JPS58140305A - Hydrocarbon fuel reformer - Google Patents

Hydrocarbon fuel reformer

Info

Publication number
JPS58140305A
JPS58140305A JP57022312A JP2231282A JPS58140305A JP S58140305 A JPS58140305 A JP S58140305A JP 57022312 A JP57022312 A JP 57022312A JP 2231282 A JP2231282 A JP 2231282A JP S58140305 A JPS58140305 A JP S58140305A
Authority
JP
Japan
Prior art keywords
gas
catalyst
inorg
hydrocarbon fuel
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57022312A
Other languages
Japanese (ja)
Inventor
Kenji Tabata
研二 田畑
Ikuo Matsumoto
松本 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57022312A priority Critical patent/JPS58140305A/en
Publication of JPS58140305A publication Critical patent/JPS58140305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a fuel reformer with high reactivity by placing a carrier made of a heat resistant inorg. material behind a reforming catalyst and supporting a CO converting catalyst on the carrier to reduce a pressure drop of an inorg. gas before and behind the CO converting catalyst. CONSTITUTION:Hydrocarbon is fed from a feeding pipe 5 to a path 4 in a reaction tube 3, water and air are fed from a feeding pipe 7 to a path 6, and they are preheated with a heater 11. The materials evaporated by the preheating are mixed among inorg. fibers 10 and reformed into an inorg. gas consisting essentially of H2, CO2 and CO through a reforming catalyst 8. The reformed gas passes through heat resistant inorg. fibers 10' and enters a Co converting catalyst 9 to convert the CO into CO2. The carrier of the catalyst 9 is formed with a molded body composed of multilayered thin walls and having a lattice or honeycomb cross-section so as to reduce a pressure drop and to stably operate the reformer. The converted inorg. gas consisting essentially of H2 and CO2 is cooled in a cooling pipe 13 attached to a gas feeding pipe 12, and it is fed to a vapor- liq. separator 14 to separate the produced gas from water.

Description

【発明の詳細な説明】 本発明は炭化水素を水又は空気と混合し、リフオーピン
ク触媒体を通過させて水素及び炭酸ガスを主体とした無
機ガスに改質する炭化水素燃料改質装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrocarbon fuel reformer that mixes hydrocarbons with water or air and passes the mixture through a reflow pink catalyst to reform it into an inorganic gas mainly consisting of hydrogen and carbon dioxide. be.

一般に炭化水素燃料改質装置は、各種の炭化水素をガス
化剤である水又は空気と混合した後、リフオーピンク触
媒体により水素(H2)、炭酸ガス(02)、−酸化炭
素(CO)を主とした無機ガスに改質するものであるが
、これらの無機ガスの・うち、゛−酸化炭素は毒性が強
いために、シフト反応(CO+H20→CO2+Hz’
)により炭酸ガスに変成することが必要である。そのた
め従来はアルミナ。
In general, a hydrocarbon fuel reformer mixes various hydrocarbons with water or air as a gasifying agent, and then converts the mixture into mainly hydrogen (H2), carbon dioxide gas (02), and carbon oxide (CO) using a reflow pink catalyst. However, among these inorganic gases, carbon oxide is highly toxic, so a shift reaction (CO + H20 → CO2 + Hz'
) to convert it into carbon dioxide gas. Therefore, conventionally alumina was used.

コーディエライト、ムライト等の無機質耐熱性材料全ペ
レット状に成型した担体に、鉄、クロム。
A support made of inorganic heat-resistant materials such as cordierite and mullite, all molded into pellets, and iron and chromium.

白金属等の金属ヲCO変成触媒として担持して、リフオ
ーピンク触媒体の後部に設けていた。
A metal such as white metal was supported as a CO conversion catalyst and provided at the rear of the reflow pink catalyst body.

しかしペレット状のCO変成触媒体をリフオーピンク触
媒体の後部に設けると、CO変成触媒体前後の圧力損失
が高くなり、反応性も十分なものが得らnないという欠
点があった。
However, when the pellet-shaped CO shift catalyst is provided at the rear of the reflow pink catalyst, the pressure loss before and after the CO shift catalyst becomes high, and there are disadvantages in that sufficient reactivity cannot be obtained.

本発明はリフオーピンク触媒体の後部にγ−アルミナ、
コーディエライト、ムライト等の耐熱性無機質材料を断
面がハニカム状又は格子状の如き多層の薄壁からなる一
体成型体の担体を設け、この担体にCO変成触媒を担持
して炭化水素燃料改質装置を構成することにより、上記
従来の欠点を解消するものである。
In the present invention, γ-alumina is added to the rear part of the reflow pink catalyst body.
A heat-resistant inorganic material such as cordierite or mullite is provided with a support made of multi-layered thin walls with a honeycomb or lattice cross section, and a CO conversion catalyst is supported on this support to reform hydrocarbon fuels. By configuring the device, the above-mentioned conventional drawbacks are solved.

以下本発明の一実施例を図にもとづいて説明する。An embodiment of the present invention will be described below based on the drawings.

図は炭化水素燃料改質装置の側断図を示すもので、この
炭化水素燃料改質装置は外側より外管1゜中管2及び耐
熱性無機質のセラミックからなる反応管3の順に設けら
n、三重管で構成さnている、4は外管1と中管2との
間に設けら′nた通路ムで、この通路ム4に天然ガス、
メタンガス、プロパンガスあるいは予めヒータ(図示せ
ず)で加熱さnてガス状となった灯油、軽油等の炭化水
素を供給する炭化水素供給管5が接続さnている。6は
中管2と反応管3との間に設けらf′した通路Bで、こ
の通路B6に水又は空気を供給する水、空気供給・酊7
が接゛続さnている。8は反応管3内に設けら扛たリフ
オーミンク触媒体で、Cのリフオーミンク触媒体8はγ
−アルミナを素材として断面が格子状の多層の薄壁から
なる一体成型体を担体とし、この担体上にニッケルを触
媒として10重量パーセント担持したものである。9は
リフオーミンク触媒体8の後部に位置して反応管3内に
設けらnたCOO成触媒体で、リフオーミンク触媒体8
同様にγ−アルiすを素材とし、断面が格子状の多層の
薄壁からなる一体成型体の担体上に、鉄、クロムをそれ
ぞれ5重蛍パーセント担持したものである。10.10
’は通路ム4、通路B6及びリフオーミンク触媒体8と
Co変成触媒体9間に充填さnた石英ウール等の耐熱性
無機質繊維である。
The figure shows a side sectional view of a hydrocarbon fuel reformer. This hydrocarbon fuel reformer consists of an outer tube 1°, an inner tube 2, and a reaction tube 3 made of heat-resistant inorganic ceramic, which are installed in this order from the outside. , consisting of triple pipes, 4 is a passage provided between the outer pipe 1 and the middle pipe 2, and natural gas,
A hydrocarbon supply pipe 5 is connected to supply hydrocarbons such as methane gas, propane gas, or kerosene or light oil that has been heated in advance with a heater (not shown) to become gaseous. 6 is a passage B provided between the middle tube 2 and the reaction tube 3;
are connected. 8 is a reforming catalyst provided in the reaction tube 3, and the reforming catalyst 8 of C is γ.
- An integrally molded body made of alumina and consisting of multilayer thin walls with a lattice-like cross section is used as a carrier, and 10% by weight of nickel as a catalyst is supported on this carrier. Reference numeral 9 denotes a COO forming catalyst located at the rear of the reforming catalyst 8 and provided inside the reaction tube 3;
Similarly, it is made of γ-aluminum and has iron and chromium each supported in a quintuple fluorescing percentage on an integrally molded support consisting of multi-layered thin walls with a lattice-like cross section. 10.10
' is a heat-resistant inorganic fiber such as quartz wool filled between the passageway 4, the passageway B6, and the reforming catalyst body 8 and the Co modification catalyst body 9.

11は反応管3に設けられたヒータで、リフオーミンク
触媒体8.CO変成触媒体9及び通路ム4゜通路B6’
(H加熱するものである。12は反応管3の後部に接続
された送気管で、変成の結果生成した水素ガス、炭酸ガ
スを主とした無機ガスがこの送気管12から取り出され
、途中に設けられた冷却管13で生成さnた無機ガスを
冷却し、気、液分離器14でコンデンスした液と生成ガ
スとに分離される。15は外管1の開口部に設けられた
蓋で、この蓋15はボルト16を外せば取り外しが可能
で、劣化したリフオーミンク触媒体8の交換ができるよ
うになっている。
11 is a heater provided in the reaction tube 3, and a reforming catalyst body 8. CO shift catalyst body 9 and passageway 4° passageway B6'
(H heating is performed. Reference numeral 12 is an air supply pipe connected to the rear of the reaction tube 3. Inorganic gases mainly composed of hydrogen gas and carbon dioxide produced as a result of metamorphosis are taken out from this air supply pipe 12, The generated inorganic gas is cooled in the provided cooling pipe 13, and separated into condensed liquid and produced gas in the gas/liquid separator 14. 15 is a lid provided at the opening of the outer tube 1. This lid 15 can be removed by removing bolts 16, and the deteriorated reforming catalyst 8 can be replaced.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

ヒータ11で予め反応管3i700〜900℃の反応温
度に加熱した後、炭化水素を炭化水素供給管6から通路
ム4内に供給する。通路ム4内に供給さnた炭化水素は
耐熱性無機質繊維10を通過する間にヒータ11で予熱
される。−力水、空気供給管7から通路B6内に水又は
空気が供給さねうヒータ11で予熱される。予熱されて
蒸発した水蒸気又は空気と炭化水素は、石英ウール等の
耐熱性無機質繊維1oを通過する間に十分に混合され、
ヒータ11で加熱されたリフオーミンク触媒体8内を通
過する時にリフオーミング反応により、水素ガス、炭酸
ガス、−酸化炭素ガスを主とした無機ガスに改質される
。改質された無機ガスは耐熱性無機質繊維10’を経て
Co変成触媒体9へ供給され、このCo変成触媒体9を
通過する間に一酸化炭素が炭酸ガスに変成される。従っ
てCo変成触媒体9を通過した無機ガスは、水素ガスと
炭酸ガスを主としたガスとなり、j気管12に設けられ
た冷却管13で冷却される。この冷却管13で過剰の水
分はコンデンスされ、気液分離器14により生成ガスと
水とに分離さnる。そして分離さ扛た生成ガスは、ガス
溜め(図示せず)に蓄えらn1必要に応じて使用さnる
、っ このようにCo変成触媒体9の担体を断面が格子状の多
層の薄壁からなる一体成型体で構成し、この担体にCO
変変成触合担持したことにより、空間速度(V、5)6
00′VHの条件で炭化水素燃料の改質実験を行った結
果、従来のベレット状のGOO成触媒体(粒径が2〜4
ばり)と比較して圧力損失が殉以下となり、その結果安
定した条件で炭化水素燃料改質装置を稼動させることが
可能となった。
After the reaction tube 3i is previously heated to a reaction temperature of 700 to 900° C. by the heater 11, hydrocarbons are supplied into the passageway 4 from the hydrocarbon supply tube 6. The hydrocarbons supplied into the passageway 4 are preheated by the heater 11 while passing through the heat-resistant inorganic fibers 10. - Water or air is supplied from the power water/air supply pipe 7 into the passage B6 and is preheated by the heater 11. The preheated and evaporated water vapor or air and hydrocarbons are thoroughly mixed while passing through a heat-resistant inorganic fiber 1o such as quartz wool,
When the gas passes through the reforming catalyst body 8 heated by the heater 11, it is reformed into inorganic gases mainly consisting of hydrogen gas, carbon dioxide gas, and carbon oxide gas by a reforming reaction. The reformed inorganic gas is supplied to the Co modification catalyst body 9 through the heat-resistant inorganic fibers 10', and while passing through the Co modification catalyst body 9, carbon monoxide is converted to carbon dioxide gas. Therefore, the inorganic gas that has passed through the Co shift catalyst body 9 becomes a gas mainly consisting of hydrogen gas and carbon dioxide gas, and is cooled by the cooling pipe 13 provided in the j-trachea 12. Excess water is condensed in this cooling pipe 13 and separated into produced gas and water in a gas-liquid separator 14. The separated generated gas is then stored in a gas reservoir (not shown) and used as needed.As shown above, the carrier of the Co conversion catalyst body 9 is made of a multilayer thin wall with a lattice-like cross section. It is composed of an integrally molded body made of
By supporting metamorphic catalysis, space velocity (V, 5) 6
As a result of a reforming experiment of hydrocarbon fuel under the condition of 00'VH, it was found that the conventional pellet-shaped GOO catalyst (with a particle size of 2 to 4
As a result, the pressure loss was reduced to less than 100% compared to burrs), and as a result, it became possible to operate the hydrocarbon fuel reformer under stable conditions.

更に担体の断面が多層の薄壁からなる一体成型体とした
ことにより、■変成触媒体9の中で一酸化炭素と水蒸気
又は空気との混什がよくなり、従来よりも低温でシフト
反応をより促進させることかでさた。
Furthermore, by making the cross section of the carrier an integrally molded body consisting of multi-layered thin walls, (1) mixing of carbon monoxide and water vapor or air in the shift catalyst body 9 is improved, allowing the shift reaction to occur at a lower temperature than before; The idea was to encourage it more.

以上の説明から明らかな如く本発明の炭化水素燃料改質
装置によnば、下記の効果が得らnる。
As is clear from the above description, the hydrocarbon fuel reformer of the present invention provides the following effects.

(1) (30変成触媒体前後の無機ガスの圧力損失を
太幅に低下させることができるため、安定した条件でリ
フォーゴング反応及びシフト反応を行うことができる。
(1) (30) Since the pressure loss of the inorganic gas before and after the shift catalyst can be significantly reduced, the reforgong reaction and the shift reaction can be performed under stable conditions.

(2) Go ?酸触媒体内で一酸化炭素と水蒸気又は
空気との混合性がよくなり、その結果、早い空間、速度
で炭化水素燃料改質装置全稼動させてもシフト反応性に
優れ、しかも触媒の活性を永続させることができる。
(2) Go? Mixability of carbon monoxide and water vapor or air is improved in the acid catalyst body, resulting in excellent shift reactivity even when the hydrocarbon fuel reformer is fully operated at high space and speed, and catalyst activity is maintained permanently. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す炭化水素燃料改質装置の側
断面図である。 8・・・・・・リフォーミング触媒体、9・・・・・・
Go変成触媒体。
The figure is a side sectional view of a hydrocarbon fuel reformer showing one embodiment of the present invention. 8... Reforming catalyst body, 9...
Go transformation catalyst.

Claims (1)

【特許請求の範囲】 炭化水素を水あるいは空気と混合し、リフオーピンク触
媒体で水素及び炭酸ガスを主体とした無機ガスに改質す
る炭化水素燃料改質装置を構成し、前記リフオーピンク
触媒体の後部にγ−アルミナ。 コーディエライト、ムライト等の耐熱性無機質材料を断
面がハニカム状又は格子状の如き多層の薄壁からなる一
体成型体の担体を設け、この担体にCO変成触fiL’
ir担持した炭化水素燃料改質装置。
[Scope of Claims] A hydrocarbon fuel reforming device that mixes hydrocarbons with water or air and reformes the mixture into an inorganic gas mainly consisting of hydrogen and carbon dioxide using a reflow pink catalyst body, wherein a rear portion of the reflow pink catalyst body and γ-alumina. A heat-resistant inorganic material such as cordierite or mullite is provided with a support made of multilayer thin walls with a honeycomb-like or lattice-like cross section.
IR supported hydrocarbon fuel reformer.
JP57022312A 1982-02-15 1982-02-15 Hydrocarbon fuel reformer Pending JPS58140305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022312A JPS58140305A (en) 1982-02-15 1982-02-15 Hydrocarbon fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022312A JPS58140305A (en) 1982-02-15 1982-02-15 Hydrocarbon fuel reformer

Publications (1)

Publication Number Publication Date
JPS58140305A true JPS58140305A (en) 1983-08-20

Family

ID=12079215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022312A Pending JPS58140305A (en) 1982-02-15 1982-02-15 Hydrocarbon fuel reformer

Country Status (1)

Country Link
JP (1) JPS58140305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282113A (en) * 1988-05-07 1989-11-14 Fuji Electric Co Ltd Fuel reforming apparatus
JP2001172003A (en) * 1999-12-16 2001-06-26 Daikin Ind Ltd Reforming apparatus
JP2006220252A (en) * 2005-02-14 2006-08-24 Nakamura Koki Kk Two-stage pressure absorption piston-type accumulator device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282113A (en) * 1988-05-07 1989-11-14 Fuji Electric Co Ltd Fuel reforming apparatus
JP2001172003A (en) * 1999-12-16 2001-06-26 Daikin Ind Ltd Reforming apparatus
JP4644892B2 (en) * 1999-12-16 2011-03-09 ダイキン工業株式会社 Reformer
JP2006220252A (en) * 2005-02-14 2006-08-24 Nakamura Koki Kk Two-stage pressure absorption piston-type accumulator device

Similar Documents

Publication Publication Date Title
RU2053957C1 (en) Method and aggregate for hydrocarbons conversion by steam reformer
JP5216758B2 (en) Internal combustion exchange reactor for fixed bed endothermic reaction
EP1094030B1 (en) Reforming method and apparatus for hydrogen production
JP6002249B2 (en) Catalytic combustion integrated heat reformer for hydrogen production
CN104583121B (en) Reformer, reforming method, the manufacture device with the chemical products of reformer and the manufacture method of chemical products
KR100423544B1 (en) Compact steam reformer
JP5099959B2 (en) New partial oxidation reactor
US20010009653A1 (en) Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JPS6018601B2 (en) Convection reformer and its method
KR20030036155A (en) Integrated reactor
JP2007523042A (en) Integrated fuel processor for distributed hydrogen production
US7569085B2 (en) System and method for hydrogen production
AU614641B2 (en) Reactor for reforming hydrocarbon and process for reforming hydrocarbon
CA1257478A (en) Process and equipment for the generation of a product gas containing hydrogen and carbon oxides
AU745685B2 (en) Method of manufacturing synthesis gas
JP6944349B2 (en) Hydrogen generator
JPS58140305A (en) Hydrocarbon fuel reformer
JP3418149B2 (en) Device that uses heat generated during catalytic reaction
JPS58161901A (en) Apparatus for reforming hydrocarbon fuel
JP2004267884A (en) Membrane reaction apparatus and synthetic gas production method using the same
EP3720813A1 (en) System and process for production of synthesis gas
JPS5978906A (en) Steam reforming furnace
JPS5973403A (en) Reforming device for hydrocarbon gas
CA2571914C (en) Auto-oxidation and internal heating type reforming method and apparatus for hydrogen production
JP2719318B2 (en) Medium pressure continuous gasifier