JPS5815005A - Gas reformer - Google Patents

Gas reformer

Info

Publication number
JPS5815005A
JPS5815005A JP56112451A JP11245181A JPS5815005A JP S5815005 A JPS5815005 A JP S5815005A JP 56112451 A JP56112451 A JP 56112451A JP 11245181 A JP11245181 A JP 11245181A JP S5815005 A JPS5815005 A JP S5815005A
Authority
JP
Japan
Prior art keywords
catalyst
heater
molded body
gas
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112451A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56112451A priority Critical patent/JPS5815005A/en
Publication of JPS5815005A publication Critical patent/JPS5815005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To reduce the amount of generated carbon and to obtain a high reaction rate by holding a reforming catalyst in a reaction tube made of heat resistant inorg. ceramics and provided with a buried heater in the vicinity of the wall by means of a molded body made of a multiply layered thin wall of gamma- alumina having a honeycomb or lattice section. CONSTITUTION:A reaction tube 7 made of heat resistant inorg. ceramics is provided with a buried heater 9 in the vicinity of the wall, and a reforming catalyst 8 in the tube 7 is held by means of a monoblock molded boby 6 made of a multiply layered thin wall of gamma-alumina having a honeycomb or lattice section. Hydrocarbon is fed to the resulting reformer 1 through a feed pipe 3 and preheated with the heater 9. Water is fed to the path 4 through a feed pipe 5 and preheated with the heater 9. The hydrocarbon and steam are mixed with each other during passing through the molded body 6 and reformed to a gas contg. H2 and CO2 as principal components in the presence of the catalyst 8.

Description

【発明の詳細な説明】 本発明は天然ガス、プロパンガス等の炭化水素ガスある
いは液状炭化水素を予熱する事により、得られた炭化水
素ガスを改質し、水素、炭酸ガスを主体とした無機ガス
に変換する比較的小型で簡単な改質装置にかかわるもの
である。一般に炭化水素を改質するには炭化水素と水に
よるスチームリフォーミングあるいは空気を用いる部分
酸化法があるが、いずれの場合にも、リフォーミング触
媒が必要である。本発明は、リフォーミング触媒の担体
として、表面積が広く、〜活性の高いγアルミナを断面
がノ・ニカム又は、格子状の如き多方〇薄壁からなる一
体成型体あるいは、大きな空孔率を有するポーラスな一
体成型体として、使用する事を特徴とするとともに、さ
らにこの担体からなる′す7オーミング触媒を壁近傍に
ヒータを埋設した無機耐熱質セラミックからなる反応管
の内部に設置する事を特徴としたものである。従来反応
管としては、・ステンレス等の耐熱性の金蝿管を用いる
事が多かったが、金属管を改質反応に用いた場−ポンは
、反応管内の圧力増大をもたらすばかシでなく、リフオ
ーミンク触媒の劣化の原因となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves preheating hydrocarbon gas such as natural gas, propane gas, or liquid hydrocarbons to reform the obtained hydrocarbon gas, thereby producing an inorganic gas containing mainly hydrogen and carbon dioxide gas. It involves a relatively small and simple reformer that converts the gas into gas. Generally, hydrocarbons can be reformed by steam reforming using hydrocarbons and water, or by partial oxidation using air, but in either case, a reforming catalyst is required. The present invention uses γ-alumina, which has a large surface area and high activity, as a support for a reforming catalyst, and uses a monolithically molded body having a multi-sided thin wall with a cross section of 200 mm or a lattice shape, or has a large porosity. It is characterized in that it is used as a porous integrally molded body, and in addition, it is characterized in that the 7-ohm catalyst made of this carrier is installed inside a reaction tube made of inorganic heat-resistant ceramic with a heater embedded near the wall. That is. Conventionally, heat-resistant metal tubes such as stainless steel were often used as reaction tubes, but metal tubes used for reforming reactions do not cause an increase in pressure inside the reaction tube, but rather are used for reforming reaction tubes. This may cause deterioration of the catalyst.

本発明はヒ、−夕を内蔵した無機耐熱質セラミックを反
応管として用いる事により鉄、ニッケル、コバルト等の
金楓によるカーボン化への触媒作用を無くした結果、上
記の問題を一掃したものである。
The present invention eliminates the above-mentioned problems by eliminating the catalytic action of carbonization of iron, nickel, cobalt, etc. by gold maple by using an inorganic heat-resistant ceramic with built-in heat-resistant elements as a reaction tube. be.

さらにこの反応管の内部にリフオーミンク触媒の担体と
して表面積が広く、活性の高いγ−アルミナをハニカム
等の一体成型体として用いた結果、触媒の交換も容易で
あり、高い反応率が得られた。
Furthermore, as a carrier for the reforming catalyst, γ-alumina, which has a large surface area and is highly active, was used as an integral molded body such as a honeycomb inside the reaction tube, and as a result, the catalyst was easy to replace, and a high reaction rate was obtained.

このように、優れた特徴を持つ、ヒータを内蔵する無機
耐熱質セラミック反応管とし、その内部に活性の高いγ
−アルミナを断面、がへ二カム又は格子状の如き多層の
薄壁からなる一体成型体あるいは大きな空孔率を有する
ポーラスな一体成型体としたものを、リフオーミンク触
媒の担体として使用したものを保持するガス改質装置は
従来例がない。
In this way, we have created an inorganic heat-resistant ceramic reaction tube with a built-in heater, which has excellent characteristics, and a highly active γ
- Holds an alumina cross-section, an integrally molded body consisting of multi-layered thin walls such as a cam or lattice shape, or a porous integrally molded body with a large porosity, which is used as a support for a reforming catalyst. There is no prior example of a gas reformer that does this.

以下本発明の一実施例について図面とともに説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による壁近傍にヒータを埋設した無機耐
熱質セラミックからなる反応管の内部にγ−アルミナを
組成とする断面がノ・ニカム又は、格子状の如き多層の
薄壁からなる一体成型体あるいは、大きな空孔率を有す
るポーラスな一体成型体を触媒担体とするリフオーミン
ク触媒を保持したガス改質装置の一実施例である。第を
図は、γ−アルミナを組成とする、リフオーミンク触媒
担体の例である。改質器1は三重管になっており、一番
外周部の通路2には天然ガス、メタン。
Figure 1 shows a reaction tube made of inorganic heat-resistant ceramic in which a heater is embedded near the wall according to the present invention; This is an example of a gas reforming device that holds a reforming catalyst using a molded body or a porous integrally molded body having a large porosity as a catalyst carrier. Figure 5 is an example of a reforming catalyst carrier whose composition is γ-alumina. The reformer 1 has a triple pipe structure, and the outermost passage 2 contains natural gas and methane.

プロパン、あるいは、予めヒータ(図示せず)により加
熱されガス状となった灯油、軽油等が供給される炭化水
素ガス供給管3が繋がれている。さらに内側の通路4に
は水あるいは、空気の供給される水、空気供給管6が繋
がれている。なおいずれの通路2.4にも石英ウール等
の無機耐熱性繊維6がつまっている。通路4の内側には
、無機耐熱質セラミックからなる反応管7がある。反応
管7には、リフオーミンク触媒8の加熱用ヒータ9が埋
設されている。リフオーミンク触媒8は、第2図のム、
Bに示すよりなγ−アルミナを組成と67、− する一体成型体を触媒担体としその上にニッケル。
A hydrocarbon gas supply pipe 3 is connected to which propane, kerosene, light oil, etc. that have been heated in advance by a heater (not shown) and become gaseous are supplied. Furthermore, a water or air supply pipe 6 through which water or air is supplied is connected to the inner passage 4. Note that both passages 2.4 are filled with inorganic heat-resistant fibers 6 such as quartz wool. Inside the passageway 4 is a reaction tube 7 made of inorganic heat-resistant ceramic. A heater 9 for heating the reforming catalyst 8 is embedded in the reaction tube 7 . The reforming catalyst 8 is as shown in FIG.
An integrally molded body having a composition of γ-alumina shown in B is used as a catalyst carrier, and nickel is placed on it.

貴金鵬等の金鵬を担持している。反応管7の後部には、
改質の結果生成した無機ガスを中心とするガスを送気管
1oが繋がれている。送気管1oは冷却管11さらに冷
却の結果コンデンスした液とガスを分離する気液分離器
12と繋がれている。
He is in charge of Kinpeng such as Kikanpeng. At the rear of the reaction tube 7,
An air supply pipe 1o is connected to the gas mainly consisting of inorganic gas produced as a result of reforming. The air supply pipe 1o is connected to a cooling pipe 11 and a gas-liquid separator 12 that separates liquid and gas condensed as a result of cooling.

分離したガスは、ガス溜め(図示せず)に蓄えられる。The separated gas is stored in a gas reservoir (not shown).

改質器1の前部は押え板13で覆われている。押え板1
3はポルト14により、取り外し可能となっており、劣
化したリフオーミンク触媒8を交換用−来るようになっ
ている。
The front part of the reformer 1 is covered with a holding plate 13. Presser plate 1
3 is removable by a port 14, and can be used to replace a deteriorated reforming catalyst 8.

次に本装置の作用について述べる。Next, the function of this device will be described.

予め所定の温度(7♂ざ〜soo’c)にヒータ9を加
熱した後炭化水素ガスの供給を炭化水素ガス供給管なよ
シ開始する。供給された炭化水素ガスはヒータ9によシ
予熱される。一方水あるいは必要ならば空気は供給管6
を通゛って改質器1内の通路4に供給された後ヒータ9
によシ予熱される。
After heating the heater 9 to a predetermined temperature (7♂za~soo'c) in advance, supply of hydrocarbon gas is started through the hydrocarbon gas supply pipe. The supplied hydrocarbon gas is preheated by the heater 9. On the other hand, water or air if necessary is supplied through the supply pipe 6.
After being supplied to the passage 4 in the reformer 1 through the heater 9
It will be preheated properly.

上記のようにして予熱された炭化水素ガスと水蒸気、空
気は石英ウール等の無機耐熱性繊維6の中を通過する間
に十分混合された後リフオーミンク触媒に供給され、改
質される。炭化水素ガスと水。
The hydrocarbon gas, steam, and air preheated as described above are thoroughly mixed while passing through inorganic heat-resistant fibers 6 such as quartz wool, and then supplied to a reforming catalyst and reformed. hydrocarbon gas and water.

空気は改質された結果、水素、二酸化炭素を中心とする
無機ガスに変わる。生成されたガスは送気管10を通っ
て冷却管11に送られる。ここで過剰の水はコンデンス
し、気液分離器12によシ生成ガスと分−離される。分
離された生成ガスはガス溜め(図示せず)に蓄えられ必
要時使用される。
As a result of air being reformed, it turns into inorganic gases, mainly hydrogen and carbon dioxide. The generated gas is sent to the cooling pipe 11 through the air pipe 10. Here, excess water is condensed and separated from the generated gas by a gas-liquid separator 12. The separated generated gas is stored in a gas reservoir (not shown) and used when necessary.

次に本発明による、壁近傍にヒータを埋設した無機耐熱
質セラミックからなる反応管とその反応管の内部にγ−
アルミナを組成とする断面がノーニカム又は格子状の如
き多層の薄壁からなる一体成型体あるいは、大きな空孔
率を有するポーラスな一体成型体をリフオーミンク触媒
の担体として用いた場合の効果をまとめると次のように
なる。
Next, according to the present invention, a reaction tube made of inorganic heat-resistant ceramic with a heater embedded near the wall and a γ-
The following is a summary of the effects of using an integrally molded body made of alumina with multi-layered thin walls with a nonicum or lattice-like cross section, or a porous integrally molded body with a large porosity as a support for a reforming catalyst. become that way.

(1)無機耐熱質セラミックを反応管とする結果、反応
管自体のカーボン発生に対する触媒作用がなくなり、カ
ーボンの発生量が非常に少くなる。その結果、エネルギ
ーの損失を防ぐ許りでなくリフオーミンク触媒8のカー
ボンに(2)  γ−アルミナを主体とする断面がノ・
ニカム又は格子状の如き多層の薄壁からなる一体成型体
あるいは、大きな空孔率を有するポーラスな一体成型体
をリフォーミング触媒8の担体とする事によシ、従来の
コーディエライト。
(1) As a result of using an inorganic heat-resistant ceramic as the reaction tube, the reaction tube itself has no catalytic effect on carbon generation, and the amount of carbon generated becomes extremely small. As a result, it is not possible to prevent energy loss, and the carbon of the reforming catalyst 8 (2) has a cross section mainly composed of γ-alumina.
Conventional cordierite is produced by using an integrally molded body consisting of multi-layered thin walls such as a nicum or lattice-like structure, or a porous integrally molded body having a large porosity as a support for the reforming catalyst 8.

ムライト等を一体成型化した場合に比較し、担体自体の
表面種も犬きく、宿性も非常に高くなる。一方法状ある
いはペレット状のγ−アルミナを触媒担体とした場合に
比較し、断面がハニカム又は格子状の如き多層の薄壁か
らなる一体成型体あるいは大きな空孔率を有するポーラ
スな一体成型体を触媒担体とした場合、圧力損失も少く
、原料炭化水素ガス中に含まれている硫黄等による触媒
の被毒も少くなp寿命が長くなる。さらに一体成型体で
あると触媒を交換するのも非常に容易である。
Compared to the case where mullite or the like is integrally molded, the surface of the carrier itself is more sensitive and the host property is also very high. On the other hand, compared to the case where γ-alumina in the form of a pellet or pellet is used as a catalyst carrier, an integral molded body consisting of multi-layered thin walls with a honeycomb or lattice cross section, or a porous integral molded body with a large porosity is used. When used as a catalyst carrier, there is less pressure loss, less poisoning of the catalyst by sulfur, etc. contained in the raw material hydrocarbon gas, and a longer life span. Furthermore, since it is an integrally molded product, it is very easy to replace the catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるガス改質装置の断面図
、第2図ム、Bはγ−アルミナを主体とする一体成型体
すフォーミング触媒の斜視図である。 1・・・・・・改質器、7・・・・・・反応管、8・−
・・・・す、フォミング触媒、9・・・・・・ヒータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 12図
FIG. 1 is a cross-sectional view of a gas reforming apparatus according to an embodiment of the present invention, and FIG. 1...Reformer, 7...Reaction tube, 8.-
...Foaming catalyst, 9...Heater. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)炭化水素を水あるいは、必要であれば一部空気を
混合させす7オーミング触媒を通じ水素入熱質セラミッ
クからなる反応管の内部にγ−アルミナを組成とする断
面がハニカム又は格子状の如き多層の薄壁からなる一体
成型体を触媒担体とするリフォーミング触媒を保持する
ガス改質装置。
(1) Hydrocarbons are mixed with water or, if necessary, with some air.Hydrogen is introduced into the interior of a reaction tube made of heat-generating ceramic through a 7-ohm catalyst. A gas reforming device that holds a reforming catalyst whose catalyst carrier is an integrally molded body made of multi-layered thin walls.
(2)  γアルミナを組成とする大きな空孔率を有す
るポーラスな一体成型体を触媒担体とするり7オーミン
ク触媒を保持する特許請求の範囲第1項記載のガス改質
装置。
(2) The gas reforming device according to claim 1, wherein a porous integrally molded body having a large porosity and having a composition of γ alumina is used as a catalyst carrier to hold a 7-ohm mink catalyst.
JP56112451A 1981-07-17 1981-07-17 Gas reformer Pending JPS5815005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112451A JPS5815005A (en) 1981-07-17 1981-07-17 Gas reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112451A JPS5815005A (en) 1981-07-17 1981-07-17 Gas reformer

Publications (1)

Publication Number Publication Date
JPS5815005A true JPS5815005A (en) 1983-01-28

Family

ID=14586955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112451A Pending JPS5815005A (en) 1981-07-17 1981-07-17 Gas reformer

Country Status (1)

Country Link
JP (1) JPS5815005A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148776A (en) * 1974-06-28 1976-04-27 Siemens Ag Shokubaihenkannyori gasuohatsuseisurutamenohannosochi
JPS5228494A (en) * 1975-08-29 1977-03-03 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPS5457505A (en) * 1977-10-15 1979-05-09 Sakai Chemical Industry Co Honeycomb structure
JPS54138005A (en) * 1978-04-19 1979-10-26 Ngk Spark Plug Co Manufacture of honeycomb structure body made of gammaaal203
JPS5681392A (en) * 1979-12-05 1981-07-03 Jgc Corp Low-temperature steam reforming of hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148776A (en) * 1974-06-28 1976-04-27 Siemens Ag Shokubaihenkannyori gasuohatsuseisurutamenohannosochi
JPS5228494A (en) * 1975-08-29 1977-03-03 Nippon Soken Inc Hydrocarbon fuel reforming catalyst
JPS5457505A (en) * 1977-10-15 1979-05-09 Sakai Chemical Industry Co Honeycomb structure
JPS54138005A (en) * 1978-04-19 1979-10-26 Ngk Spark Plug Co Manufacture of honeycomb structure body made of gammaaal203
JPS5681392A (en) * 1979-12-05 1981-07-03 Jgc Corp Low-temperature steam reforming of hydrocarbon

Similar Documents

Publication Publication Date Title
US6254807B1 (en) Control of H2 and CO produced in partial oxidation process
JP4714680B2 (en) Pressure swing reforming for fuel cell systems
JP5015638B2 (en) Permselective membrane reactor and hydrogen production method
US6413479B1 (en) Reforming apparatus for making a co-reduced reformed gas
WO2011083333A1 (en) Isothermal reactor for partial oxidation of methane
US6923944B2 (en) Membrane reactor for gas extraction
JPH0640703A (en) Steam reforming reactor
WO2013008020A1 (en) Isothermal reactor for partial oxidation of methane
US7267804B2 (en) Membrane reactor for gas extraction
JPS5849602A (en) Steam reformer
JP2003165709A (en) Apparatus for manufacturing hydrogen
JPS5815005A (en) Gas reformer
JP4189731B2 (en) Auto-oxidation internally heated steam reforming system and its startup method
JPS58161901A (en) Apparatus for reforming hydrocarbon fuel
JPS58181702A (en) Apparatus for reforming hydrocarbon fuel
JPS58223603A (en) Reformer of hydrocarbon fuel
JP3051564B2 (en) Steam reforming reactor
JPS5879088A (en) Reforming apparatus of hydrocarbon fuel
JP4278984B2 (en) Membrane reactor for gas extraction
JPS5879089A (en) Reforming apparatus of hydrocarbon fuel
US20040136883A1 (en) Membrane reactor for gas extraction
JPS5978906A (en) Steam reforming furnace
JPS58122984A (en) Equipment for reforming hydrocarbon fuel
JP2733307B2 (en) Apparatus and method for producing reformed gas
JPS58140305A (en) Hydrocarbon fuel reformer