JPS58150043A - Electronically controlled fuel injection method of internal-combustion engine - Google Patents

Electronically controlled fuel injection method of internal-combustion engine

Info

Publication number
JPS58150043A
JPS58150043A JP3284282A JP3284282A JPS58150043A JP S58150043 A JPS58150043 A JP S58150043A JP 3284282 A JP3284282 A JP 3284282A JP 3284282 A JP3284282 A JP 3284282A JP S58150043 A JPS58150043 A JP S58150043A
Authority
JP
Japan
Prior art keywords
deceleration
increase
acceleration
intake pipe
decrease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3284282A
Other languages
Japanese (ja)
Other versions
JPH0475382B2 (en
Inventor
Nobuyuki Kobayashi
伸行 小林
Toshiaki Isobe
磯部 敏明
Takahide Hisama
隆秀 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3284282A priority Critical patent/JPS58150043A/en
Publication of JPS58150043A publication Critical patent/JPS58150043A/en
Publication of JPH0475382B2 publication Critical patent/JPH0475382B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To accurately correct fuel at applicable operation, by performing new correction with a residual value of a fuel correction quantity already under execution as the initial value when acceleration increase and deceleration decrease are duplicated in the method of suitably correcting the basic injection quantity in accordance with an engine operational condition. CONSTITUTION:In a digital control circuit 54, an injection 30 is controlled by reading the basic injection timing from an ROM by intake pipe pressure from an intake pipe pressure sensor 23 and engine speed from a crank angle sensor 44. Here at acceleration, a correction coefficient is increased, and then injection is decreased to a prescribed deceleration speed 0 at each engine speed to perform acceleration increase. While at deceleration, the correction coefficient is minimized, and then injection is restored to a prescribed restoration speed at each engine speed to perform deceleration decrease. When the acceleration increase and the deceleration decrease are duplicated, the deceleration decrease or acceleration increase is performed with a residual value of the acceleration increase or deceleration decrease already under execution as the initial value.

Description

【発明の詳細な説明】 本発明は、内燃機関の電子制御燃料噴射方法に係り、%
に、吸気管圧方式の電子制御燃料噴射装置を備えた自動
車用内燃機11に用いるのに好適な、エンジンの吸気管
圧力とエンジン回転#に応じて基本噴射量を求めると共
に、過渡時は、エンジン運転状態に応じて前記基本噴射
量を補正することKよって燃料噴射量を決定するよ5K
した内燃機関の電子制御燃料噴射方法の改JILK関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronically controlled fuel injection method for an internal combustion engine.
In addition, the basic injection amount is determined according to the engine intake pipe pressure and engine rotation #, which is suitable for use in an automobile internal combustion engine 11 equipped with an electronically controlled fuel injection device of the intake pipe pressure type. The fuel injection amount is determined by correcting the basic injection amount according to the operating condition.5K
The present invention relates to JILK's revised electronically controlled fuel injection method for internal combustion engines.

自動車用エンジン郷の内燃機関の燃焼室に所定空燃比の
混合気を供給する方法の一つに、電子制御燃料噴射装置
を用いるものがある これは、エンジン内に燃料を噴射
するためのインジェクタを、例えば、エンジンの吸気マ
ニホルド或いはスロットルボデーに、工yジン気筒数(
1111Eいは1個配験し、該インジェクタの開弁時間
をエンジンの運転状11に応じ1制御することKより、
所定の空燃比の混合気がエンジン燃焼1[K供給される
ようにするものである。この電子制御燃料噴射装置には
、大別して、エンジンの黴入空気食とエンジン鴎転数に
応じて基本噴射量を求めるよ5Kした、いわゆる吸入空
気量式の電子制御燃料噴射装置と、エンジンの吸気管圧
力とエンジン回転数に応じて基本噴射量な求めるように
した、いわゆる吸気管圧力式の電子制御燃料噴射装置が
ある。
One method of supplying a mixture with a predetermined air-fuel ratio to the combustion chamber of an internal combustion engine for automobile engines is to use an electronically controlled fuel injection device.This uses an injector to inject fuel into the engine. For example, the engine's intake manifold or throttle body may be
From 1111E or K, test the injector and control the valve opening time of the injector according to the engine operating condition 11.
The air-fuel mixture with a predetermined air-fuel ratio is supplied to the engine for combustion. These electronically controlled fuel injection devices can be roughly divided into so-called intake air amount type electronically controlled fuel injection devices, which calculate the basic injection amount according to the engine's mold air erosion and the engine speed. There is a so-called intake pipe pressure type electronically controlled fuel injection system that determines a basic injection amount according to intake pipe pressure and engine speed.

このうち前者は、空燃比を?#密に制御することが可能
であり、排気ガス浄化対策が施された自動車用エンジン
に広(用いられるようになっている。
Of these, the former is the air fuel ratio? # It can be precisely controlled and is now widely used in automobile engines equipped with exhaust gas purification measures.

しかしなから、この吸入空気量式の電子制御燃料噴射装
置にお〜・ては、吸入空気量が、アイドル時と部員荷時
で50倍8度変化し、ダイナミックレンジが広いので、
吸入空気量を電気信号に変換する際の精度が低くなるだ
けでなく、後段のデジタル制御回路における耐算梢度を
高めようとすると、電気信号のビット長が長(なり、デ
ジタル制御回路として高価なコンピュータを用いる必要
がある。
However, in this intake air volume type electronically controlled fuel injection system, the intake air volume changes by 50 times 8 degrees between idle and loaded, so the dynamic range is wide.
Not only does the accuracy when converting the amount of intake air into an electrical signal decrease, but when trying to improve the computational performance of the digital control circuit in the subsequent stage, the bit length of the electrical signal becomes long (which makes the digital control circuit expensive). It is necessary to use a suitable computer.

又、吸入空気量を測定するためく、エアフロメータ等の
非常に精密な構造を有する測定器を用いる必要があり、
設備費が高価となる等の問題点を1していた。
In addition, it is necessary to use a measuring device with a very precise structure, such as an air flow meter, to measure the amount of intake air.
One of the problems was that the equipment cost was high.

一方、後者の吸気管圧力式の電子制御燃料噴射装置にお
い工は、吸気管圧力の変化蓋が2〜3倍程度と少なく、
ダイナミックレンジが狭いので、後段のデジタル制御回
路における演算処理が容易であるだけでなく、吸気管圧
力を検知するための圧力センナも安価であるという特徴
を有する。しかしながら、吸入空気量式の電子制御燃料
噴射装置に比べると、空燃比の制御精度が低く、%に、
加速時においては、吸気管圧力が増大しなければ燃料噴
射量が増えないため、空燃比が一時的にリーンとなつ又
、加速性能が低いものであった。このような欠点を解消
するべく、従来は、絞り弁に配設された櫛刃状のセンナ
から出力されるパルス列に応じて加速増量を行うようK
していたが、ドライバビリティな高めるためには、増量
の量を非常に大としなければならず、その場合には、空
燃比がオーバーリッチとなって、快気ガス中の一酸化炭
素量が異常Kt!大し、空燃比を三元触媒コンバータに
適した所定範囲内に維持することができなかった。これ
は、排気下流11に配設した酸IR濃度センナの出力信
号に応じて燃料噴射量をフィードバック制御するようK
した場合においても、酸素111度センナの応答が遅い
ため、四欅であ口、従つて、従来は、吸気管圧力式の電
子制御燃料噴射装置を、空、燃比な精密に制御すること
が必要な、排気ガス浄化対策が施された自動車用エンジ
ンに用いることは困難であると考えられていた。
On the other hand, with the latter type of intake pipe pressure type electronically controlled fuel injection system, the change in intake pipe pressure is about 2 to 3 times smaller.
Since the dynamic range is narrow, the arithmetic processing in the subsequent digital control circuit is not only easy, but also the pressure sensor for detecting the intake pipe pressure is inexpensive. However, compared to electronically controlled fuel injection devices that use intake air flow, the control accuracy of the air-fuel ratio is lower, and the
During acceleration, the fuel injection amount cannot be increased unless the intake pipe pressure increases, so the air-fuel ratio becomes lean temporarily and the acceleration performance is low. In order to eliminate these drawbacks, conventional K
However, in order to improve drivability, the amount of increase must be extremely large, and in that case, the air-fuel ratio becomes overrich and the amount of carbon monoxide in the free gas becomes abnormal. Kt! However, it was not possible to maintain the air-fuel ratio within a predetermined range suitable for a three-way catalytic converter. This is because the fuel injection amount is feedback-controlled according to the output signal of the acid IR concentration sensor installed downstream of the exhaust gas 11.
Even in this case, the response of the oxygen 111 degree sensor is slow, so it is necessary to precisely control the intake pipe pressure type electronically controlled fuel injection device. However, it was thought that it would be difficult to use it in automobile engines that are equipped with exhaust gas purification measures.

又、吸気管圧力式の電子制御燃料噴射装置においては、
減速時には、吸気管圧力が減少したけれ合に、適切な増
減量補正を行って、空燃比を理論空燃比近傍に維持する
ことができ、従って、良好な加減適性能と排気ガス浄化
性能を両立させることができる内燃機関の電子制御燃料
噴射方法を提供することを目的とする。
In addition, in the intake pipe pressure type electronically controlled fuel injection device,
During deceleration, if the intake pipe pressure decreases, the air-fuel ratio can be maintained close to the stoichiometric air-fuel ratio by appropriately adjusting the increase or decrease, thus achieving both good adjustment performance and exhaust gas purification performance. An object of the present invention is to provide an electronically controlled fuel injection method for an internal combustion engine that can perform the following steps.

本発明は、エンジンの吸気管圧力とエンジン回転aK応
じ1基本噴射量を求めると共に、過渡時は、エンジン運
転状態く応じ又前記基本噴射量を補正することによって
燃料噴射量を決定するようにした内燃機関の電子制御燃
料噴射方法において、加速時に補正係数を増大し、次い
で減衰する加速増量と、減速時に補正係数を減小し、次
いで回復する減速減量とを行うと共に、加速増量と減速
減量が重複した場合は、既に実行中の加速増量或いは減
速減量の残存値を初期値として、新たに実行要求のあっ
た減速減量或いは加速増量を実行するよ5Kして、前記
目的な連成したものである。
The present invention determines a basic injection amount according to the engine intake pipe pressure and engine rotation aK, and during transient periods, determines the fuel injection amount by correcting the basic injection amount according to the engine operating condition. In an electronically controlled fuel injection method for an internal combustion engine, an acceleration increase in which a correction coefficient is increased during acceleration and then attenuated, and a deceleration decrease in which the correction coefficient is decreased during deceleration and then recovered, and an acceleration increase and a deceleration decrease are performed. If there is a duplicate, the remaining value of the acceleration increase or deceleration decrease that is already being executed is used as the initial value, and the newly requested deceleration decrease or acceleration increase is executed. be.

以下園園を参照して、本発明の実施例を絆1mK説明す
る。
An embodiment of the present invention will be described below with reference to a kindergarten.

本発明に係る内燃機関の電子制御燃料噴射方法が採用さ
れた吸気管圧力式の電子制御燃料噴射装置の第1実施例
は、第1図及び第2図に示す如く、外気を取入れるため
のエアクリーナ12と、禮エアクリーナ12より取入れ
られた吸入空気の温度を検出するための吸気温センサ1
4と、吸気通路16中に配設され、運転席に配設された
アクセルペダル(図示省略)と連動して開閉するよ5に
された。吸入空気の流量を制御するための絞り弁18と
、皺絞り弁18がアイドル接点度にあるか否かを検出す
るためのアイドル接点及び絞り弁18の開度に比例した
電圧出力を発生するポテンショメータを含むスロットル
センサ20と、サージタン〉22と、該サージタンク2
2内の圧力から吸気管圧力を検出するための吸気管圧力
センサ23と、前記絞り弁18をバイパスするバイパス
通路24と、該バイパス通路24の途中に配設され、該
バイパス通路24の開口面積を制御することKよってア
イドル回転速度を制御するためのアイドル回転制御弁2
6と、吸気マニホルド28に配設された、エンジン】O
の吸気ポートに向けて燃料を噴射するためのインジェク
タ30と、排気マニホルド32に配設された、排気ガス
中の残存酸素濃度がら空燃比な検知するための酸素濃度
センサ34と、前記排気Tニホルド32下流側の排気管
86の途中に配設された三元触媒コンバータ38と、エ
ンジン10のクランク軸の回転と連動して回転するディ
ストリビュータ軸を有するディストリビュータ40と、
該ディストリビュータ40KFi3Mされた、前記ディ
ストリビュータ軸の回転に応じて上死点信号及びクラン
ク角信号を出方する上死点センサ42及びクランク角セ
ン?44と、エンジンブロック忙配設された、エンジン
冷却水温を検知するための冷却水温センt46と、変速
機48の出力軸の回転数から車両の走行速度を検出する
ための車速センサ50と、前記吸気管圧力センナ23出
力の吸気管圧力と前記クランク角センサ44の出力から
求められるエンジン回転数に応じてエンジン1工鵬あた
りの基本噴射量をマツプから求めると共に%これを、前
記スロットルセンサ20の出力、前記酸素S度センサ3
4出力の空燃比、前記冷却水温センサ46出力のエンジ
ン冷却水温等に応じて補正することKよつ【、燃料噴射
量を決定し【前記インジェクタ30に開弁時間信号を出
力し、又、エンジン運転状MK応じて点火時期を決定し
てイグナイタ付コイル52に点火信号を出力し、更K、
アイドル時に前記アイドル−転制御弁26を制御するデ
ジタル制御(ロ)路54とを備えた自動車用エンジン1
0の吸気管圧力式電子制御燃料噴射装置において、前記
デジタル制W回路54内で、前記スpットル竜ンf−2
0のアイドルスイッチがオフとなった時に補正係数を増
大し、次いで、所定の減衰速度で減衰するアフタアイド
ル増量、前記スロットルセ/す20のボテンシ目メータ
出力から検知される絞り弁開度の増大速度に応じて、加
速時に補正係数を増大し、次いで、所定の減衰速度で減
衰する絞り弁ei4FIL増量、及び、前記吸気管圧力
センサ23の出力から検知される吸気管圧力の増大速度
に応じて、加速時に補正係数を増大し、次いで、所定の
減衰速度で減衰する吸気管圧力増量からなる加速増量と
、前記スロットルセンサ20のポテンショメータ出力か
ら検知される絞り弁開度の減少速度に応じて、減速時に
補正係数を減少し、次いで、所定の回復速度で回復する
絞り弁開度減量、及び、前記吸気管圧力センナ23の出
力から検知される吸気管圧力の減少速度に応じて、減速
時に補正係数を減少し、次いで、所定の回復速度で回復
する吸気管圧力減量からなる減速減量とを行うと共に、
加速増量と減速減量が重複した場合は、既に実行中の加
速増量或いは減速減量の残存値を初期値とし【、新たに
実行要求のあった減速減量或いは加速増量を実行するよ
うにしたものである。
A first embodiment of an intake pipe pressure type electronically controlled fuel injection device employing the electronically controlled fuel injection method for an internal combustion engine according to the present invention is as shown in FIGS. 1 and 2. An air cleaner 12 and an intake temperature sensor 1 for detecting the temperature of intake air taken in from the air cleaner 12
4, and 5, which is disposed in the intake passage 16 and opens and closes in conjunction with an accelerator pedal (not shown) disposed in the driver's seat. A throttle valve 18 for controlling the flow rate of intake air, and a potentiometer that generates a voltage output proportional to the idle contact and the opening degree of the throttle valve 18 for detecting whether the wrinkled throttle valve 18 is at the idle contact degree. a throttle sensor 20 including a surge tank 20, a surge tank 22, and a surge tank 2.
2, a bypass passage 24 that bypasses the throttle valve 18, and an opening area of the bypass passage 24 disposed in the middle of the bypass passage 24. Idle rotation control valve 2 for controlling idle rotation speed by controlling K
6 and the engine]O arranged in the intake manifold 28
an injector 30 for injecting fuel toward the intake port of the exhaust manifold 32, an oxygen concentration sensor 34 disposed in the exhaust manifold 32 for detecting the air-fuel ratio from the residual oxygen concentration in the exhaust gas, and the exhaust T-nifold a three-way catalytic converter 38 disposed midway in the exhaust pipe 86 on the downstream side of the engine 10; a distributor 40 having a distributor shaft that rotates in conjunction with the rotation of the crankshaft of the engine 10;
The distributor 40KFi3M includes a top dead center sensor 42 and a crank angle sensor that output a top dead center signal and a crank angle signal according to the rotation of the distributor shaft. 44, a cooling water temperature center t46 disposed in the engine block for detecting the engine cooling water temperature, a vehicle speed sensor 50 for detecting the running speed of the vehicle from the rotation speed of the output shaft of the transmission 48, and the aforementioned In accordance with the intake pipe pressure output from the intake pipe pressure sensor 23 and the engine rotation speed determined from the output of the crank angle sensor 44, the basic injection amount per engine is determined from the map, and this is calculated as a percentage of the throttle sensor 20. Output, the oxygen S degree sensor 3
4 output, the engine cooling water temperature output from the cooling water temperature sensor 46, etc., determines the fuel injection amount, outputs a valve opening time signal to the injector 30, and The ignition timing is determined according to the operating condition MK, and an ignition signal is output to the igniter-equipped coil 52.
Automotive engine 1 equipped with a digital control (b) path 54 that controls the idle-shift control valve 26 during idle.
In the intake pipe pressure type electronically controlled fuel injection system of No. 0, in the digital control W circuit 54, the throttle dragon f-2
0, the correction coefficient is increased when the idle switch 20 is turned off, and the after-idle amount is increased to attenuate at a predetermined attenuation speed. Depending on the speed, the correction coefficient is increased during acceleration, and then the throttle valve ei4FIL is increased to attenuate at a predetermined damping speed, and according to the increasing speed of the intake pipe pressure detected from the output of the intake pipe pressure sensor 23. , depending on the acceleration increase consisting of increasing the correction coefficient during acceleration and then decreasing the intake pipe pressure at a predetermined decay rate, and the decreasing rate of the throttle valve opening detected from the potentiometer output of the throttle sensor 20, The correction coefficient is reduced during deceleration, and then the throttle valve opening is reduced to recover at a predetermined recovery speed, and the correction is made during deceleration according to the decreasing speed of the intake pipe pressure detected from the output of the intake pipe pressure sensor 23. Decrease the coefficient and then perform a deceleration reduction consisting of an intake pipe pressure reduction that recovers at a predetermined recovery rate,
If the acceleration increase and deceleration decrease overlap, the remaining value of the acceleration increase or deceleration decrease that is already being executed is used as the initial value [and the newly requested deceleration decrease or acceleration increase is executed. .

前記デジタル制御回路54は、第2図に絆#lK示す如
く、各種演算処理を行うマイクロ1pセツサからなる中
央処理装置(以下CPUと称する)60と、前記吸気温
センサ14.スロットルセンサ2Gのポテンショメータ
、吸気管圧力センナ2m。
The digital control circuit 54, as shown in FIG. Throttle sensor 2G potentiometer, intake pipe pressure sensor 2m.

酸素濃度センサ34、冷却水温センサ46等から入力さ
れるアナログ1g号を、デジタル信号Kf換して順次L
:PU60に取込むためのマルチプレクサ付アナログ入
力ポートロ2と、前記スロットルセンサ20のアイドル
接点、上死点センサ42、クランク角センサ44、車速
センサ50等から入力されるデジタル信号を、所定のタ
イミングでCPL160に取込むためのデジタル入力ポ
ートロ4と、プログラム或〜・は各穫定数等を記憶する
ためのリードオンリーメモリ(以下)tOMと称する)
66と、CPLI60における演算データ等を一時的に
記憶するためのランダムア・クセスメモリ(以下FLA
Mと称する)68と、磯関停止時にも補助電源から給電
されて記憶を保持できるバックアップ用ランダムアクセ
スメモリ(以下バックアップRAMと称する)70と、
CPL160における演算結果を、所定のタイミングで
前記アイドル回転制御弁26、インジェクタ30.イグ
ナイタ付コイル52等に出力するためのデジタル出力ポ
ードア2と、上記各構成機器間を接続するコモンバス7
4とから構成されている。
Analog No. 1g inputted from the oxygen concentration sensor 34, cooling water temperature sensor 46, etc. is converted into a digital signal Kf and sequentially outputted to L.
: Digital signals inputted from the analog input port 2 with a multiplexer for input to the PU 60, the idle contact of the throttle sensor 20, the top dead center sensor 42, the crank angle sensor 44, the vehicle speed sensor 50, etc. at a predetermined timing. A digital input port 4 for importing into the CPL 160, and a read-only memory (hereinafter referred to as tOM) for storing programs or various harvest constants, etc.
66 and a random access memory (hereinafter referred to as FLA) for temporarily storing calculation data etc. in the CPLI 60.
A backup random access memory (hereinafter referred to as backup RAM) 70 that can be supplied with power from an auxiliary power source and retain memory even when Isoseki is stopped;
The calculation results in the CPL 160 are transmitted to the idle rotation control valve 26, the injector 30 . A digital output port door 2 for outputting to a coil 52 with an igniter, etc., and a common bus 7 that connects each of the above components.
It is composed of 4.

以下作用を説明する。The action will be explained below.

まずデジタル制御回路54は、吸気管圧力センサ23出
力の吸気管圧力PMと、クランク角センサ44の出力か
ら算出されるエンジン回転数NEにより、ROM66に
予め記憶されているマツプから、基本噴射時間1’P(
PM、NE)を読出す。
First, the digital control circuit 54 uses the intake pipe pressure PM output from the intake pipe pressure sensor 23 and the engine rotation speed NE calculated from the output of the crank angle sensor 44 to calculate the basic injection time 1 from a map stored in advance in the ROM 66. 'P(
PM, NE).

更に、各センナからの信号に応じて、次式を用いて前記
基本噴射時間TP(PM、NE)を補正することKより
、燃料噴射時間TAUを算出する。
Furthermore, the fuel injection time TAU is calculated by correcting the basic injection time TP (PM, NE) using the following equation according to the signals from each sensor.

TAU鴛TP(PM、NE)木(1+に*F)  ・、
(1)ここで、Fは、補正係数で、Fが正である場合に
は、増量補正を表わし、Fが負である場合には減量補正
を表わしている。又、Kは、前記補正糸数Fを更に補正
するたぬの補正倍率であり、通常は1とされている。
TAU 雛TP (PM, NE) Tree (*F on 1+) ・,
(1) Here, F is a correction coefficient; when F is positive, it represents an increase correction, and when F is negative, it represents a decrease correction. Further, K is a tanu correction magnification for further correcting the corrected thread number F, and is normally set to 1.

こりよ5Kして決定された燃料噴射時間TAUに対応す
る燃料噴射信号か、インジェクタ30に出力され、エン
ジン回転と同期してインジェクタ80が燃料噴射時間’
I’ A Llだけ開かれて、エンジンlog)吸気マ
ニホルド28内に燃料が噴射される。
A fuel injection signal corresponding to the fuel injection time TAU determined after 5K is output to the injector 30, and the injector 80 adjusts the fuel injection time in synchronization with the engine rotation.
I'A Ll is opened and fuel is injected into the intake manifold 28 (engine log).

事実適例における加速増量及び減速減量は、次のように
し1行われる。
In fact, in a suitable example, the acceleration increase and deceleration decrease are performed as follows.

即ち、第3図に示す如く、加速時に、アクセルペダルが
踏み込まれ、スロットル七ンt20のアイドルスイッチ
が、第3図(AJに示す如く、時刻型。
That is, as shown in Fig. 3, when accelerating, the accelerator pedal is depressed, and the idle switch of the throttle t20 is activated as shown in Fig. 3 (AJ).

でオフとなると、絞り弁開[TA及び吸気雷圧力PMの
増大に先行し王、1g3図0に実@Aで示すような、極
めて迅速な増量補正を行577タアイドル増量(以下L
L増量と称する)が行われるーこのLL増量は、具体的
には、例えば、補正係数Fを、まず、正の所定値とし、
次いで、エンジン回転毎或いは一定時間毎に、所定の減
衰速度で′ρ迄減衰させることKよって行われる。
When the throttle valve is turned off at
Specifically, this LL increase is performed by, for example, first setting the correction coefficient F to a positive predetermined value,
Next, the damping is performed by K at a predetermined damping speed to 'ρ at every engine rotation or every fixed period of time.

次いで、絞り弁18が更に開かれ、前記スロットルセン
サ20のポテンショメータ出力から検知される絞り弁開
度TAが、第3図(ロ)K示す如く、時刻1.で立上が
り始めると、吸気管圧力PMの増大に先行して、第3因
(ロ)に実線Bで示すような、絞り弁開度TAの増大速
度に応じた迅速な増量補正を行う絞り弁開度増量(以下
TA増量と称する)が行われる。このTA増量は、具体
的には、例えば、絞り弁開度の所定時間毎の変化量に応
じた値を積算した値(正値)を補正係数Fとし、次いで
、エンジン回転毎或いは一定時間毎に、所定の減衰速度
で゛a迄減衰させることによって行なわれる。
Next, the throttle valve 18 is further opened, and the throttle valve opening degree TA detected from the potentiometer output of the throttle sensor 20 changes from time 1 to 1, as shown in FIG. 3(b)K. When the intake pipe pressure PM starts to rise at TA increase (hereinafter referred to as TA increase) is performed. Specifically, this TA increase is performed, for example, by setting a value (positive value) that is the sum of the values corresponding to the amount of change in the throttle valve opening at each predetermined time period as a correction coefficient F, and then calculating the correction coefficient F at each engine revolution or at a certain period of time. This is done by attenuating up to a at a predetermined attenuation rate.

更に、吸気管圧力PMが絞り弁開度TAの増大に遅れて
増大し始めると、時刻t1から、菖3図0に実線Cで示
すような、吸気管圧力PMの増大速度に応じた精度の高
い増量補正を行う吸気管圧力増量(以下PM増量と称す
る)が行われる。このPM増量は、具体的には、例えば
、吸気管圧力の所定時間毎の変化量に応じた値を積算し
た11(正値)を補正係数Fとし、次いで、エンジン回
転毎或いは一定時間毎K、所定の減衰速度でり迄減衰さ
せること罠よって行なわれる。
Furthermore, when the intake pipe pressure PM begins to increase with a delay in increasing the throttle valve opening TA, from time t1, the accuracy increases according to the rate of increase in the intake pipe pressure PM, as shown by the solid line C in Fig. 3. Intake pipe pressure increase (hereinafter referred to as PM increase) is performed to perform a high increase correction. Specifically, this PM increase is performed, for example, by setting the correction coefficient F to 11 (positive value), which is the sum of values corresponding to the amount of change in intake pipe pressure every predetermined time, and then increasing , the damping is performed by a trap until a predetermined damping speed is reached.

なお、この際K、時刻1.〜1.ではLL増量とTA増
量が重なり、又、時11A is〜t4では全ての増量
が重なり、更K、時刻t4〜t、ではTA増量とPM増
量が重なつ℃いるが、全ての増量を重畳して増量補正を
行ってしまうと、%に、応答は早(・が精度の曳くない
LL増量、TA増量の影響で、過増量となる恐れがある
。従って、本実施例においては、第3図0に太い実線で
示す如く、前記LL増量、TA増量、PM増量の最大値
をたどって加速増量を行うようにしている。
In this case, K, time 1. ~1. Then, the LL increase and the TA increase overlap, and from time 11A is to t4, all increases overlap, and from time t4 to time t, the TA increase and PM increase overlap, but all increases overlap. If the amount increase correction is performed based on the %, the response will be too fast (but the accuracy will not be reduced due to the influence of the LL increase and the TA increase, which may result in an excessive increase. Therefore, in this example, as shown in FIG. 3) As shown by the thick solid line at 0, the acceleration increase is performed by following the maximum values of the LL increase, TA increase, and PM increase.

次に、減速時には、時刻t・で絞つp18が閉じられ始
めると、吸気管圧力の減少に先行し【、第3図ρに実!
IDで示すような、絞り弁開[TAの減少速度に応じた
迅速な減量補正を行う絞り弁開度減量(以下TA減量と
称する)が行われろ。このTA、減量は、具体的には、
例えば、絞り弁開駅TAの所定時間毎の変化量に応じた
値を積算した値(負値)を補正係数Fとし、次いで、エ
ンジン回転毎或いは一定時間毎に、所定の回復速度でり
迄回復させることによって行われる。
Next, during deceleration, when the throttle p18 begins to close at time t, the intake pipe pressure begins to decrease [, as shown in Figure 3 ρ!
As indicated by ID, throttle valve opening reduction (hereinafter referred to as TA reduction) is performed, which performs a rapid reduction correction according to the reduction speed of throttle valve opening [TA. Specifically, this TA, weight loss,
For example, a value (negative value) that is the sum of the values corresponding to the amount of change in the throttle valve opening station TA every predetermined time is set as the correction coefficient F, and then the correction coefficient F is set as the correction coefficient F, and then the correction coefficient F is set as the value (negative value) that is the sum of the values corresponding to the amount of change in the throttle valve opening station TA every predetermined time. This is done by restoring.

次いで、吸気管圧力PMが減少し始めると、時刻t、か
う、第3図(In実線Eで示すような、吸気管圧力PM
の減少速度に応じた精度の高℃・減量補正を行う吸気管
圧力減量(以下PM減量と称する)が行われる。このP
M減量は、具体的には、例えば、吸気管圧力PMの所定
時間毎の変化量に応じた値を積算した値(負値)を補正
係数Fとし、次いで、エンジン回転毎或いは一定時間毎
に、所定の回復速度でθ迄回復させることによって行な
われる。
Next, when the intake pipe pressure PM starts to decrease, at time t, the intake pipe pressure PM decreases as shown by the solid line E in FIG.
Intake pipe pressure reduction (hereinafter referred to as PM reduction) is performed to perform highly accurate temperature reduction correction according to the rate of decrease in PM. This P
Specifically, for example, the M reduction is calculated by setting a value (negative value) that is the sum of values corresponding to the amount of change in the intake pipe pressure PM at each predetermined time as a correction coefficient F, and then calculating the value at each engine revolution or at a certain time. , by recovering up to θ at a predetermined recovery speed.

なお、この際に、TA減量とPM減量が重複した場合に
、両者を合わせ行うと過減量になる恐れがある。従つ又
、本実施例においては、第3図(均に太い実線で示す如
く、前記TA減量とPM減量の最小値をたどって、時刻
t、〜1.では、TA減量のみを行ない、時刻t、〜t
、では、PM減量のみを行うようにしている。
At this time, if TA weight loss and PM weight loss overlap, there is a risk that excessive weight loss will occur if both are performed together. Accordingly, in this embodiment, as shown in FIG. 3 (as shown by the uniformly thick solid line), by tracing the minimum values of the TA weight loss and PM weight loss, only the TA weight loss is performed at time t, ~1. t, ~t
, only PM reduction is performed.

更に、加速増量と減速増量が重複した場合、例えば、第
4図(A)K示す如く、吸気管圧力PMシカ−大傾向か
ら急激に減少傾向に転じた場合Kf1.減速減量の実行
要求が発生する時刻tll まで−1、第4図(B)K
示すような、PMtllllの補正係数(以下、増量係
数と称する)FAKよるPM増量を実行し、時刻t、、
以後は、該時刻t、、 Kおける増量係数の残存値FA
IIを初期値とじ工、第4図(qに示すような、PM減
量の補正係数(以下、減量係数と称する)FBによるp
M減量を実行する。従って、最終的な補正係数Fは、襖
4図0に示す如くとなる。なお、第4図は、加速増量実
行中に減速減量の実行兼求があった場合について凶示し
たものであるが、逆に、減速減量実行中に加速増量の実
行要求があった場合には、減量係数の残存値を初期値と
して加速111mを実行する。
Further, if the acceleration increase and the deceleration increase overlap, for example, as shown in FIG. 4(A)K, if the intake pipe pressure PM rapidly changes from a large tendency to a decrease tendency, Kf1. -1 until time tll when a request for execution of deceleration reduction occurs, Fig. 4 (B) K
Execute the PM increase using the PMtllll correction coefficient (hereinafter referred to as increase coefficient) FAK as shown at time t,...
After that, the residual value FA of the increase coefficient at the time t, K
II is the initial value, and p is determined by the PM reduction correction coefficient (hereinafter referred to as reduction coefficient) FB as shown in Fig. 4 (q).
Execute M reduction. Therefore, the final correction coefficient F is as shown in FIG. Note that Fig. 4 shows the case where there is a request to execute deceleration reduction while executing acceleration increase, but conversely, if there is a request to execute acceleration increase while deceleration reduction is being executed. , acceleration 111 m is executed using the remaining value of the reduction coefficient as the initial value.

具体的には、第5図に示すような、補正係数Fの計算プ
ログラムにより、まず、ステップ101で、吸気管圧力
PM等の変化状!gAK応じて、加速時であるか否かを
判定する。判定結果が正である場合には、ステップ10
2に進み、現在の補正係数Fが負であるか否か、即ち、
減速減量実行中であるか否かを判定する。判定結果が否
である場合には、ステップ103に進み、IQを初期値
として、前記のようにして増量係数FAを算出する。又
、ステップ1020判定結果が正である場合は、ステッ
プ104に進み、レジスタBの値、即ち、減量係数FB
の残存値を初期値として、前記のようにして増量係数F
AI算出する。ステップ103或いはステップ104終
了後、ステップ105で、算出された増量係数FAの値
をレジスタAK格納し、更に、ステップ106で、レジ
スタ人の内容を補正係数Fとして、このプログラムを終
了する。
Specifically, using a calculation program for the correction coefficient F as shown in FIG. 5, first, in step 101, changes in the intake pipe pressure PM, etc. Depending on gAK, it is determined whether or not it is the time of acceleration. If the determination result is positive, step 10
Proceed to step 2 to determine whether the current correction coefficient F is negative, that is,
Determine whether or not deceleration reduction is being executed. If the determination result is negative, the process proceeds to step 103, where the increase coefficient FA is calculated as described above using IQ as the initial value. If the determination result in step 1020 is positive, the process proceeds to step 104, where the value of register B, that is, the reduction coefficient FB
With the residual value of F as the initial value, the increase coefficient F is determined as described above.
AI calculation. After step 103 or step 104, the calculated value of the increase coefficient FA is stored in the register AK in step 105, and furthermore, in step 106, the contents of the register are set as the correction coefficient F, and this program is ended.

一方、前出ステップ1010判定結果が否である場合に
は、ステップ107に進み、吸気管圧力PM等の変化状
態に応じて、減速時であるか否かを判定する。判定結果
が正である場合には、ステップ108に進み、現在の補
正係数Fが正であるか否か、即ち、加速増量実行中であ
るか否かを判定する。判定結果が否である場合には、ス
テップ109に進み、りな初期値として、前記のようk
して減量係数FBを算出する。又、ステップ108の判
定結果が正である場合は、ステップll0K進み、レジ
スタAの値、埋ち、増量係数FAの残存値を初期値とし
て、前記のようにして減量係数FBを算出する。ステッ
プ109或〜・は110終了後、ステップ111で、算
出された減量係#lFBの値なレジスタBK格納し、更
に、ステップ112で、レジスタBの内容を補正係数F
として、このプログラムを終了する。
On the other hand, if the determination result in step 1010 is negative, the process proceeds to step 107, and it is determined whether or not deceleration is occurring, depending on the change state of the intake pipe pressure PM, etc. If the determination result is positive, the process proceeds to step 108, where it is determined whether the current correction coefficient F is positive, that is, whether acceleration fuel increase is being executed. If the determination result is negative, the process proceeds to step 109, where k is set as the initial value of Rina as described above.
and calculate the weight loss coefficient FB. If the determination result in step 108 is positive, the process proceeds to step 110K, where the value of the register A, filling, and the remaining value of the increase coefficient FA are used as initial values to calculate the decrease coefficient FB as described above. After steps 109 to 110 are completed, in step 111, the value of the calculated reduction coefficient #lFB is stored in register BK, and further, in step 112, the contents of register B are changed to correction coefficient F.
and exit this program.

又、前出ステップ101及び107における判定結果が
いずれも否である場合、即ち、加速時。
Further, if the determination results in steps 101 and 107 are both negative, that is, at the time of acceleration.

減速時のいずれでもない場合には、ステップ113に進
み、現在の補正係数Fが正であるか否か、即ち、加速増
量実行中であるか否かを判定する。判定結果が正である
場合には、ステップ114に進み、所定時間或いは所定
回転数毎に、補正係数Fの減衰を行い、ステップ115
で、減衰後の権正係[FなレジスタAに記憶して、との
グ駿グクムを終了する。
If neither is the case during deceleration, the process proceeds to step 113, where it is determined whether the current correction coefficient F is positive, that is, whether acceleration is being increased. If the determination result is positive, the process proceeds to step 114, where the correction coefficient F is attenuated at a predetermined time or every predetermined number of rotations, and step 115
Then, store the information in register A after the decay and finish the process.

又、前出ステップ1130判定結果が否である場合には
、ステップ116に進み、現在の補正係数Fが負である
か否か、即ち、減速増量実行中であるか否かを判定する
。判定結果が正である場合には、ステップ117に進み
、所定時間或いは所定回転数毎に、補正係数Fの回復を
行い、ステップ118で、回復後の補正係数Fをレジス
タBK記憶して、このプログラムを終了する。
If the determination result in step 1130 is negative, the process proceeds to step 116, where it is determined whether the current correction coefficient F is negative, that is, whether or not deceleration and increase are being executed. If the determination result is positive, the process proceeds to step 117, where the correction coefficient F is recovered at a predetermined time or every predetermined number of rotations, and in step 118, the recovered correction coefficient F is stored in the register BK, and the correction coefficient F is stored in the register BK. Exit the program.

前記のよ5KL、て、極めて応答の早いLL増量、応答
の早いTA増減量、精度の高いPM増減量を組合わせて
、加速増量及び減速減量を行うことKよって、アクセル
ペダルを早(踏み込んだ場合には、多量の増量が実施さ
れ、一方アクセルペダルな徐々に踏み込んだ場合には少
量の増量が行われる等、アクセルペダルの踏み方に応じ
た適切な増量、或いは減量を実現することができる。又
、加減速が連続した場合にも、適切な増減量を行うこと
ができ、空燃比を理論空燃比近傍に維持して、加減速性
能と排気ガス浄化性能を両立することができる。
The above-mentioned 5KL is performed by combining extremely quick response LL increase, quick response TA increase/decrease, and highly accurate PM increase/decrease to perform acceleration increase and deceleration decrease. When the accelerator pedal is depressed, a large amount is increased, while when the accelerator pedal is gradually depressed, a small amount is increased, so that an appropriate increase or decrease can be achieved depending on how the accelerator pedal is depressed. Furthermore, even when acceleration/deceleration is continuous, it is possible to appropriately increase or decrease the air-fuel ratio, maintain the air-fuel ratio near the stoichiometric air-fuel ratio, and achieve both acceleration/deceleration performance and exhaust gas purification performance.

尚、前記実施例においては、加速時KLLLL増量A増
量、PM増量を組合わせ【加速増量を行い、減速時KT
A減量及びPM減量を組合わせて減速減量を行うよ5K
していたが、加速増量或いは減速減量の組合わせはこれ
に限定されず、例えば、LL増量を省略することも可能
である。
In the above embodiment, the KLLLL increase during acceleration, the A increase, and the PM increase are combined [acceleration increase is performed, KT during deceleration is
5K to perform deceleration weight loss by combining A weight loss and PM weight loss.
However, the combination of acceleration increase and deceleration decrease is not limited to this, and for example, it is also possible to omit the LL increase.

以上説明した遡り、本発明によれば、加速時、減速時、
及び、加減速か連続した場合に、適切な増減量補正を行
うことができ、空燃比を理論空燃比近傍に維持して、良
好な加減速性能と排気ガス浄化性能を両立することがで
きる。従って、吸気管圧力式の電子制御燃料噴射装置を
用いた場合でも、精密な空燃比制御を行うことが可能と
なるという優れた効果を有する。
As explained above, according to the present invention, during acceleration, deceleration,
In addition, when acceleration/deceleration is continuous, appropriate increase/decrease correction can be performed, the air-fuel ratio can be maintained near the stoichiometric air-fuel ratio, and good acceleration/deceleration performance and exhaust gas purification performance can be achieved at the same time. Therefore, even when an intake pipe pressure type electronically controlled fuel injection device is used, there is an excellent effect that precise air-fuel ratio control can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明□に係る内燃機関の亀子制御燃料噴射
方法が採用された自動車用エンジンの吸気管圧力式電子
制御燃料噴射装置の実施例の構成を示すブロック線図、
第2vAは、前記実施例で用いられているデジタル制御
回路の構成を示すブはツク線図、第3図は、前記実施例
における加速増量及び減速減量の様子を示す線図、第4
図は、同じく、加速増量と減速減量が重複した場合の増
減量の様子を示す線図、第5図は、前記実施例で用いら
れている、補正係数を算出するためのプログラムを示す
流れ図である。 10・・・エンジン、14・・・吸気温センサ、18・
・・絞り弁、20・・・スロットルセンサ、23・・・
吸気管圧力センサ、30・・・インジェクタ、34・・
・酸素III!度センサ、 40・・・ディストリビュータ、 42・・・上死点センサ、44・・・クラ/り角センサ
、46・・・冷却水温センサ、54・・・デジタル制御
回路。 代理人  高 矢  論 (捻か1名) 第 3 図 tl 44図
FIG. 1 is a block diagram showing the configuration of an embodiment of an intake pipe pressure type electronically controlled fuel injection device for an automobile engine in which the method for controlling fuel injection for an internal combustion engine according to the present invention is adopted;
2vA is a block diagram showing the configuration of the digital control circuit used in the embodiment, FIG. 3 is a diagram showing the acceleration increase and deceleration decrease in the embodiment, and FIG.
Similarly, the figure is a line diagram showing the state of increase/decrease when acceleration increase and deceleration decrease overlap, and Fig. 5 is a flow chart showing the program for calculating the correction coefficient used in the above embodiment. be. 10... Engine, 14... Intake temperature sensor, 18.
... Throttle valve, 20... Throttle sensor, 23...
Intake pipe pressure sensor, 30... Injector, 34...
・Oxygen III! degree sensor, 40...Distributor, 42...Top dead center sensor, 44...Crack/rip angle sensor, 46...Cooling water temperature sensor, 54...Digital control circuit. Agent Takaya Ron (one person) Figure 3 tl Figure 44

Claims (1)

【特許請求の範囲】[Claims] (1)  エンジンの吸気管圧力とエンジン回転数に応
じて基本噴射量を求めると共に、過渡時は、エンジン運
転状!lIK応じて前記基本噴射量を補正するととによ
って燃料噴射量を決定するよ5Kした内燃機関の電子制
御燃料噴射方法において、加速時に補正係数を増大し、
次いで減衰する加速増量と、減速時に補正係数を減小し
、次いで回復する減速減量とを行うと共に、加速増量と
減速減量が重複した場合は、既に実行中の加速増量或い
は減速減量の残存値を初期値として、新たに実行要求の
あった減速減量或いは加速増量を実行するようにしたこ
とを特徴とする内燃機関の電子制御燃料噴射方法。
(1) In addition to determining the basic injection amount according to the engine intake pipe pressure and engine speed, during transient times, calculate the engine operating condition! In an electronically controlled fuel injection method for an internal combustion engine in which the fuel injection amount is determined by correcting the basic injection amount according to lIK, the correction coefficient is increased during acceleration,
Next, an acceleration increase that is attenuated and a deceleration decrease that decreases the correction coefficient during deceleration and then recovers are performed, and if the acceleration increase and deceleration decrease overlap, the residual value of the acceleration increase or deceleration decrease that is already being executed is An electronically controlled fuel injection method for an internal combustion engine, characterized in that, as an initial value, a newly requested reduction in deceleration or increase in acceleration is executed.
JP3284282A 1982-03-02 1982-03-02 Electronically controlled fuel injection method of internal-combustion engine Granted JPS58150043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3284282A JPS58150043A (en) 1982-03-02 1982-03-02 Electronically controlled fuel injection method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3284282A JPS58150043A (en) 1982-03-02 1982-03-02 Electronically controlled fuel injection method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58150043A true JPS58150043A (en) 1983-09-06
JPH0475382B2 JPH0475382B2 (en) 1992-11-30

Family

ID=12370064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3284282A Granted JPS58150043A (en) 1982-03-02 1982-03-02 Electronically controlled fuel injection method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58150043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282247A (en) * 1985-10-03 1987-04-15 Nippon Denso Co Ltd Air-fuel ratio controller for internal combustion engine
JPS631731A (en) * 1986-06-19 1988-01-06 Mazda Motor Corp Fuel control device for electronic fuel injection type engine
US5522366A (en) * 1993-12-16 1996-06-04 Mitsubishi Denki Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282247A (en) * 1985-10-03 1987-04-15 Nippon Denso Co Ltd Air-fuel ratio controller for internal combustion engine
JPS631731A (en) * 1986-06-19 1988-01-06 Mazda Motor Corp Fuel control device for electronic fuel injection type engine
US5522366A (en) * 1993-12-16 1996-06-04 Mitsubishi Denki Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine

Also Published As

Publication number Publication date
JPH0475382B2 (en) 1992-11-30

Similar Documents

Publication Publication Date Title
JPS6165038A (en) Air-fuel ratio control system
US4487190A (en) Electronic fuel injecting method and device for internal combustion engine
JPS58133434A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58150048A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58150043A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPS58144631A (en) Method for electronically controlling fuel injection in internal-combustion engine
JPH057546B2 (en)
JPS58144637A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58133435A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58150042A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH059620B2 (en)
JPS58133430A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0368221B2 (en)
JPS58150033A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144636A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58150045A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS58144639A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58150036A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0423098B2 (en)
JPH07139395A (en) Fuel injection control method
JPS6324142B2 (en)
JPS5996446A (en) Non-synchronous fuel injection method for internal- combustion engine under acceleration