JPS5814809B2 - Hydrogen gas separation and recovery method - Google Patents

Hydrogen gas separation and recovery method

Info

Publication number
JPS5814809B2
JPS5814809B2 JP2627579A JP2627579A JPS5814809B2 JP S5814809 B2 JPS5814809 B2 JP S5814809B2 JP 2627579 A JP2627579 A JP 2627579A JP 2627579 A JP2627579 A JP 2627579A JP S5814809 B2 JPS5814809 B2 JP S5814809B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
hydrogen gas
separation system
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2627579A
Other languages
Japanese (ja)
Other versions
JPS55119420A (en
Inventor
古川薫
松尾達樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2627579A priority Critical patent/JPS5814809B2/en
Publication of JPS55119420A publication Critical patent/JPS55119420A/en
Publication of JPS5814809B2 publication Critical patent/JPS5814809B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は、硫化水素分解生成物から水素を効果的に回収
分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively recovering and separating hydrogen from hydrogen sulfide decomposition products.

近年水素ガスは未来エネルギー源として注目されている
が、水の熱化学分解による水素製造法の一つとして、硫
化水素を経由する分解サイクルが提案されている。
In recent years, hydrogen gas has been attracting attention as a future energy source, and a decomposition cycle via hydrogen sulfide has been proposed as one method for producing hydrogen by thermochemical decomposition of water.

この方法は手段自体として極めて有力なものであるが、
経済的に成立し得る方法とする為には、分解によって生
成する水素ガスを反応系から効果的に分離回収する技術
を確立しなければならない。
Although this method is extremely effective as a means,
In order to make this an economically viable method, a technology must be established to effectively separate and recover the hydrogen gas produced by decomposition from the reaction system.

一方石油精製化学の分野における脱硫工程では所謂水素
化脱硫が行なわれているが、この方法では莫大な量の水
素が必要であるので、いったん生成した硫化水素を再分
解して水素の回収をはかることが望ましいとされている
On the other hand, in the desulfurization process in the field of petroleum refining chemistry, so-called hydrodesulfurization is carried out, but since this method requires a huge amount of hydrogen, the hydrogen sulfide that has been generated must be re-decomposed to recover the hydrogen. It is considered desirable.

しかしこの場合にも、水素の回収コストは相当に低いも
のでなければならない。
However, even in this case, the hydrogen recovery costs must be fairly low.

ところでこの様な硫化水素分解・水素回収法としては、
硫化水素ガスを熱分解した後、多孔質ガラス管を通して
水素ガスを拡散分離させる方法が知られている。
By the way, such hydrogen sulfide decomposition and hydrogen recovery methods include:
A known method is to thermally decompose hydrogen sulfide gas and then diffuse and separate the hydrogen gas through a porous glass tube.

しかしこの方法による場合は、水素の拡散透過係数は極
めて小さく、到底実用レベルには至らない。
However, when this method is used, the diffusion permeability coefficient of hydrogen is extremely small and cannot reach a practical level.

本発明者等はこれらの事情に着目し、水素ガスの分離精
度に悪影響を与えずに拡散透過係数を高めようとするも
ので、外径2mm以下の多孔質中空ガラス繊維又はセラ
ミック中空繊維の束を用いて水素ガスを拡散分離する方
法を確立することに成功した。
The present inventors focused on these circumstances and attempted to increase the diffusion permeability coefficient without adversely affecting the separation accuracy of hydrogen gas, and created a bundle of porous hollow glass fiber or ceramic hollow fiber with an outer diameter of 2 mm or less. We succeeded in establishing a method for diffusing and separating hydrogen gas using

即ち本発明においては、外径2mm以下、膜厚0.8m
m以下並びに細孔径20〜200Åの繊維体と称し得る
様な中空体を使用しているので、従来法の如き管体に比
べて単位体積当りの表面積が大きく、水素の拡散透過量
を飛躍的に高めることができる。
That is, in the present invention, the outer diameter is 2 mm or less and the film thickness is 0.8 m.
Since it uses a hollow body that can be called a fibrous body with a pore diameter of 20 to 200 Å, it has a larger surface area per unit volume than the tube used in conventional methods, and dramatically increases the amount of hydrogen diffusion and permeation. can be increased to

即ち、例えば外径10mm、長さ500mmの多孔質ガ
ラス管を実際の水素ガス分離に使用した場合、その外表
面積は10π×500=5000π(mm2)であるの
に対し、本願発明の外径0.2mn、長さ500mmの
中空繊維膜〔外膜表面積0.2π×500=100π(
mm2):)を同じ目的に用いれば、単位体積当りの表
面積を大きくすることができる。
That is, for example, when a porous glass tube with an outer diameter of 10 mm and a length of 500 mm is used for actual hydrogen gas separation, its outer surface area is 10π x 500 = 5000π (mm2), whereas the outer diameter of the present invention is 0 .2mm, length 500mm hollow fiber membrane [outer membrane surface area 0.2π×500=100π(
mm2):) can be used for the same purpose to increase the surface area per unit volume.

何故なら普通上記中空繊維膜は数千本又は数万本を束ね
で使用されるもので、仮に5,000本使ったとしても
、その外膜表面積は100π×5,000=500,0
00π(mm2)となり、上記の多孔質ガラス管と比べ
て500,000π/5000π=100即ち100倍
の膜面積が確保されるのである。
This is because the above hollow fiber membranes are usually used in bundles of several thousand or tens of thousands, and even if 5,000 are used, the surface area of the outer membrane is 100π x 5,000 = 500,0
00π (mm2), and a membrane area that is 500,000π/5000π=100, that is, 100 times larger than that of the above-mentioned porous glass tube, is secured.

かかる膜面積の差は当然のことながら水素の拡散透過量
とも深く関連し、膜面積の大きいものの方が水素の拡散
透過量を飛躍的に高めることができたのである。
This difference in membrane area is, of course, closely related to the amount of hydrogen diffusion and permeation, and the larger membrane area was able to dramatically increase the amount of hydrogen diffusion and permeation.

後述のデータによれば多孔質ガラス管に比べて本願発明
の中空繊維膜の水素透過流量は約2,400倍にも達し
ている。
According to the data described below, the hydrogen permeation flow rate of the hollow fiber membrane of the present invention is about 2,400 times that of a porous glass tube.

次に平膜も水素ガス分離ζこ使用されているが、かかる
平膜でも膜面積を大きくすることはできない。
Next, flat membranes are also used for hydrogen gas separation, but even with such flat membranes, the membrane area cannot be increased.

今中空繊維束と平膜とについて一例をあげると、外径1
mm、内径Q.5mm、膜厚0.257nrILの中空
繊維膜を充填率50%で充填した中空繊維束の単位体積
当りの膜表面積は約2m2/m3となるのに対し、膜厚
1mm、膜支持体厚み10mm膜間隔5mmの平膜では
、その膜表面積は約0.1m2/m3となり、中空繊維
束の方が20倍も大きくなる。
To give an example of a hollow fiber bundle and a flat membrane, the outer diameter is 1
mm, inner diameter Q. The membrane surface area per unit volume of a hollow fiber bundle filled with a hollow fiber membrane of 5 mm and a membrane thickness of 0.257 nrIL at a filling rate of 50% is approximately 2 m2/m3, whereas a membrane with a membrane thickness of 1 mm and a membrane support thickness of 10 mm For flat membranes with a spacing of 5 mm, the membrane surface area is approximately 0.1 m2/m3, which is 20 times larger for hollow fiber bundles.

さらに上記の中空繊維束では(外圧一内圧)が50気圧
に充分耐え得るが、平膜では膜厚1mm以上にしないと
耐圧性が得られず、かかる観点も考慮すれば、膜厚0.
25mmの中空繊維膜の膜表面積は膜厚1mmの平膜の
それに比べて約80倍以上大きくなる。
Furthermore, the above-mentioned hollow fiber bundle can sufficiently withstand 50 atmospheres (external pressure - internal pressure), but with a flat membrane, pressure resistance cannot be achieved unless the membrane thickness is 1 mm or more, and taking this point into consideration, the membrane thickness is 0.
The membrane surface area of a 25 mm hollow fiber membrane is approximately 80 times larger than that of a 1 mm thick flat membrane.

以下実施例を中心としてより具体的に述べるが、下記説
明及び特許請求の範囲に記載した実施態様は、いずれも
本発明を代表的に説明するもので、本発明の制限的解釈
に利用されるものではない。
The following will be described in more detail focusing on examples, but the embodiments described in the following description and claims are representative explanations of the present invention, and are not to be used for restrictive interpretation of the present invention. It's not a thing.

一般に硫化水素の分解は、触媒の存在下600℃以上に
加熱して行なわれる。
Generally, hydrogen sulfide is decomposed by heating to 600° C. or higher in the presence of a catalyst.

従って分解反応を終えたガスは600℃以上、場合によ
っては 800℃以上もの高温になっており、これらと
接触する前記中空繊維には優れた耐熱性が要求される。
Therefore, the gas after the decomposition reaction is at a high temperature of 600° C. or higher, and in some cases, 800° C. or higher, and the hollow fibers that come into contact with these gases are required to have excellent heat resistance.

従って一般的なセラミックはいずれも好適な材料である
が、ガラス系の場合Cこは、耐熱ガラス例えば硼珪酸ガ
ラス(主成分: Sio2,B203+Na20)が好
適であり、前記SI.02の代りにアルミナ、ジルコニ
ア又は酸化チタン等を配合したセラミックも好ましいも
のとして例示される。
Therefore, all general ceramics are suitable materials, but in the case of glass-based materials, heat-resistant glasses such as borosilicate glass (main components: Sio2, B203 + Na20) are suitable; Preferred examples include ceramics containing alumina, zirconia, titanium oxide, etc. instead of 02.

尚分解反応ガス中には相当量の硫化水素が混在している
ので、この様な条注下で耐食性を発揮するものであるこ
とも要求されるか,セラミック及び前記例示ガラスはこ
れらの点でも問題はない。
Furthermore, since a considerable amount of hydrogen sulfide is mixed in the decomposition reaction gas, it is also required that the ceramic and the above-mentioned glass exhibit corrosion resistance under such conditions. No problem.

又これらの素材は多孔質でなければならず、セラミック
はその本態として多孔質であるから格別の問題はないが
、ガラスの場合は、中空繊維状Gこ形成した後で多孔質
化の処理が必要である。
In addition, these materials must be porous, and ceramics are inherently porous, so there is no particular problem, but in the case of glass, it is necessary to make it porous after forming the hollow fibers. is necessary.

この処理を、前記硼珪酸ガラスの場合を例にとって説明
すると下記の通りである。
This treatment will be explained below using the case of borosilicate glass as an example.

例えば、SiO2:60〜75%、B203:30−2
0%、Na20 :10〜5係を1350〜1400℃
で混合溶融する。
For example, SiO2: 60-75%, B203: 30-2
0%, Na20: 10-5 at 1350-1400℃
Mix and melt.

この融液をチューブインオリフイスから流出させ、10
〜1000m/分の速度で引取る。
This melt was flowed out from the tube-in orifice, and
Take-off at a speed of ~1000 m/min.

こうして得られた中空ガラス繊維を700〜900℃で
熱処理した後、1規定硫酸等の酸で、100゜C程度の
条件で洗浄すると,ガラス本体の壁面から、Na20や
B203等のアルカリ分に富む部分が中和抽出され、後
には多孔質部が形成される。
After heat-treating the hollow glass fibers obtained in this way at 700 to 900°C, when they are washed with an acid such as 1N sulfuric acid at a temperature of about 100°C, the glass fibers are rich in alkalis such as Na20 and B203 from the wall surface of the glass body. A portion is neutralized and extracted, and later a porous portion is formed.

この様な多孔質ガラス及びセラミックにおける多孔性は
、水素分子のみを通し、それより分子量の大きいガス成
分、例えば硫化水素や気体硫黄を通過させないものが望
ましく、20〜200A程度の直径を有する微細孔が連
続的につなかって中空繊維の内外を連通させておればよ
い。
The porosity of such porous glasses and ceramics is preferably one that allows only hydrogen molecules to pass through and does not allow gas components with larger molecular weights, such as hydrogen sulfide and gaseous sulfur, to pass through, and is made of micropores with a diameter of about 20 to 200 A. It is sufficient that the hollow fibers are connected continuously to communicate between the inside and outside of the hollow fiber.

そしてこれらの中空繊維は、その外径が2myn以下、
膜厚が0.8mm以下であるべきで、この条件を満す限
り、■耐圧性を保持しつつ単位体積当りの水素透過量が
増大し、且つ■後に述べるモジュールの製造に当り、中
空繊維の可撓性が高く成形作業性が良い等の利益が享受
できる。
These hollow fibers have an outer diameter of 2 myn or less,
The membrane thickness should be 0.8 mm or less, and as long as this condition is met, (1) the amount of hydrogen permeation per unit volume increases while maintaining pressure resistance, and (2) when manufacturing the module described later, the hollow fiber Benefits such as high flexibility and good molding workability can be enjoyed.

これに対し外径が2mmを越えると、単位当りの水素透
過量を高める為には前記微細孔を多くする必要があって
耐圧性が低下するし、或は微細孔を大きなものにすると
水素ガスの選択透過性も悪くなる。
On the other hand, if the outer diameter exceeds 2 mm, it is necessary to increase the number of micropores in order to increase the hydrogen permeation amount per unit, resulting in a decrease in pressure resistance, or if the micropores are made large, hydrogen gas The selective permeability of is also deteriorated.

又可撓性が低下しモジュール製造作業性が悪くなる。Furthermore, flexibility is reduced and module manufacturing workability is deteriorated.

尚内径については、原料ガスを中空繊維の外側に流す場
合は制限がゆるやかで、例えば外径の20〜80%程度
でよいが、より重要なことはその膜厚及び細孔径である
Regarding the inner diameter, when the raw material gas is passed outside the hollow fiber, the restriction is loose, for example, it may be about 20 to 80% of the outer diameter, but what is more important is the membrane thickness and pore diameter.

即ち多孔質ガラス管の場合は、管壁が相当厚肉であるか
ら、管壁内の細孔を通過する水素分子が、細孔(通路)
内面や曲の分子と衝突する機会も多く、透過性を著しく
低いものにしている。
In other words, in the case of a porous glass tube, the tube wall is quite thick, so hydrogen molecules passing through the pores in the tube wall are absorbed by the pores (passages).
There are many opportunities to collide with the molecules of the inner surface and the song, making the transparency extremely low.

そして水素分子の透過性を良くする為には、細孔の径を
水素分子の自由行程よりかなり大きくする必要があるが
、大きすぎると未分解ガス等との選択分離性が低くナる
In order to improve the permeability of hydrogen molecules, it is necessary to make the diameter of the pores considerably larger than the free path of hydrogen molecules, but if it is too large, the selective separation of undecomposed gas and the like will be low.

その為細孔径は大きくすることができず、1回当りの透
過量にも限度があるので、何回も繰り返して分離操作を
行なわなくてはならない。
Therefore, the pore diameter cannot be increased and there is a limit to the amount of permeation per pass, so the separation operation must be repeated many times.

その点本発明の如く、膜厚を0.8mm以下(好ましく
は0.5mm以下)としておけば、20〜200Å程度
の小さな細孔径であっても、前記衝突の頻度も少なく、
高い透過性を確保することができる。
In this regard, if the film thickness is set to 0.8 mm or less (preferably 0.5 mm or less) as in the present invention, the frequency of the collisions will be low even if the pore diameter is as small as 20 to 200 Å.
High transparency can be ensured.

尚細孔径が20Å未満であると、水素の透過量が少なく
、200Åを越えると未分解ガスとの分離性に悪影響を
生じる。
If the pore diameter is less than 20 Å, the amount of hydrogen permeation will be small, and if it exceeds 200 Å, the separation from undecomposed gas will be adversely affected.

以上の如く、中空繊維の諸元については、数値的制限が
厳格に守られなければならないものと、比較的緩やかな
ものとがあるが、寸法精度を特に高めCおきたい場合に
は、例えば前記硼珪酸ガラスでは、多孔質化処理の後、
弛緩状態に維持しつつ適尚ナ温度例えば800゜Cで熱
処理して寸法の安定化をはかることがすすめられる。
As mentioned above, regarding the specifications of hollow fibers, there are some numerical limits that must be strictly observed and others that are relatively loose. However, if you want to particularly increase the dimensional accuracy and C, for example, In borosilicate glass, after porosity treatment,
It is recommended to stabilize the dimensions by heat treating at a suitable temperature, for example 800° C., while maintaining the material in a relaxed state.

本発明の中空繊維は以上の如く構成され、その外(又は
内)側に混合ガスを流し,内(又は外)側へ水素ガスを
透過させる。
The hollow fiber of the present invention is constructed as described above, allows a mixed gas to flow through the outside (or inside) thereof, and allows hydrogen gas to permeate inside (or outside).

そして水素ガスの透過全量を高める為には、前記中空繊
維を多数本束ねて使用する必要がある。
In order to increase the total amount of permeation of hydrogen gas, it is necessary to use a large number of the hollow fibers in a bundle.

又実験によると、混合ガスを中空繊維の外側に流した場
合、特に該繊維の軸心に対して直交する方向に流したと
きは、水素ガスの透過好率が格段に良いことが判った。
Furthermore, experiments have shown that when the mixed gas is flowed outside the hollow fibers, particularly when it is flowed in a direction perpendicular to the axis of the fibers, the permeability of hydrogen gas is much better.

第1図はこれらの知見を生かして組み上げた分離系の一
例を示す右半分破断正面図であり、以下モジュールMと
称す。
FIG. 1 is a front view with the right half cut away, showing an example of a separation system constructed using these findings, and is hereinafter referred to as module M.

尚モジュールMは図示の如く堅型で使う場合の他横型で
使うこともある。
In addition to the case where the module M is used in a rigid type as shown in the figure, it may also be used in a horizontal type.

モジュールMは、金属製外管2を本体とし、その上下l
こエンドプレート3a及3bが取り付けられるが、O−
リング4a及び4b<<よって内部は気密的に保持され
る。
The module M has a metal outer tube 2 as a main body, and its upper and lower parts are
The end plates 3a and 3b are attached, but O-
Rings 4a and 4b<<Therefore, the interior is kept airtight.

エンドプレート4bの中央には、混合ガス導入管5が挿
し込まれ、締付けねじ6及びO−IJング7によって内
部の気密保持を画っている。
A mixed gas introduction pipe 5 is inserted into the center of the end plate 4b, and the inside is kept airtight by a tightening screw 6 and an O-IJ ring 7.

8は多孔質の流体分配管であり、矢印Åの如く導入され
てきた混合ガスを,矢印B方向、即ち本発明の中空繊維
9に対しその軸心と直交する方向へ流動させる機能を有
する。
Reference numeral 8 denotes a porous fluid distribution pipe, which has the function of causing the mixed gas introduced as shown by the arrow Å to flow in the direction of the arrow B, that is, the direction perpendicular to the axis of the hollow fiber 9 of the present invention.

尚7′はO−リングである。Note that 7' is an O-ring.

多数本束ねられた中空繊維9は、必要により支持シート
(又はプレート)13によって若干の間隔を残す様ζこ
配列され、上部は支持板10を貫通し、透過ガス受皿1
4に向って開口するが、下部は支持板11中に埋込み固
定される。
A large number of bundled hollow fibers 9 are arranged in such a way that a slight gap is left by a support sheet (or plate) 13 if necessary, and the upper part penetrates the support plate 10, and the permeated gas receiver 1
4, the lower part is embedded and fixed in the support plate 11.

尚支持板10は後記チューブ17に内接しでいるが支持
板11はチューブ17との間に空隙12を残している。
Although the support plate 10 is inscribed in a tube 17, which will be described later, a gap 12 is left between the support plate 11 and the tube 17.

尚流体分配管8の上部は支持板10内に埋め込まれて封
鎖される。
The upper part of the fluid distribution pipe 8 is embedded in the support plate 10 and sealed.

従って流体分配管8に圧入された混合ガスは全て矢印B
【こ沿って中空繊維9方向に流れる。
Therefore, all the mixed gas pressurized into the fluid distribution pipe 8 is shown by the arrow B.
[Hollow fibers flow in 9 directions along this line.]

そして混合ガス中の水素ガスは中空繊維9内に透過分離
され、矢印Cの如く集められて回収される。
Hydrogen gas in the mixed gas is permeated and separated within the hollow fibers 9, and is collected and recovered as shown by arrow C.

他方非透過のガス例えば未分解の硫化水素や気体硫黄は
、空隙20を通過して矢印Dの如く集められる。
On the other hand, non-permeable gases such as undecomposed hydrogen sulfide and gaseous sulfur pass through the gap 20 and are collected as indicated by arrow D.

尚15は非透過ガス捕集管、16は水素ガス捕集管を示
す。
Note that 15 indicates a non-permeable gas collection tube, and 16 indicates a hydrogen gas collection tube.

又本モジュールに導入される前記ガスは後述の如く高温
であり強い腐食性を有しているから、外管2の内面ζこ
耐熱、耐薬品性のチューブ17を装着したり、O−リン
グ4a,4b,7,7′等を耐熱・耐薬品性の高いもの
で形成したりすることが望まれる。
In addition, since the gas introduced into this module has a high temperature and strong corrosive properties as described later, a heat-resistant and chemical-resistant tube 17 is attached to the inner surface of the outer tube 2, and an O-ring 4a is attached to the inner surface of the outer tube 2. , 4b, 7, 7', etc., are preferably made of materials with high heat resistance and chemical resistance.

又支持板10及び11についても耐熱性であることが望
ましく、例えばセラミック系統や特殊ガラスが例示され
る。
It is also desirable that the support plates 10 and 11 are heat resistant, such as ceramics or special glass.

尚該特殊ガラスとしては、比較的低温度(900℃以下
)で軟化流動し、成形後は800℃でも十分な強度を有
するガラス接着剤、例えば硼酸鉛系ガラスや硼酸亜鉛系
ガラスを利用したものが好適である。
The special glass may be one that uses a glass adhesive that softens and flows at relatively low temperatures (below 900°C) and has sufficient strength even at 800°C after molding, such as lead borate glass or zinc borate glass. is suitable.

この様なモジュールMを使用して水素を拡散分離すると
きの好条件について述べる。
The favorable conditions when hydrogen is diffused and separated using such a module M will be described.

まず温度については、硫化水素の分解による水素生成の
促進と、水素と硫化水素との拡散分離係数(単位モル濃
度当りの水素透過係数と硫化水素透過係数の比)等の点
からしで、600〜900℃が好適範囲である。
First, regarding temperature, from the viewpoint of promoting hydrogen production by decomposing hydrogen sulfide and the diffusion separation coefficient between hydrogen and hydrogen sulfide (ratio of hydrogen permeability coefficient to hydrogen sulfide permeability coefficient per unit molar concentration), The preferred range is ~900°C.

又圧力については透過入口側の圧力が高い程水素透過係
数は向上するが、過大になると前記分離係数が低下して
透過水素の純度が悪くなるので、1.5〜8気圧程度で
行なう。
As for the pressure, the hydrogen permeability coefficient improves as the pressure on the permeation inlet side increases, but if it becomes too high, the separation coefficient decreases and the purity of permeated hydrogen deteriorates, so the pressure is about 1.5 to 8 atm.

又分離に供する硫化水素としでは、石油精製化学tこお
ける水素化脱硫工程で生成した硫化水素が良い。
As the hydrogen sulfide for separation, it is preferable to use hydrogen sulfide produced in a hydrodesulfurization process in a petroleum refinery and chemical company.

即ち従来の硫化水素処理手段は、これを酸化して水と硫
黄にするもので、水素化脱硫についてはその都度新しい
水素を供給しなければならなかったが、本発明法を利用
すれば分解回収された水素を循環使用することができる
In other words, conventional methods for treating hydrogen sulfide oxidize it into water and sulfur, and new hydrogen had to be supplied each time for hydrodesulfurization, but with the method of the present invention, it can be decomposed and recovered. The hydrogen produced can be recycled and used.

尚水素化脱硫プロセスで得られる硫化水素の温度は、通
常300〜450°C程度で、これを可及的に保温した
ままで熱分解するが、分解反応の初期に生成しでくる水
素濃度はかなり低い。
The temperature of hydrogen sulfide obtained in the hydrodesulfurization process is usually around 300 to 450°C, and it is thermally decomposed while keeping it as warm as possible, but the concentration of hydrogen produced in the early stage of the decomposition reaction is Quite low.

従って1つのモジュールで分離回収されるガス中の水素
濃度は原ガスCこ比べて3〜4倍(理想状態での前記分
離係数は4,1)になってはいるものの、水素ガスとし
で見れば純度は依然として低い。
Therefore, although the hydrogen concentration in the gas separated and recovered in one module is 3 to 4 times that of the raw gas (the separation coefficient is 4.1 in ideal conditions), it cannot be seen as hydrogen gas. purity is still low.

そこでこのガスを更に他のモジュール(又、は今通過さ
せたモジュール)へ導いて再分離を行なうことが考えら
れる。
Therefore, it is conceivable to further guide this gas to another module (or the module through which it has just passed) and perform re-separation.

こうして設計されたのが多段分離方式であり、その概要
を第2図に示す。
A multi-stage separation system was designed in this way, and its outline is shown in FIG.

図中、Fは加熱炉でこの中に第1段モジュールM1、第
2段モジュールM2・・・・・・第6段モジュール1M
6が配置され、各モジュールM1〜M6における中央の
破線は、上部の原ガス側と下部の透過ガス側を模式的に
分画して示すものである。
In the figure, F is a heating furnace, in which there is a first stage module M1, a second stage module M2, ... a sixth stage module 1M.
6 are arranged, and the broken line at the center of each module M1 to M6 schematically shows the division between the upper raw gas side and the lower permeated gas side.

2重ラインR1〜R6は本発明における原ガス(及び再
分離ガス)の流れを示し、R7はもつとも高純度に回!
収された水素ガス20の排出ラインを示す。
Double lines R1 to R6 indicate the flow of the raw gas (and reseparated gas) in the present invention, and R7 indicates the flow of the raw gas (and reseparated gas) in the present invention.
A discharge line for collected hydrogen gas 20 is shown.

又P1〜P6は夫々加圧ポンプ、1は触媒層を示す。Also, P1 to P6 are pressure pumps, and 1 is a catalyst layer.

従って触媒の存在下に加熱分解された原ガスは第1段モ
ジュールM1に導入されて水素ガスを分離するが、この
ガス中には未分解ガスや副生ガスが多く含まれでいるの
で、ラインR2を通ってポンプP2で再加圧され、第2
段モジュールM2によって水素ガスを更に分離する。
Therefore, the raw gas that has been thermally decomposed in the presence of a catalyst is introduced into the first stage module M1 to separate hydrogen gas, but since this gas contains a large amount of undecomposed gas and by-product gas, is repressurized by pump P2 through R2, and the second
The hydrogen gas is further separated by stage module M2.

以下この手順を繰返し、ラインR7から高純度水素ガス
20を取り出す。
Thereafter, this procedure is repeated to take out high-purity hydrogen gas 20 from line R7.

他方ラインQ1〜Q6は、非透過ガスの排出ラインで、
これらは全てQ’点に集まるが、この中には、未分解の
硫化水素、気体硫黄、水素ガス、その他不純ガス等が含
まれている。
On the other hand, lines Q1 to Q6 are non-permeable gas discharge lines,
All of these gather at point Q', which includes undecomposed hydrogen sulfide, gaseous sulfur, hydrogen gas, and other impure gases.

従ってこれをラインQ7こ導いて該硫化水素の再分解を
行なったり、ラインQ8からコンデンサー18に導いて
気体硫黄を冷却凝縮させ液体硫黄19として取り出すこ
とができる。
Therefore, it can be led to line Q7 to re-decompose the hydrogen sulfide, or it can be led to line Q8 to condenser 18 to cool and condense the gaseous sulfur and take it out as liquid sulfur 19.

或はラインR′1〜R′5等で示す如く、非透過ガスラ
インから抜き取ったガスを、当該モジュール若しくはそ
れより前位のモジュールに導いて水素ガスを分離させる
こともできる。
Alternatively, as shown by lines R'1 to R'5, etc., the gas extracted from the non-permeable gas line can be introduced into the module concerned or a module preceding it to separate hydrogen gas.

この様に非透過ガスについては幾つかの処理ルートが考
えられるが、該ガス中の成分分析に応じて最適のルート
を選択する様に自動弁を組み込んでおけば、極めて効果
的な水素回収を行なうことができる。
As mentioned above, there are several possible treatment routes for non-permeable gas, but if an automatic valve is installed to select the optimal route according to the component analysis in the gas, extremely effective hydrogen recovery can be achieved. can be done.

但し第2図に示すシステムでは、前段モジュール側など
導入ガス流量が多くなるので、前段程犬型モジュールに
したり、複数並列配置にする等の配慮を行なうことが望
まれる。
However, in the system shown in FIG. 2, the flow rate of introduced gas increases on the front module side, so it is desirable to take measures such as using a dog-shaped module on the front stage or arranging a plurality of modules in parallel.

本発明は以上の如く構成されているので、分離系の単位
体積当りの水素透過係数は従来レベルに比べて飛躍的に
上昇する。
Since the present invention is constructed as described above, the hydrogen permeability coefficient per unit volume of the separation system is dramatically increased compared to the conventional level.

例えば公表されでいるデータによれば、外径15mm、
内径10mm、平均孔径48Åの多孔質ガラス管を用い
、820℃、3.8気圧の条件下で水素と硫化水素の拡
散分離を行なった結果、水素の透過係数は、 1×10−7mol/cm2・cmHg・minであり
、ガラス管群としての単位体積当りの水素透過流量は、 1.4X10−7moA/crl−c/rLHg・mi
ytであった。
For example, according to published data, the outer diameter is 15 mm,
Using a porous glass tube with an inner diameter of 10 mm and an average pore diameter of 48 Å, hydrogen and hydrogen sulfide were diffused and separated under conditions of 820°C and 3.8 atm. As a result, the hydrogen permeability coefficient was 1 x 10-7 mol/cm2.・cmHg・min, and the hydrogen permeation flow rate per unit volume as a group of glass tubes is 1.4X10-7moA/crl-c/rLHg・mi
It was yt.

これに対し本発明の中空ガラス繊維の例(諸元は後記実
施例参照)では最密充填時の水素透過流量は、 3.4X10’mol/i・mHg−miytであり、
前記公知例の約2300倍にも達している。
On the other hand, in the example of the hollow glass fiber of the present invention (see Examples below for specifications), the hydrogen permeation flow rate at the time of closest packing is 3.4X10'mol/i・mHg-miyt,
This is approximately 2,300 times higher than the known example.

従って本発明では、かなり高純度の水素が安価に且つ安
定して分離回収される様になり、脱硫工程に使用される
永素量の節約に資するところは極めて大きい。
Therefore, in the present invention, hydrogen of considerably high purity can be separated and recovered at low cost and stably, which greatly contributes to saving the amount of hydrogen used in the desulfurization process.

次に本発明の具体的実施例を示す。Next, specific examples of the present invention will be shown.

実施例 S102:70%,B203:23%、Na20:7%
からなる原料を1370℃で溶融混合し、この融液をチ
ューブインオリフィス(孔数:48)から流出させ、1
00m/mjlの速度で引取ると、外径:0.25mm
、内径:0.17mmの中空ガラス繊維束が得られた。
Example S102: 70%, B203: 23%, Na20: 7%
The raw materials consisting of the
When taken at a speed of 00m/mjl, outer diameter: 0.25mm
A hollow glass fiber bundle with an inner diameter of 0.17 mm was obtained.

これを800℃で熱処理した後、■規定硫酸浴(100
℃)中に1.5時間浸漬させてNa20やB203に富
む成分を抽出して多孔質化した。
After heat-treating this at 800℃,
℃) for 1.5 hours to extract components rich in Na20 and B203 and make it porous.

次いで800℃で2時間熱処理して寸法の安定化を画っ
た。
Then, it was heat treated at 800° C. for 2 hours to stabilize the dimensions.

こうして得られた多孔質中空ガラス繊維は外径:0.3
mm、内径:0.2mm、平均孔径:43A(窒素吸着
法で測定)であった。
The porous hollow glass fiber thus obtained has an outer diameter of 0.3
mm, inner diameter: 0.2 mm, and average pore diameter: 43 A (measured by nitrogen adsorption method).

そしてその水素透過係数は、 約4.8X10−6mol/i゜crrLHg・mry
tであり、最密充填時の水素透過流量は、 3.4X10−4mol./cyyt−cITLHgで
あった。
And its hydrogen permeability coefficient is approximately 4.8X10-6 mol/i゜crrLHg・mry
t, and the hydrogen permeation flow rate at the time of closest packing is 3.4X10-4 mol. /cyyt-cITLHg.

この中空繊維を用いて第1図に示す様な円筒状モジュー
ルを粗立てた。
Using this hollow fiber, a cylindrical module as shown in FIG. 1 was roughly assembled.

尚モジュール外径:300mm、モジュール全長:13
00mm、中空繊維の本数:約20万本、1本の繊維の
長さ:約1000mmで、両端のシールはソルダーガラ
スGS45M503(東芝)を用い、中空繊維1本1本
をていねいに接着固定した。
Module outer diameter: 300mm, module total length: 13
00 mm, number of hollow fibers: approximately 200,000, length of each fiber: approximately 1000 mm, and solder glass GS45M503 (Toshiba) was used to seal both ends, and each hollow fiber was carefully adhesively fixed.

このモジュールを用いて第2図の如きシステムを組み上
げ、炉内温度を750°Cに設定した。
Using this module, a system as shown in Fig. 2 was assembled, and the temperature inside the furnace was set at 750°C.

そして400℃の硫化水素ガスを1.3Nm3/min
導入し、硫化モリブデンを触媒として熱分解を行なった
And hydrogen sulfide gas at 400℃ at 1.3Nm3/min
Thermal decomposition was carried out using molybdenum sulfide as a catalyst.

各モジュールの入口圧を2.5気圧として運転したとこ
ろ、ライR7からは、純度93%の水素ガスが1.2N
m3/minの割合で得られ、又19として220℃の
液状硫黄:1.8kg/minが得られた。
When operating with the inlet pressure of each module set to 2.5 atm, 1.2 N of hydrogen gas with a purity of 93% was released from Lye R7.
m3/min, and as 19, liquid sulfur at 220°C: 1.8 kg/min was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に利用される分離系モジュールの
一例を示す右半分破断正面図、第2図はこれを組込んだ
システムの概念図である。 8・・・・・・流体分配管、9・・・・・・中空ガラス
繊維、10・・・・・・支持板。
FIG. 1 is a front view with the right half cut away showing an example of a separation system module used in carrying out the present invention, and FIG. 2 is a conceptual diagram of a system incorporating this module. 8... Fluid distribution pipe, 9... Hollow glass fiber, 10... Support plate.

Claims (1)

【特許請求の範囲】 1 硫化水素の分解により生成した水素ガスを、他の分
解生成物或は未分解ガスから分離回収する方法であって
、外径2mm以下、膜厚0.8mm以下並びに細孔径2
0〜200Aの多孔質中空ガラス繊維又はセラミック中
空繊維を多数本束ねて分離系とし、これら中空繊維の外
又は内側に未分離ガスを流すことにより、各中空繊維壁
を透過した水素ガスを該繊維の内又は外側に集めて回収
することを特徴とする水素ガスの分離回収方法。 2 特許請求の範囲第1項において、各中空繊維は、一
・方を開口端、他方を封鎖硫とし、未分離ガスを中空繊
維の外側に流して水素ガスを中空繊維内に集め、前記開
口端より回収する方法。 3 特許請求の範囲第1又は2項において、分離系を複
数段直列に連結し、該分離系で透過分離した水素ガスを
次位の分離系に導き、該水素ガス中に混入したその他の
分解生成物及び未分解ガスを順次除去し、最後位の分離
系から高純度の水素ガスを回収する方法。 4 特許請求の範囲第1,2又は3項においで、各分離
系における不透過ガスを、再び当該分離系、それより前
位の分離系、最前位の分離系、或は最前位の分離系の直
前に設ける触媒層のいずれか1つ以上に戻して再分離に
付する方法。 5 特許請求の範囲第4項において、再分離に付する不
透過ガスの全部又は一部をコンデンサーに導いて該不透
過ガス中の硫黄を凝縮分離する方法。 6 特許請求の範囲第1〜5項のいずれかにおいて、水
素脱硫によって生成した硫化水素からの水素回収に利用
する方法。
[Scope of Claims] 1. A method for separating and recovering hydrogen gas produced by decomposition of hydrogen sulfide from other decomposition products or undecomposed gas, which comprises a method for separating and recovering hydrogen gas produced by decomposition of hydrogen sulfide, and for hydrogen gas having an outer diameter of 2 mm or less, a film thickness of 0.8 mm or less, and a thin film. Pore diameter 2
A large number of porous hollow glass fibers or ceramic hollow fibers of 0 to 200A are bundled together to form a separation system, and by flowing unseparated gas outside or inside these hollow fibers, the hydrogen gas that has permeated through the walls of each hollow fiber is separated from the fibers. A method for separating and recovering hydrogen gas, characterized by collecting and recovering it inside or outside of a hydrogen gas. 2. In claim 1, each hollow fiber has an open end at one end and a sealed sulfur end at the other end, and unseparated gas flows outside the hollow fiber to collect hydrogen gas inside the hollow fiber. How to collect from the edge. 3. In claim 1 or 2, a plurality of separation systems are connected in series, and the hydrogen gas permeated and separated in the separation system is guided to the next separation system to remove other decomposed substances mixed in the hydrogen gas. A method in which products and undecomposed gas are sequentially removed, and high-purity hydrogen gas is recovered from the last separation system. 4 In Claims 1, 2, or 3, the non-permeable gas in each separation system is transferred again to that separation system, a preceding separation system, the most preceding separation system, or the most preceding separation system. A method in which the catalyst layer is returned to any one or more of the catalyst layers provided immediately before the catalyst layer and subjected to re-separation. 5. The method according to claim 4, in which all or part of the non-permeable gas to be subjected to re-separation is introduced into a condenser to condense and separate sulfur in the non-permeable gas. 6. A method for recovering hydrogen from hydrogen sulfide produced by hydrogen desulfurization according to any one of claims 1 to 5.
JP2627579A 1979-03-06 1979-03-06 Hydrogen gas separation and recovery method Expired JPS5814809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2627579A JPS5814809B2 (en) 1979-03-06 1979-03-06 Hydrogen gas separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2627579A JPS5814809B2 (en) 1979-03-06 1979-03-06 Hydrogen gas separation and recovery method

Publications (2)

Publication Number Publication Date
JPS55119420A JPS55119420A (en) 1980-09-13
JPS5814809B2 true JPS5814809B2 (en) 1983-03-22

Family

ID=12188725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2627579A Expired JPS5814809B2 (en) 1979-03-06 1979-03-06 Hydrogen gas separation and recovery method

Country Status (1)

Country Link
JP (1) JPS5814809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175216U (en) * 1984-10-23 1986-05-21
JPH0534599Y2 (en) * 1987-01-29 1993-09-01

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166342A (en) * 1981-03-31 1982-10-13 Toyobo Co Ltd Porous glass fiber
US4482360A (en) * 1982-05-29 1984-11-13 Nippon Steel Corporation Porous materials for concentration and separation of hydrogen or helium, and process therewith for the separation of the gas
JPS58192318U (en) * 1982-06-17 1983-12-21 藤井 博未 Cooling and hot air fan device
JPS5942006A (en) * 1982-09-03 1984-03-08 Agency Of Ind Science & Technol Module of porous glass separating membrane
JPS6099328A (en) * 1983-11-04 1985-06-03 Toyota Central Res & Dev Lab Inc Separating apparatus for condensable gas
US4671809A (en) * 1984-06-05 1987-06-09 Nippon Steel Corporation Gas separation module
USRE33502E (en) * 1985-05-08 1990-12-25 A/G Technology Corporation Gas separating
US4902307A (en) * 1988-11-18 1990-02-20 California Institute Of Technology Synthesis of SiO2 membrane on porous support and method of use of same
US4957513A (en) * 1989-05-10 1990-09-18 Raytheon Company Method of purifying a mixed H2 /H2 Se vapor stream
US5342431A (en) * 1989-10-23 1994-08-30 Wisconsin Alumni Research Foundation Metal oxide membranes for gas separation
US5240471A (en) * 1991-07-02 1993-08-31 L'air Liquide Multistage cascade-sweep process for membrane gas separation
US5383957A (en) * 1991-07-02 1995-01-24 L'air Liquide Multistage cascade sweep-process for membrane gas separation
US5269822A (en) * 1992-09-01 1993-12-14 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs barium-containing ion transport membranes
US5261932A (en) * 1992-09-01 1993-11-16 Air Products And Chemicals, Inc. Process for recovering oxygen from gaseous mixtures containing water or carbon dioxide which process employs ion transport membranes
US5240473A (en) * 1992-09-01 1993-08-31 Air Products And Chemicals, Inc. Process for restoring permeance of an oxygen-permeable ion transport membrane utilized to recover oxygen from an oxygen-containing gaseous mixture
US5487774A (en) * 1993-11-08 1996-01-30 Wisconsin Alumni Research Foundation Gas phase fractionation method using porous ceramic membrane
US5439624A (en) * 1994-02-14 1995-08-08 Wisconsin Alumni Research Foundation Method for forming porous ceramic materials
JP3402515B2 (en) * 1994-05-23 2003-05-06 日本碍子株式会社 Hydrogen separator, hydrogen separator using the same, and method for producing hydrogen separator
DE19804286C2 (en) * 1998-02-04 2001-09-27 Daimler Chrysler Ag Reactor for a catalytic chemical reaction, in particular a methanol reforming reactor
CN106436443B (en) * 2016-09-08 2018-08-07 南京航空航天大学 A kind of light-high-strength glass fiber filter paper and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6175216U (en) * 1984-10-23 1986-05-21
JPH0534599Y2 (en) * 1987-01-29 1993-09-01

Also Published As

Publication number Publication date
JPS55119420A (en) 1980-09-13

Similar Documents

Publication Publication Date Title
JPS5814809B2 (en) Hydrogen gas separation and recovery method
KR101376082B1 (en) Oxidation reactor and oxidation process
US5931987A (en) Apparatus and methods for gas extraction
US7425231B2 (en) Feed gas contaminant removal in ion transport membrane systems
US20090272266A1 (en) Method for oxygenating gases, systems suited therefor and use thereof
US4842620A (en) Process of gas enrichment with porous siliceous-containing material
JP5124158B2 (en) Methane concentration apparatus and method
JP5010109B2 (en) Hydrogen production apparatus and hydrogen production method
US7947117B2 (en) Hydrogen purification process that uses a combination of membrane separation units
JPH04505280A (en) Gas separation by semipermeable membrane
JP5757243B2 (en) Silica-based hydrogen separation material and method for producing the same, and hydrogen separation module and hydrogen production apparatus including the same
KR19980070495A (en) Separation of Multi-Component Gas Mixtures Using Shoe-Adsorbed Membranes
JP2019520198A (en) Process and equipment for gas separation
De Meis et al. Microporous inorganic membranes for gas separation and purification
JP5516951B2 (en) Gas purification method
Scholz et al. Design of membrane modules for gas separations
WO2002102710A1 (en) Catalytic membrane reactor that is used for the decomposition of hydrogen sulphide into hydrogen and sulphur and the separation of the products of said decomposition
KR900005525B1 (en) Porous inorganic siliceous - containing gas enriching material and processes of manufacture and use
US6152986A (en) Method of enriching chlorine gas
KR900009127B1 (en) Process of gas enrichment with porous siliceous containing material
Gopalakrishnan et al. Preparation of a multi-membrane module for high-temperature hydrogen separation
US20100307333A1 (en) Supported metal membrane with internal cooling for h2 separation
JPS59156414A (en) Separation and recovery of gas
EP4303206A1 (en) Reactor module, method for synthesizing liquid fuel, separation membrane module and separation method
JPS6274433A (en) Method for separating gas