JPS58148451A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS58148451A
JPS58148451A JP57032007A JP3200782A JPS58148451A JP S58148451 A JPS58148451 A JP S58148451A JP 57032007 A JP57032007 A JP 57032007A JP 3200782 A JP3200782 A JP 3200782A JP S58148451 A JPS58148451 A JP S58148451A
Authority
JP
Japan
Prior art keywords
region
fet
regions
drain
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57032007A
Other languages
Japanese (ja)
Inventor
Satoshi Takano
高野 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57032007A priority Critical patent/JPS58148451A/en
Publication of JPS58148451A publication Critical patent/JPS58148451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Abstract

PURPOSE:To prevent the soft error generating from the incidented radioactive rays by a method wherein the impurities, having the conductivity different from that of the three regions below-mentioned, of 10<17>-10<19>cm<-3> or thereabout in density is ion-implanted at the lower part of the region on a substrate whereon an FET will be formed in such a manner that the drain, channel and source regions of the FET will be surrounded. CONSTITUTION:The numbers 14, 24 and 15, 28 in the diagram indicate the drain and source regions which were formed making contact with the drain and source electrodes of the FET respectively, and 16 and 26 indicate the channel regions which were formed making contact with the gate electrode. Also, 17 and 27 are the regions having different conductivity from that of the above-mentioned three regions which were formed surrounding the drain, channel and source regions of the FET. To be more precise, p type regions 17 and 27 of high density (10<17>- 10<19>cm<-3>) are formed in such a manner that they are surrounding the active region of the FET, the electron which was diffused from the substrate is recoupled in the p type region before it reaches the n type active region, thereby enabling to prevent the electron from being injected into the active region.

Description

【発明の詳細な説明】 この発明は、半導体、特に砒化ガリウム(GaAs)を
用いた集積回路の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of integrated circuits using semiconductors, particularly gallium arsenide (GaAs).

砒化ガリウムを用いて第1図のスタティック型メモリセ
ルを実現するに白たシ、従来構造のFETとしてt/X
2111iに示すものがあった。l!1図においてQl
−Q4はFET%R1,R2は負荷抵抗であル、以上4
個のFETと2個の負荷抵抗で1ビツトのメモリセルが
構成されている。VDは電源、Wはワード線、D及びD
はそれぞれDATA!iJ及びDATA線を表わす。
In order to realize the static type memory cell shown in Figure 1 using gallium arsenide, it is necessary to use t/X as a FET with a conventional structure.
There was one shown in 2111i. l! In Figure 1, Ql
-Q4 is FET%R1, R2 is load resistance, more than 4
A 1-bit memory cell is composed of two FETs and two load resistors. VD is the power supply, W is the word line, D and D
are each DATA! It represents the iJ and DATA lines.

11!2図において、(1)はGaAsの半導体基板を
表わし、(ロ)及びに)、斡及び(2)、(至)及び鋳
はそれぞれFETのドレイン電極、ゲート電極、ソース
IE極を表わし、α◆及び(ハ)、(至)及び(2)は
それぞれFETのドレイン電極及びソース電極に接触し
て形成されたドレイン領域、ソース領域を表わし、(至
)及び(ト)はゲート電極に接触して形成されたチャネ
ル領域を表わす。
In Figure 11!2, (1) represents the GaAs semiconductor substrate, (b) and (2), (2), (to), and (2) represent the drain electrode, gate electrode, and source IE electrode of the FET, respectively. , α◆, (c), (to), and (2) represent the drain region and source region formed in contact with the drain electrode and source electrode of the FET, respectively, and (to) and (g) represent the gate electrode. Represents a channel region formed in contact.

次に、第1図及び*g図を用いて、メモリセルの構造に
ついて詳しく説明する。なお、以下では例としてブレー
ナ型nチャネルMESFET  を用いた場合について
述べる。
Next, the structure of the memory cell will be explained in detail using FIG. 1 and *g. In the following, a case where a Brehner type n-channel MESFET is used will be described as an example.

スタティック型のメモリセルは、II!1図に示すよう
に、Ql−Q4の4仏0FETとR1、R2の2偽の抵
抗で構成されている。Q8とQ4は互いのゲートが相手
のドレインに交差接続されており、ソースは接地電位に
なっている。・抵抗R1,R2は電源電位VDとQ8t
Q4のドレイン(以下、ノードNl 、N2と称する)
とに接続されている。QlとQ2は、それぞれDATA
線りとノードNlの間及びDATA  線りとノードN
E−に接続されてお)、かつ、ゲートはワード線Wに共
通に接続されている。このメモリセルの動作は、以下の
通〕である。いま、Nlが高電位% N16f接地電位
になっているような記憶状態にあるとする。このとiQ
8は非導通、Q4は導通状態になっている。この状態で
ワード線Wを高電位にすると、N1が高電位で、かつQ
8がオフしているために、DATA *’aからメモリ
セルに向かっては電流は流れないが、 N2は接地電位
であシ、かっQ4がオンしているために% DATA線
りからメモリセルへ向かって電流が流れる。逆に、’N
16(接地電位、N肋;高電位であるような記憶状態の
場合には、 DATA線りからメモリセルへ向かって電
流が流れ、 DATA線りからメモリセルへ向かっては
電流は流れない。
Static type memory cells are II! As shown in Figure 1, it consists of four FETs Ql-Q4 and two false resistors R1 and R2. The gates of Q8 and Q4 are cross-connected to the drains of the other, and the sources are at ground potential.・Resistors R1 and R2 are connected to power supply potential VD and Q8t
Drain of Q4 (hereinafter referred to as nodes Nl and N2)
and is connected to. Ql and Q2 are each DATA
Between wire and node Nl and DATA wire and node N
E-), and their gates are commonly connected to word line W. The operation of this memory cell is as follows. Assume that the storage state is now such that Nl is at a high potential %N16f ground potential. Konoto iQ
8 is in a non-conducting state, and Q4 is in a conducting state. When the word line W is set to a high potential in this state, N1 is at a high potential and Q
8 is off, no current flows from DATA *'a to the memory cell, but N2 is at ground potential and Q4 is on, so no current flows from the DATA line to the memory cell. Current flows towards. On the contrary, 'N
16 (ground potential, N line; In the case of a memory state where the potential is high, current flows from the DATA line to the memory cell, but no current flows from the DATA line to the memory cell.

このように、DATA線及びDATA線のどちらに電流
が流れているかを図示していないセンスアンプによって
検知し、メモリセルの記りt情報を知るものである。書
き込みも同様にDATA線又はDATA線のどちらかを
高電位に保つたままワード線Wの電位を高電位にし、ノ
ードNl 、N2のどちらか一方を高電位に固定するこ
とによってなされる。
In this way, a sense amplifier (not shown) detects which of the DATA lines and DATA lines the current is flowing through, and the information written in the memory cell is known. Writing is similarly performed by raising the potential of the word line W to a high potential while keeping either the DATA line or the DATA line at a high potential, and fixing either node Nl or N2 to a high potential.

互いに交差接続されるFET%Q8及びQ412)ドレ
イン領域Nl、N2は第2図に示すように、通常、半絶
縁性GaAs  基板上にシリコン・イオウなどをイ寸
ン注入してn型領域(ロ)及び弼を形成する。このn型
領域上にドレイン電極(ロ)及び(2)を形成し、図示
していない配線によって相手のFETのゲート電極(6
)及び働と交差接続する。
The drain regions (N1, N2) of FETs (Q8 and Q412) which are cross-connected to each other are usually formed by instant implantation of silicon, sulfur, etc. onto a semi-insulating GaAs substrate, as shown in FIG. ) and form a ridge. Drain electrodes (b) and (2) are formed on this n-type region, and the gate electrode (6) of the mating FET is formed by wiring (not shown).
) and cross-connect with function.

近年、半導体素子の微細化が進み、メモリセルの面積が
縮小されるのに伴い、記憶情報としてメモリセルに貯え
られる蓄積電荷量も微少なものになってきた。メモリセ
ルの蓄積電荷は、その大部分がn型領域であるN1及び
M0部分に貯えられる。
In recent years, as semiconductor devices have become smaller and the area of memory cells has been reduced, the amount of accumulated charge that can be stored in memory cells as stored information has also become smaller. Most of the accumulated charge in the memory cell is stored in the N1 and M0 portions, which are n-type regions.

従来のメモリセル構造では、GaAs  基板中に入射
した放射線によって生成された電子・正孔対の内、n型
領域に到達した電子によって回路が誤動作を生じる欠点
があった。
The conventional memory cell structure has a drawback in that circuits malfunction due to electrons reaching the n-type region among electron-hole pairs generated by radiation incident on the GaAs substrate.

この誤動作は一時的なものであシ、次のサイクルに正常
データを書き込めば、今度は正常に動作することから、
一般にソフトエラーとよばれる。
This malfunction is temporary, and if normal data is written in the next cycle, it will operate normally again.
Generally called a soft error.

次に、このソフトエラーの起こる原因を第!!図を用い
て説明する。
Next, let's look at the cause of this soft error! ! This will be explained using figures.

GaAl 基板内に入射した放射線は、停止するまでに
基板内を数十μm通過するが、停止するまでにその径路
に沿って多数の電子・正孔対を生成する。生成された電
子・正孔対の内、基板(1)内で生成された電子及び正
孔は拡散運動によって基板(1)内を移動し、一部は再
結合してしまうが、一部の電子は基板表面のn型領域に
注入される。いま、N1が高電位、N2が低電位になっ
ておシ、放射線によって生成された電子が拡散によって
Noon型領域(ロ)に注入されたとする。一般にME
SFET において、ドレイン及びソースとしてのn型
拡散領域の容量は、基板との高の接合容態のみであり、
極めて小さな値しかもたない。
The radiation incident on the GaAl substrate passes through the substrate several tens of micrometers before stopping, but generates a large number of electron-hole pairs along its path before stopping. Among the generated electron-hole pairs, the electrons and holes generated within the substrate (1) move within the substrate (1) by diffusion movement, and some of them recombine, but some of them Electrons are injected into the n-type region of the substrate surface. Now, suppose that N1 is at a high potential, N2 is at a low potential, and electrons generated by radiation are injected into the Noon type region (b) by diffusion. Generally ME
In SFET, the capacitance of the n-type diffusion region as drain and source is only in the high junction state with the substrate,
It has an extremely small value.

従って各n型領域に蓄積される電荷鳳も極めて小さな値
にしかならない。いま、n型領域が高電位であるときの
蓄811IiE荷鳳を。卸、低電位になったときの蓄積
電荷量をQ (L)とすると、一般にQ(L)>Q@ が成ル立っ、この2状態の蓄積電荷量の差をQ cri
tmQ(L)−Q@− とすれば、放射線の入射によってn型領域(ロ)、■及
び基板(υ内で生成され、拡散によってn型領域内に注
入された電荷Qad)5 Qa 〉Qcrit という関係を満足すれば、今まで高電位であったn型領
域は一時的に低電位、或いはそれ以下の電位にまで下が
る。高電位であったN1の電位が下がシ、N2の電位よ
シも低くなった楊合薔ζは、ラッチの反転が起こシ、そ
れまでの記憶情報が反転する。
Therefore, the charge accumulated in each n-type region also has an extremely small value. Now, let's look at the 811IiE charge when the n-type region is at a high potential. In general, if the amount of accumulated charge when the potential becomes low is Q(L), then Q(L)>Q@ generally holds, and the difference in the amount of accumulated charge between these two states is Q cr
If tmQ(L)-Q@-, then the n-type region (b), ■ and the substrate (charge Qad generated within υ and injected into the n-type region by diffusion) due to the incidence of radiation 5 Qa 〉Qcrit If this relationship is satisfied, the n-type region, which has been at a high potential, will temporarily drop to a low potential or a lower potential. When the potential of N1, which was high, is lowered, and the potential of N2 is also lower, the latch is inverted, and the previously stored information is inverted.

また、Nlの電位が低くなり、Nzと同電位になった場
合には、ラッチは不安定な状態−となシ、極く僅かのノ
イズ等によっても容おに反転してしまう。
Furthermore, when the potential of Nl becomes low and becomes the same potential as Nz, the latch is in an unstable state and is easily reversed by even the slightest noise.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、基板上でFETが形成される領域
の下部に、 FETのドレイン−チャネル・ソースの各
領域を取シ囲むように、この8領域とは異なる導電性の
不純物を10!7〜1 g19が程度の濃度でイオン注
入し、放射線が基板内に入射したことによシ生成された
電荷が、上記a領域に注入するのを防止でき、更にドレ
イン領域との間にジャンクレヨン容量を形成することに
よってノードの容量を増大させ、ソフトエラーを防止す
ることができる構造を提供することを目的として−る。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional method, and a structure is provided below the region where the FET is formed on the substrate so as to surround each region of the drain, channel, and source of the FET. , an impurity with a conductivity different from that of these 8 regions is ion-implanted at a concentration of about 10!7 to 1 g19, and charges generated by radiation entering the substrate are injected into the above a region. It is an object of the present invention to provide a structure that can prevent soft errors by increasing the capacitance of the node by forming a junction capacitance with the drain region.

以下、ヒの発明の一実施例を図について説明する。第8
図において、(1)はG!lAs  の半導体基板を表
わし、Oル及び(2)、(2)及び(イ)、に)及び(
2)はそれぞれFETのドレイン電極、ゲート電極、ソ
ース電極を表わし、04及び(財)、(ト)及び曽はそ
れぞれFETのドレイン電極及びソースIIIE極に接
触して形成されたドレイン領域、ソース領域を表わし、
(2)及び−はゲー)11E極に接触して形成されたチ
ャネル領域を表わす、また、勤及び(転)は、FETの
ドレイン領域、チャネル領域、ソース領域を取シ囲むよ
うに形成された上記8領域とは異った導電性を有する領
域である。ソフトエラーは、放射線が基板内に入射した
ととによって生成された電荷が、FETの活性領域に注
入されることによって庄じる。活性領域がn型の場合に
は、電子の注入によりて誤動作が引き起こされる。この
発明は、 FETの活性領域を取シ囲むよう暑ζ高濃度
(1,17〜10 ” al−” )のP副領域を形成
し、基板から拡散してきた電子がn型の活性領域iこ到
達する以1[1fこ、P型領域内で再結合し、活性領域
に注入されない構造を提供するものである。
Hereinafter, one embodiment of the invention will be described with reference to the drawings. 8th
In the figure, (1) is G! represents a semiconductor substrate of lAs, and (2), (2) and (a), ni) and (
2) respectively represent the drain electrode, gate electrode, and source electrode of the FET, and 04, (foundation), (t), and so are the drain region and source region formed in contact with the drain electrode and source IIIE electrode of the FET, respectively. represents,
(2) and - represent the channel region formed in contact with the 11E electrode; This region has a different conductivity from the above eight regions. Soft errors are caused by the injection of charge into the active region of the FET, which is generated by radiation incident into the substrate. When the active region is n-type, malfunctions are caused by electron injection. This invention forms a P sub-region with a high heat concentration (1,17 to 10 "al-") to surround the active region of the FET, so that electrons diffused from the substrate are absorbed into the n-type active region. This provides a structure in which the ions are recombined within the P-type region and are not implanted into the active region.

また、メモリセルのラッチの誤動作を防ぐためには、ラ
ッチのノードN1.N2の付加容量を大きくすれば、た
とえ高電位側のノードに電子が注入されても、電位降下
は小さくてすみ、ラッチが反転するのを防ぐことができ
る。この発明は、FET0n型活性領域の下部に101
7〜l Q 1’ cli’程度の高濃度のP副領域を
形成し、n型活性領域との間に形成されるジャンクレヨ
ン容量をFETの各ノードに付加することによシ、ノー
ドの容iを増大させ、放射線の入射による電位降下をお
さえ、FETの誤創作を防ぐものである。
Furthermore, in order to prevent malfunction of the memory cell latch, the latch node N1. If the additional capacitance of N2 is increased, even if electrons are injected into the node on the high potential side, the potential drop will be small, and it is possible to prevent the latch from inverting. In this invention, 101
By forming a P sub-region with a high concentration of about 7~l Q 1'cli' and adding a junk capacitance formed between it and the n-type active region to each node of the FET, the capacitance of the node can be reduced. This increases i, suppresses potential drop due to incidence of radiation, and prevents erroneous creation of FETs.

なお、上記実施例では、 MESFIIT  に適用し
た場合の例を示したが、本発明はWIt極部分の構造に
は依存しないので、MOSFET に対しても適用でき
る。
In the above embodiment, an example is shown in which the present invention is applied to a MESFET, but since the present invention does not depend on the structure of the WIt pole portion, it can also be applied to a MOSFET.

また、本発明の他の実施例として、メサ型のλ(ESF
ET に適用した例を第4因に示す、製造方法に若干の
違いはあるものの、メサ型に対しても同様に適用できる
。また、上記実施例ではnチャネル素子について説明し
たが、各領域の導電性及び各電極への印加電圧の符号を
全て逆にすれば、Pチャネル素子に対しても同様に適用
で偽る。
Further, as another embodiment of the present invention, a mesa-type λ (ESF
An example of application to ET is shown in the fourth factor.Although there are slight differences in the manufacturing method, it can be similarly applied to mesa type. Further, although the above embodiments have been described with respect to an n-channel device, if the conductivity of each region and the sign of the voltage applied to each electrode are all reversed, the same applies to a p-channel device.

以上のように、この発明によれば、FETのドレイン領
域、チャネル領域、ソース領域を取ル囲むように、上記
8領域とは異なる導電性をもつ領域を形成したので、放
″射線が基板内に入射したことによって生成された電荷
が、基板内を拡散して上記8領域に注入されるのを防ぐ
ことができ、また、上記8領域との間に新たにジャンク
レヨン容量が付加され、メモリセルのラッチ部分の蓄積
容量を大きくすることができるので、集私回路に放射線
が入射したことによって生じるソフトエラーな防止する
ことができる。
As described above, according to the present invention, a region having a conductivity different from the eight regions described above is formed so as to surround the drain region, channel region, and source region of the FET, so that radiation is transmitted into the substrate. It is possible to prevent the charges generated by being incident on the substrate from being diffused in the substrate and injected into the above eight regions, and a new junk capacitance is added between the above eight regions, and the memory Since the storage capacity of the latch portion of the cell can be increased, soft errors caused by radiation incident on the private collector circuit can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスタティックRAMのメモリ士ルO回路図、第
2図は従来のGaAs  FETの構造を示す断面図、
I!8図はこの発明の一実施例によるG1As FET
の構造を示す断面図、1114図はこの発明の他の実施
例によるGaAs FETの構造を示す断面図である。 (1)・・・GaAs  半導体基板、(2)、@・・
・ドレイン電極、(財)、@・・・ゲート電極、曽、@
・・・ソース電極、(ロ)。 (財)・・・ドレイン領域、a!、(2)・・・ソース
領域、(至)、曽・・・チャネル領域、(財)、@・・
・ドレイン領域、チャネル領域、ソース領域と異なる導
電性をもつ領域なお、図中、同一符号は同一、又は相当
部分を示す。 代理人 葛野信− 第1図 νJ 手続補正書(自発λ 特許庁長官殿 1、事件の表示    特願昭57−11007号2、
発明の名称 半導体集積回路 3、補正をする者 6、補正の対象 明細書の発明の詳細な説明の欄。 6、補正のFF3谷 明細書中帛4頁帛16行にr DATA線又はDATA
線」とあるのをrDATA線又はDATA線」と訂正す
る。 以  上
Figure 1 is a memory circuit diagram of a static RAM, Figure 2 is a cross-sectional diagram showing the structure of a conventional GaAs FET,
I! Figure 8 shows a G1As FET according to an embodiment of the present invention.
FIG. 1114 is a cross-sectional view showing the structure of a GaAs FET according to another embodiment of the present invention. (1)...GaAs semiconductor substrate, (2), @...
・Drain electrode, @... Gate electrode, So, @
...Source electrode, (b). (Foundation)...Drain area, a! , (2)...source region, (to), so...channel region, (goods), @...
- Regions with conductivity different from those of the drain region, channel region, and source region Note that in the drawings, the same reference numerals indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 1 νJ Procedural Amendment (Voluntary λ) Commissioner of the Japan Patent Office 1, Indication of Case Patent Application No. 11007-1987 2,
Name of the invention: Semiconductor integrated circuit 3, Person making the amendment 6, Detailed description of the invention in the specification to be amended. 6. r DATA line or DATA on page 4, line 16 of the revised FF3 specification
Correct the phrase "line" to "rDATA line or DATA line". that's all

Claims (1)

【特許請求の範囲】 (1)半絶縁性基板上に形成した半導体集積回路におい
て、第1の導電性を有する不純物を1011〜1019
1′3程度の濃度に注入・拡散させて形成した第1の領
域と、この第1の領域を取)囲むように、第1の導電性
とは異なる第2の導電性の不純物を1017〜IQ” 
[’程度の濃度に注入・拡散させて形成した第2の領域
とを有することを特徴とする半導体集積回路。 (2〉半絶縁性基板上にFETを形成したととを特徴と
する特許請求の範囲第1項記載の半導体集積回路。 (3)第1の領域が、フリップ・フロップ回路の交差接
続されたノードとして使用されることを特徴とする特許
の請求範囲第1項記載の半導体#l積回路。 (4)第1の領域が電荷蓄徴領域として使用されること
を特徴とする特許の請求範囲第1項記載の半導体集積回
路。 (5)半絶縁性基板として半絶縁性砒化ガリウム基板を
用いたことを特徴とする特許の請求範囲第1項記載の半
導体集積回路。 (6)第2の領域は第1の領域の周囲の全部又は一部を
取シ囲むように形成された迷とを特徴とする特許請求の
範囲第1項記載の半導体集積回路。
Scope of Claims: (1) In a semiconductor integrated circuit formed on a semi-insulating substrate, an impurity having a first conductivity of 1011 to 1019 is added.
A first region is formed by implanting and diffusing to a concentration of about 1'3, and impurities of a second conductivity different from the first conductivity are added to the first region (1017 to 1017) so as to surround this first region. IQ”
A semiconductor integrated circuit characterized by having a second region formed by implantation and diffusion to a concentration of about ['. (2) The semiconductor integrated circuit according to claim 1, characterized in that an FET is formed on a semi-insulating substrate. (3) The first region is a cross-connected flip-flop circuit. The semiconductor #l product circuit according to claim 1, which is used as a node. (4) The semiconductor #1 product circuit according to claim 1, which is used as a node. The semiconductor integrated circuit according to claim 1. (5) The semiconductor integrated circuit according to claim 1 of the patent, characterized in that a semi-insulating gallium arsenide substrate is used as the semi-insulating substrate. (6) The second 2. The semiconductor integrated circuit according to claim 1, wherein the region is a groove formed to surround all or part of the periphery of the first region.
JP57032007A 1982-02-26 1982-02-26 Semiconductor integrated circuit Pending JPS58148451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57032007A JPS58148451A (en) 1982-02-26 1982-02-26 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57032007A JPS58148451A (en) 1982-02-26 1982-02-26 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS58148451A true JPS58148451A (en) 1983-09-03

Family

ID=12346815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57032007A Pending JPS58148451A (en) 1982-02-26 1982-02-26 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS58148451A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222271A (en) * 1985-03-28 1986-10-02 Toshiba Corp Field effect transistor and manufacture thereof
JPS63302535A (en) * 1987-06-03 1988-12-09 Mitsubishi Electric Corp Gallium arsenide integrated circuit
JPH01173655A (en) * 1987-12-28 1989-07-10 Toshiba Corp Junction field-effect transistor
US4951114A (en) * 1988-12-05 1990-08-21 Raytheon Company Complementary metal electrode semiconductor device
US4954866A (en) * 1987-09-24 1990-09-04 Hitachi, Ltd. Semiconductor integrated circuit memory
US5002897A (en) * 1988-12-05 1991-03-26 Raytheon Company Method of making a complementary metal electrode semiconductor device
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127291A (en) * 1978-03-27 1979-10-03 Cho Lsi Gijutsu Kenkyu Kumiai Mos semiconductor ic device
JPS5698855A (en) * 1980-01-09 1981-08-08 Nec Corp Semiconductor memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127291A (en) * 1978-03-27 1979-10-03 Cho Lsi Gijutsu Kenkyu Kumiai Mos semiconductor ic device
JPS5698855A (en) * 1980-01-09 1981-08-08 Nec Corp Semiconductor memory device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222271A (en) * 1985-03-28 1986-10-02 Toshiba Corp Field effect transistor and manufacture thereof
JPS63302535A (en) * 1987-06-03 1988-12-09 Mitsubishi Electric Corp Gallium arsenide integrated circuit
US4954866A (en) * 1987-09-24 1990-09-04 Hitachi, Ltd. Semiconductor integrated circuit memory
JPH01173655A (en) * 1987-12-28 1989-07-10 Toshiba Corp Junction field-effect transistor
US4951114A (en) * 1988-12-05 1990-08-21 Raytheon Company Complementary metal electrode semiconductor device
US5002897A (en) * 1988-12-05 1991-03-26 Raytheon Company Method of making a complementary metal electrode semiconductor device
JPH0513444A (en) * 1991-10-23 1993-01-22 Hitachi Ltd Field-effect transistor

Similar Documents

Publication Publication Date Title
US6404018B1 (en) Static memory cell and method of manufacturing a static memory cell
CA1262964A (en) Radiation hard gated feedback memory cell
US6775178B2 (en) SEU resistant SRAM using feedback MOSFET
JPH03114256A (en) Semiconductor storage device
KR960015348B1 (en) Semiconductor memory device
US4809226A (en) Random access memory immune to single event upset using a T-resistor
KR940020424A (en) Static semiconductor memory
JPS58148451A (en) Semiconductor integrated circuit
JPH0378810A (en) Semiconductor integrated circuit
US4833644A (en) Memory cell circuit having radiation hardness
US5844837A (en) Static memory device including supplemental gate capacitance
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPS61267369A (en) Field effect transistor
US4320312A (en) Smaller memory cells and logic circuits
JPH0227592A (en) Static random access memory cell
JPS61206254A (en) Semiconductor memory device
JPS58148450A (en) Semiconductor integrated circuit
JPS58148465A (en) Semiconductor device
KR910009425B1 (en) Semiconductor integrated circuit
JPS6337646A (en) C-mos output circuit
JPH065714B2 (en) Semiconductor memory cell
JPH02284466A (en) Semiconductor storage device
JPS62214593A (en) Semiconductor memory device
JPH02226760A (en) Semiconductor logic circuit
JPH07282584A (en) Semiconductor storage device