JPS58147087A - Heat sink for semiconductor element - Google Patents
Heat sink for semiconductor elementInfo
- Publication number
- JPS58147087A JPS58147087A JP57030199A JP3019982A JPS58147087A JP S58147087 A JPS58147087 A JP S58147087A JP 57030199 A JP57030199 A JP 57030199A JP 3019982 A JP3019982 A JP 3019982A JP S58147087 A JPS58147087 A JP S58147087A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- heat sink
- electrode
- constitution
- taken
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02476—Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
- H01S5/02484—Sapphire or diamond heat spreaders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
- H01S5/02345—Wire-bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02355—Fixing laser chips on mounts
- H01S5/0237—Fixing laser chips on mounts by soldering
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
ダイヤモンドは現存する物質中で最も高硬度であるとと
もに最高の熱伝導率を有することは良く知られている。DETAILED DESCRIPTION OF THE INVENTION It is well known that diamond has the highest hardness and highest thermal conductivity of all existing materials.
近年半導体素子の急速な発展に伴って特に高電界、大電
流密度で作動する素子においてはその放熱構造が重要な
役割を有するため、ダイヤモンドをヒートシンクとして
用いることが検討され、既に一部で実用化されている。With the rapid development of semiconductor devices in recent years, the heat dissipation structure plays an important role, especially in devices that operate at high electric fields and high current densities, so the use of diamond as a heat sink has been considered, and some have already put it into practical use. has been done.
例えば光通信用の半導体レーザーや高出力マイクロ波発
振用ダイオードは最高の熱伝導率を有するダイヤモンド
をヒートシンクとして用いることにより、高出力で信頼
度の高いものが得られている。For example, semiconductor lasers for optical communications and diodes for high-output microwave oscillations have high output and high reliability by using diamond, which has the highest thermal conductivity, as a heat sink.
ダイヤモンドを半導体素子のヒートシンクとして用いる
他の利点は熱膨張係数が半導体素子のそれに比較的近い
値を有することである。例えば銅をヒートシンクとして
用いた場合は半導体素子より熱膨張係数が数倍大である
ため温度変化により素子に熱的歪を与える問題がある。Another advantage of using diamond as a heat sink for semiconductor devices is that it has a coefficient of thermal expansion that is relatively close to that of the semiconductor device. For example, when copper is used as a heat sink, the coefficient of thermal expansion is several times larger than that of a semiconductor element, so there is a problem that thermal distortion is caused to the element due to temperature changes.
またダイヤモンドは高硬度で機械的強度が高いこともヒ
ートシンクとしての利点の一つで、半導体素子のポンデ
ィングの際l・で高い圧力で行なうことができ、銅ヒー
トシンクの如く変形してしまうようなことが無い。Another advantage of diamond as a heat sink is that it has high hardness and high mechanical strength, and when bonding semiconductor devices, it can be done at high pressure (1.5 cm), which prevents it from deforming like copper heat sinks. Nothing happens.
しかしながら、ダイヤモンドは一般には絶縁物である。However, diamond is generally an insulator.
そしてヒートシンクを用いる場合には少くとも一方の電
極をヒートシンクを介してとる場合が多い。第1図は実
用化されている半導体装置ザーの模式的な構造であるが
ダイヤモンド1に=メタライズ処理を施し、更にその上
に導電性金属のメッキを行なd)Q)’素子→メタライ
ズ層→メッキ層→ボンドワイヤーを介して一方のリード
線に電気的に結合されている。銅やSi をヒートシ
ンクとして用いる場合にはこれ等が導電性を有している
ため、素子からヒートシンクを直接弁して電極を構成す
ることができ、構造が簡単となる。第1図の如くメタク
イズ処理、メッキ処理を行なう必要はなく、ステム5と
の接合は機械的に埋め込むだけでも導電性は保たれる。When a heat sink is used, at least one electrode is often connected via the heat sink. Figure 1 shows the schematic structure of a semiconductor device that has been put into practical use. Diamond 1 is subjected to = metallization treatment, and then a conductive metal is plated on top of it. → Plated layer → Electrically connected to one lead wire via bond wire. When copper or Si 2 is used as a heat sink, since these materials have conductivity, the heat sink can be directly connected to the element to form an electrode, which simplifies the structure. As shown in FIG. 1, there is no need to perform the metal quiz treatment or the plating treatment, and the conductivity can be maintained by simply embedding the connection with the stem 5 mechanically.
従来のダイヤモンドヒートシンクは絶縁体のダイヤモン
ドを使用しているため前述の如くメタライズ処理と電気
電導性の良い金属によるメッキ処理と更にこれに接合さ
れたリードが必要で、これは製造工程を複雑にし、リー
ドを取出す位置にも制約があるため素子の構造も複雑と
なる欠点があった。Conventional diamond heat sinks use diamond as an insulator, so as mentioned above, they require metallization and plating with a metal with good electrical conductivity, as well as leads bonded to this, which complicates the manufacturing process. Since there are restrictions on the position from which the leads can be taken out, there is a drawback that the structure of the element becomes complicated.
本発明はこのような従来のダイヤモンドヒートシンクの
欠点を改良するものである。従来ヒートシンクとして用
いられていたダイヤモンドは天然に産出する原石を加工
したものであった。天然に産するダイヤモンドの中にも
極く希には半導体の特性を有するnb タイプと呼ば
れるものがあるが現在報告されているnb タイプダ
イヤモンドの抵抗率は約lθ〜104Ω・傷である。こ
れは半導体素子と直接接合して電気回路を構成するには
抵抗が大きく、このような使い方をする場合にはlOΩ
・a以下の抵抗率を有することが必要である。The present invention improves these drawbacks of conventional diamond heat sinks. The diamonds traditionally used as heat sinks were processed from naturally occurring rough stones. Among naturally occurring diamonds, there are extremely rare diamonds called nb type diamonds which have semiconductor characteristics, but the resistivity of the nb type diamonds currently reported is approximately lθ to 10 4 Ω·flaw. This has a large resistance when directly connected to a semiconductor element to form an electric circuit, and when used in this way, 1OΩ
- It is necessary to have a resistivity of a or less.
ダイヤモンドはFee Ni、Co、 Cry Mn*
Ta 等の金属溶媒を用いて超高圧、高温下で人工
的に合成されているが、合成時にBを添加することによ
り、導電性を有するダイヤモンドを得ることができる。Diamonds are Fee Ni, Co, Cry Mn*
Although it is artificially synthesized under ultra-high pressure and high temperature using a metal solvent such as Ta, conductive diamond can be obtained by adding B during synthesis.
発明者はBの添加量、合成条件等を検討した結果、lO
Ω・a以下の抵抗率を有するダイヤモンドを合成するこ
とが出来た。また市販の合成ダイヤモンドは砥粒として
用いられているもので、合成に使用した溶媒金属を多量
に含有しており、またそのサイズも直径0,7JI3L
以下でヒートシンクとして使用するには小さ過ぎる。As a result of examining the amount of B added, synthesis conditions, etc., the inventor found that lO
We were able to synthesize diamond with a resistivity of Ω·a or less. In addition, commercially available synthetic diamonds are used as abrasive grains, and contain a large amount of solvent metal used in synthesis, and their size is 0.7JI3L in diameter.
Too small to be used as a heat sink below.
発明者等は高純度で大型のダイヤモンドを工業的に合成
する研究を行ない、例えば特願昭 54−141918
号、54−158186号、55−2818号、55−
26651号、55−44429 号に開示した様な合
成技術を開発し、工業化の見通しを得た。The inventors conducted research on industrially synthesizing high-purity, large-sized diamonds, for example, patent application No. 54-141918.
No., 54-158186, 55-2818, 55-
26651 and 55-44429, and obtained prospects for industrialization.
本発明はこの大型単結晶の合成技術により始めて可能に
なったものである。以下実施例を記す。The present invention was first made possible by this large single crystal synthesis technology. Examples will be described below.
Bを添加した単結晶ダイヤモンドの1カラツト(200
8F)のものを使用した。結晶中のB量はSIMS
(2次イオン質量分析法)によって行なったところ約8
00原子P、P、m、 であった。このダイヤモンド
を切断して、厚さ0.5題の板を製作した。1 carat of B-doped single crystal diamond (200
8F) was used. The amount of B in the crystal is determined by SIMS
Approximately 8
00 atoms P, P, m, were. This diamond was cut to produce a plate with a thickness of 0.5 mm.
四探子法で抵抗率を測定したところ約lΩ・け の値を
示した。これを更に切断して辺長1jLILX11Kl
)!の板とした。このダイヤモンドの素子との接合部に
TiとAuを真空蒸着し、これを銅製のステムに押し込
んだ。そしてInGa AsP / InP系のレーザ
ー発光素子をダイヤモンドの表面に熱圧着した。一方の
電極はダイヤモンドヒートシンクを介してステムからと
り、他方の電極は素子からAu 線のボンド・ワイヤを
通じてとった。従来は′ダイ1゛ヤモンドに更にメタラ
イズ処理とメッキ処理を施し、これにボンド・ワイヤー
を接合して電極を構成していたがこれは不要となった。When the resistivity was measured using the four-probe method, it showed a value of about 1Ω·ke. Cut this further to make the side length 1jLILX11Kl
)! It was made into a board. Ti and Au were vacuum-deposited on the diamond at the junction with the element, and then pressed into a copper stem. Then, an InGaAsP/InP-based laser emitting element was thermocompression bonded to the surface of the diamond. One electrode was taken from the stem through a diamond heat sink, and the other electrode was taken from the device through an Au wire bond wire. Conventionally, electrodes were constructed by further metallizing and plating the diamond and bonding wires to it, but this is no longer necessary.
(第1図の1′と8が不要)この半導体レーザーのCW
動作上限温度は熱抵抗に大きく影響されるが、本願のヒ
ートシンクを用いることによりダイヤモンドの高熱伝導
率を生かして、信頼性が高く、且つ簡単な構成の半導体
レーザー発光素子を得ることができ六〇(1' and 8 in Figure 1 are unnecessary) CW of this semiconductor laser
The upper limit of operating temperature is greatly affected by thermal resistance, but by using the heat sink of the present application, it is possible to take advantage of the high thermal conductivity of diamond and obtain a semiconductor laser light emitting device with high reliability and a simple configuration.60
第1図は本発明の詳細な説明するための従来の半導体レ
ーザーの構造を示す斜視図。
lはダイヤモンドヒートシンクで 17は電極を構成す
るためのメタラ失ズ層と導電性金属のメッキ層である。
2はレーザー発光素子、8.4はボンドワイヤーのリー
ドで各々6.7のリード線に電気的に結合される。7は
レーザー光である。FIG. 1 is a perspective view showing the structure of a conventional semiconductor laser for explaining the present invention in detail. 1 is a diamond heat sink, and 17 is a metallurgical loss layer and a conductive metal plating layer for forming an electrode. 2 is a laser emitting element, 8.4 is a bond wire lead, and each is electrically coupled to the lead wire 6.7. 7 is a laser beam.
Claims (1)
して接合され、回路を形成する少くとも一方の電極を兼
ねるヒートシンクが導電性ダイアモンドであることを特
徴とする半導体素子用ヒートシンク。 (2、特許請求の範囲第(1)項にζおいて、導電性ヒ
ートシンクが抵抗率がlOΩ−α以下でBを含有する合
成ダイヤモンドである事を特徴とする半導体素子用ヒー
トシンク。 ′(1) A heat sink for a semiconductor device, characterized in that the heat sink, which is bonded to a semiconductor device via a conductive metal or an intermetallic compound and which also serves as at least one electrode forming a circuit, is made of conductive diamond. (2. A heat sink for a semiconductor device according to claim (1), wherein the conductive heat sink is a synthetic diamond containing B and having a resistivity of 1OΩ-α or less.'
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57030199A JPS58147087A (en) | 1982-02-25 | 1982-02-25 | Heat sink for semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57030199A JPS58147087A (en) | 1982-02-25 | 1982-02-25 | Heat sink for semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58147087A true JPS58147087A (en) | 1983-09-01 |
Family
ID=12297072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57030199A Pending JPS58147087A (en) | 1982-02-25 | 1982-02-25 | Heat sink for semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58147087A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251120A (en) * | 1985-04-30 | 1986-11-08 | Sumitomo Electric Ind Ltd | Compound semiconductor substrate |
EP0364155A2 (en) * | 1988-10-11 | 1990-04-18 | Amoco Corporation | Diamond composite heat sink for use with semiconductor devices |
US7252795B2 (en) | 2003-08-26 | 2007-08-07 | Matsushita Electric Industrial Co., Ltd. | High thermal conductivite element, method for manufacturing same, and heat radiating system |
US8698131B2 (en) | 2009-03-26 | 2014-04-15 | Seiko Epson Corporation | Organic EL apparatus, method of manufacturing organic EL apparatus, electronic apparatus |
-
1982
- 1982-02-25 JP JP57030199A patent/JPS58147087A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61251120A (en) * | 1985-04-30 | 1986-11-08 | Sumitomo Electric Ind Ltd | Compound semiconductor substrate |
EP0364155A2 (en) * | 1988-10-11 | 1990-04-18 | Amoco Corporation | Diamond composite heat sink for use with semiconductor devices |
US7252795B2 (en) | 2003-08-26 | 2007-08-07 | Matsushita Electric Industrial Co., Ltd. | High thermal conductivite element, method for manufacturing same, and heat radiating system |
US7402340B2 (en) | 2003-08-26 | 2008-07-22 | Matsushita Electric Industrial Co., Ltd. | High thermal conductive element, method for manufacturing same, and heat radiating system |
US8698131B2 (en) | 2009-03-26 | 2014-04-15 | Seiko Epson Corporation | Organic EL apparatus, method of manufacturing organic EL apparatus, electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6249041B1 (en) | IC chip package with directly connected leads | |
EP0859408B1 (en) | Heat sink material for use with a semiconductor component and fabrication method thereof | |
US5596231A (en) | High power dissipation plastic encapsulated package for integrated circuit die | |
EP0521405B1 (en) | Heat radiating component and semiconductor device provided with the same | |
US4480013A (en) | Substrate for use in semiconductor apparatus | |
JPH04115558A (en) | Lead frame for semiconductor device | |
CA2391218A1 (en) | Cicuit board, method for manufacturing same, and high-output module | |
JP3072735B2 (en) | Wire bonding method to double metal coated pad surface and electric card structure including the wire bonding | |
JPH09223846A (en) | Nitride semiconductor laser device | |
US3922775A (en) | High frequency diode and manufacture thereof | |
US5332695A (en) | Method of manufacturing semi conductor device mounted on a heat sink | |
JP2505065B2 (en) | Semiconductor device and manufacturing method thereof | |
US5760473A (en) | Semiconductor package having a eutectic bonding layer | |
JP3336982B2 (en) | Semiconductor device and method of manufacturing the same | |
JPS58147087A (en) | Heat sink for semiconductor element | |
JPH034030Y2 (en) | ||
JPS6318648A (en) | Circuit board using aluminum nitride | |
JPH0754834B2 (en) | Method for manufacturing diamond film semiconductor substrate | |
US3665589A (en) | Lead attachment to high temperature devices | |
US3702787A (en) | Method of forming ohmic contact for semiconducting devices | |
US4380862A (en) | Method for supplying a low resistivity electrical contact to a semiconductor laser device | |
JP2608658B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS61294838A (en) | Electrode and wiring of semiconductor device | |
JPS60157284A (en) | Semiconductor device | |
JP2509428B2 (en) | Ultra-small electronic package |