JP3593480B2 (en) 1999-11-15 1999-11-15 Seawater cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32364599A JP3593480B2 (en) 1999-11-15 1999-11-15 Seawater cooling system

Publications (2)

Publication Number Publication Date
JP2001141329A JP2001141329A (en) 2001-05-25
JP3593480B2 true JP3593480B2 (en) 2004-11-24

Family

ID=18157043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32364599A Expired - Fee Related JP3593480B2 (en) 1999-11-15 1999-11-15 Seawater cooling system

Country Status (1)

Country Link
JP (1) JP3593480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680699A (en) * 2018-12-20 2019-04-26 青岛理工大学 Construction method for dry land of closed seawater source heat pump system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214183C1 (en) * 2002-03-28 2003-05-08 Siemens Ag Drive mechanism, for refrigeration, has absorption refrigeration machine connected to steam turbine, operated by steam extracted from turbine, preferably from low pressure part of turbine
CN1312450C (en) * 2004-03-18 2007-04-25 上海交通大学 Variable depth and large diameter seawater sucking system
CN100360876C (en) * 2004-03-18 2008-01-09 上海交通大学 Urban integral air comditioning system using subsurface seawater as natural cooling source
KR101150183B1 (en) 2010-04-15 2012-05-29 한국해양연구원 Cooling and heating system using deep sea water
KR101095483B1 (en) 2011-08-26 2011-12-19 주식회사 에스이티 Heat pump heating and cooling system using sea water source
JP6090926B2 (en) * 2013-05-30 2017-03-08 三菱重工業株式会社 Turbo compressor and turbo refrigerator using the same
KR101332568B1 (en) 2013-06-05 2013-11-25 주식회사 세기 Heating and cooling method of withdrawing heat by simultaneous using fresh water and sea water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109680699A (en) * 2018-12-20 2019-04-26 青岛理工大学 Construction method for dry land of closed seawater source heat pump system

Also Published As

Publication number Publication date
JP2001141329A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US11879391B2 (en) Method and apparatus for cooling the ambient air at the inlet of gas combustion turbine generators
EP2577205B1 (en) Cooling system comprising thermosyphon cooler and cooling tower and method for operating such cooling system
CN207688325U (en) Three cold source air conditioning groups
CN202133043U (en) Water-cooling household air-conditioner outdoor set
US20040065099A1 (en) Enhanced cooling system
CN104457002B (en) Integrated double-cooling water chilling unit
CN101418971A (en) Composite multi-source central air-conditioning machine set using geothermal energy
JP6096768B2 (en) Thermal energy system and method of operating thermal energy system
JP3593480B2 (en) Seawater cooling system
CN103697614B (en) Air conditioner heat pump system
CN105645492A (en) Miniature heat pump type seawater desalinating system with seawater evaporation device
CN208804908U (en) It is a kind of to utilize electric power plant circulating water exhaust heat refrigerating heating system
CN108917228A (en) A kind of refrigeration heating system using low-temperature industrial recirculated cooling water
CN104566708A (en) Heat pump type household air conditioning method and device as well as outdoor module of device
CN202133042U (en) Water-cooling domestic air conditioner with improved outdoor unit heat exchanger
CN214746562U (en) Air conditioning unit and air conditioner
CN213514496U (en) Self-descaling double-cooling heat pump unit
JP3667767B2 (en) Heat pump energy management system
CN206817820U (en) A kind of twin-stage direct-heating-type sewage source heat pump unit
CN202361709U (en) Secondary cooling device for air-cooling water chilling unit
JPH1137691A (en) Device and method for cleaning inside of pipe of heat exchanger
KR20050062975A (en) An air conditioning system for a ship
JPH1137692A (en) In-line cleaner for heat exchanger, and in-line cleaning method
CN205593205U (en) Compressor cooling water and a heat energy coupled system towards white water that freezes
RU2767253C1 (en) Air conditioning system using natural source cold

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees