JPS58146447A - Catalyst regeneration method - Google Patents

Catalyst regeneration method

Info

Publication number
JPS58146447A
JPS58146447A JP57030053A JP3005382A JPS58146447A JP S58146447 A JPS58146447 A JP S58146447A JP 57030053 A JP57030053 A JP 57030053A JP 3005382 A JP3005382 A JP 3005382A JP S58146447 A JPS58146447 A JP S58146447A
Authority
JP
Japan
Prior art keywords
catalyst
activity
abrasive
grinding
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57030053A
Other languages
Japanese (ja)
Inventor
Kazumitsu Abe
一允 安倍
Hiroaki Rikimaru
力丸 浩昭
Iku Sato
郁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP57030053A priority Critical patent/JPS58146447A/en
Publication of JPS58146447A publication Critical patent/JPS58146447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To regenerate a granular catalyst deteriorated in activity or changed in reaction characteristics easily and economically in one step without pollution, by grinding the surface of each catalyst grain at normal temp. and normal pressure by a dry method. CONSTITUTION:Catalyst grains deteriorated in activity with poisonous substances or deposits are placed together with abrasive grains preferably having 1mm.- about 1/2 of catalyst grain diameter in a vibrating or rotating vessel. Said catalyst grains are ground on their surfaces by vibrating or rotating the vessel. The treating vessel capable of especially generating 3-dimensional high frequency vibration is higher in grinding speed, and large in effect. As the abrasive material, sand, alumina, metal, metal oxide, etc. are embodied. A regenerated catalyst no inferior in both of catalyst strength and active life, as compared with a fresh catalyst can be obtained by this grinding treatment.

Description

【発明の詳細な説明】 本発明は活性の低下した触媒或いは反応特性の変化した
触媒を常温、常圧、乾式にて簡便かつ無害に一段にて再
生する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a catalyst with reduced activity or a catalyst with changed reaction characteristics in a simple and harmless manner in one step at room temperature and pressure in a dry manner.

この再生法の用途例としては、重質油の接解分解に用い
られた触媒でコークス或いは含硫黄コークスの沈積によ
り活性の低下した触媒の再生。重質油の水素化脱硫、水
素化分解或いは水素化脱金属等の水素化工程に使用され
た触媒でニッケル、コバルト、バナジウム等の金属酸化
物の堆積により活性の低下した触媒の再生。自動車の排
気ガス浄化用に使用された触媒で燐、鉛等の蓄積により
活性の低下した触媒の再生。重油焚きボイラー排ガスの
乾式脱硝・脱硫に使用された触媒でバナジウム化合物或
いは、アルカリ金属化合物の沈着により反応特性の変化
した触媒(共存する亜硫酸ガスの酸化率の上昇した触媒
)或いは活性の低下した触媒の再生。クラウス反応炉に
使用された触媒で、7ヤノトダウン時の温度降下による
硫黄析出により活性の低下した触媒の再生等である。こ
の他反応物中の成分により活性に変化を来たした触媒の
再生方法として広く応用することが可能であり、前述の
用途例に限定されるものではない。
An example of the application of this regeneration method is the regeneration of a catalyst used for catalytic cracking of heavy oil whose activity has decreased due to the deposition of coke or sulfur-containing coke. Regeneration of catalysts used in hydrogenation processes such as hydrodesulfurization, hydrocracking, or hydrodemetallization of heavy oil, whose activity has decreased due to the accumulation of metal oxides such as nickel, cobalt, and vanadium. Regeneration of catalysts used for automobile exhaust gas purification whose activity has decreased due to accumulation of phosphorus, lead, etc. Catalysts used for dry denitrification and desulfurization of heavy oil-fired boiler exhaust gas whose reaction characteristics have changed due to the deposition of vanadium compounds or alkali metal compounds (catalysts whose oxidation rate of coexisting sulfur dioxide gas has increased) or whose activity has decreased. Playback. This is to regenerate a catalyst used in a Claus reactor whose activity has decreased due to sulfur precipitation due to the temperature drop during the 7-year down cycle. In addition, it can be widely applied as a method for regenerating a catalyst whose activity has changed depending on the components in the reactant, and is not limited to the above-mentioned usage examples.

従来より提案されている触媒の再生法としては加熱処理
(特開昭55−106547.特開昭54−2992等
)水及び薬液による湿式処理(特開昭54−51991
.特開昭56−28644等)湿式処理、加熱処理の併
用(特開昭54−10294等)アンモニア含有ガス処
理(特開昭55−51438.特開昭54−29894
 )等のガス処理、堆積した金属化合物を塩素化して揮
発除去する方法(特開昭54−101794等)等多数
のものが挙げられるが再生効率や経済性・処理操作の容
易性の各面で充分に満足できる方法は知られていな゛い
。又、これらの再生方法は特定の触媒性能低下原因に対
して個々には効果があるが、複合して原因が生じている
場合には複数個の再生法を必要とするものである。
Conventionally proposed catalyst regeneration methods include heat treatment (JP-A-55-106547, JP-A-54-2992, etc.) and wet treatment with water and chemicals (JP-A-54-51991).
.. JP-A-56-28644, etc.) Combination of wet treatment and heat treatment (JP-A-54-10294, etc.) Ammonia-containing gas treatment (JP-A-55-51438, JP-A-54-29894)
), gas treatment methods such as chlorination and volatilization removal of deposited metal compounds (Japanese Unexamined Patent Publication No. 101794/1984), and many other methods, but these methods are difficult to use in terms of regeneration efficiency, economic efficiency, and ease of processing operations. There is no known method that is fully satisfactory. Furthermore, although these regeneration methods are individually effective against specific causes of deterioration in catalyst performance, if multiple causes occur, multiple regeneration methods are required.

本発明は活性の低下した触媒或いは反応特性の変化した
触媒を常温、常圧、乾式にて表層研磨することを特徴と
する触媒の再生方法であって複数個の原因に対しても一
段に。て簡便かつ経済的に、なおかつ触媒強度、活性、
寿命に於ていずれも新触媒と比較して遜色のない再生触
媒が得られる。
The present invention is a method for regenerating a catalyst, which is characterized by dryly polishing the surface of a catalyst whose activity has decreased or whose reaction characteristics have changed, at room temperature and pressure, and which can further address multiple causes. It is simple and economical, and it also improves catalyst strength, activity,
In both cases, a regenerated catalyst with a life comparable to that of a new catalyst can be obtained.

研磨処理に用いる装置は振動或いは回転等により表層研
磨できるものであれば特に指定するものではないが三次
元の高振動を発生させるものが研磨速度がはやく効果が
大きい。
The device used for the polishing process is not particularly specified as long as it can polish the surface layer by vibration or rotation, but a device that generates three-dimensional high vibrations has a faster polishing rate and is more effective.

研磨剤の使用量としては触媒間の空隙の10%以上の研
磨剤があればよいが、好ましくは50%以上の研磨剤を
共存させることが特に効果的である。また研磨剤の粒径
は0.111111ないし触媒と同じ位の粒径であれば
よいが、研磨後の触媒、触媒粉末との分離を考慮すれば
1m+xないし触媒粒径の門程度が望ましい。又装置底
面を研磨剤が落ちない大きさの目開きのメツシュにする
か、もしくは一定方向の空気流により発生した研磨粉を
順次除去することが効果を高めるうえからも好ましい。
The amount of abrasive to be used may be 10% or more of the voids between the catalysts, but it is particularly effective to coexist preferably 50% or more of the abrasive. The particle size of the abrasive may be from 0.111111 to about the same particle size as the catalyst, but in consideration of separation from the catalyst and catalyst powder after polishing, it is preferably about 1 m+x or about the same particle size as the catalyst. In addition, it is preferable to make the bottom surface of the device a mesh with openings large enough to prevent the abrasive from falling, or to sequentially remove the abrasive powder generated by airflow in a certain direction, in order to increase the effect.

本発明における研磨剤の材質は砂、アルミナ等の他に金
属あるいは金属酸化物を挙げることができ、硬度が犬で
あればいっそう効果的である。
The material of the abrasive used in the present invention may be sand, alumina, etc., as well as metals or metal oxides, and it is more effective if the hardness is moderate.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例1 再生触媒としては反応特性の変化した触媒を使用した。Example 1 A catalyst with changed reaction characteristics was used as the regenerated catalyst.

この触媒はSOxを1300 ppm含むC重油燃焼排
ガスの乾式脱硝設備で1100時間経過した触媒であり
、経時と共に重油中のバナジウム化合物が触媒表層細孔
内に蓄積され、脱硝活性の維持しているものの副反応で
ある排ガス中のSO。
This catalyst has been used for 1100 hours in dry denitrification equipment for C heavy oil combustion exhaust gas containing 1300 ppm of SOx, and as time passes, vanadium compounds in the heavy oil accumulate in the pores on the surface of the catalyst, and although the denitrification activity is maintained. SO in exhaust gas is a side reaction.

の酸化活性が増大しつつある触媒であって、更にバナジ
ウム化合物の蓄積量が増大すれば生成するS03による
弊害が懸念される触媒である。
This is a catalyst whose oxidation activity is increasing, and there is concern that if the accumulated amount of vanadium compounds further increases, the harmful effects of S03 produced may be a concern.

触媒中のバナジウム化合物の除去率は4−(2−ピリジ
ルアゾ)−レゾルシノール吸光光度法により研磨前後の
V量から求めバナジウム原子の分布状態はX線マイクロ
アナライザーによって分析した。又触媒のSO,酸化率
の測定は内径31閘φの外部を保温したパイレックス管
内に見掛容積1637n/の触媒粒を充填し触媒層温度
450tに於て1 下記組成の混合ガスを5V=5000hr  (室温換
算)にて接触せしめた後の出口ガスをサンプリングして
アルセナゾ■法によりSO8濃度を化学分析して次式に
てS02の酸化率を算出した。
The removal rate of the vanadium compound in the catalyst was determined from the amount of V before and after polishing by 4-(2-pyridylazo)-resorcinol spectrophotometry, and the distribution state of vanadium atoms was analyzed by an X-ray microanalyzer. In addition, the SO and oxidation rate of the catalyst were measured by filling a Pyrex tube with an inner diameter of 31 φ and keeping the outside warm with catalyst particles with an apparent volume of 1,637 n/cm, and applying a mixed gas of the following composition for 5 V = 5,000 hr at a catalyst bed temperature of 450 t. The outlet gas after contact was sampled at (room temperature equivalent), and the SO8 concentration was chemically analyzed using the arsenazo method, and the oxidation rate of SO2 was calculated using the following formula.

0混合ガス組成 No  NH3802H,OO,CCo2N2200p
p 200ppm  1300ppm 10%8% 1
2% 齢触媒は平均直径7.0庖の球状であり、バナジ
ウム原子の分布は第1図の如く表層より約100μmで
あった。従ってこのときの研磨量は9.3%であるので
9%をこえた時点を再生終了とした。又、再生前のSO
2転化率は51%、v、0.は0.08%であった。
0 Mixed gas composition No. NH3802H, OO, CCo2N2200p
p 200ppm 1300ppm 10%8% 1
The 2%-old catalyst was spherical with an average diameter of 7.0 μm, and the distribution of vanadium atoms was about 100 μm from the surface layer as shown in FIG. Therefore, since the amount of polishing at this time was 9.3%, the time when the amount of polishing exceeded 9% was considered to be the end of regeneration. Also, SO before playback
2 conversion rate is 51%, v, 0. was 0.08%.

前記の反応特性の変化した触媒160に9を三次元の高
振動を与える月島機械製の振動ミル(型番3DM)に研
磨剤としてl+mおよび3Mの篩で上下をカントした海
砂83Ag(空隙量×10)と共に充填して2.5時間
運転して表層研磨した結果バナジウム原子の分布は第1
図に示す如く表層リッチの部分が消失していた。バナジ
ウムの含量は0゜019%(除去率76.3%)で、S
O,の酸化率は1.7%で新規触媒(1,5%)との差
は認められなかった。又第1表に示す如く圧噛強度、落
下強度、比表面積、細孔容積等の物性も新規触媒と同等
であった。
The above-mentioned catalyst 160 with changed reaction characteristics was placed in a vibrating mill manufactured by Tsukishima Kikai (model number 3DM) which gave 9 three-dimensional high vibrations, and sea sand 83Ag (void volume x 10) and operated for 2.5 hours to polish the surface layer. As a result, the distribution of vanadium atoms was the first.
As shown in the figure, the rich surface layer had disappeared. The vanadium content is 0°019% (removal rate 76.3%), and S
The oxidation rate of O was 1.7%, and no difference was observed with the new catalyst (1.5%). Furthermore, as shown in Table 1, physical properties such as crush strength, drop strength, specific surface area, and pore volume were also equivalent to those of the new catalyst.

第1表 再生前後のSO,酸化率と物性実施例2 実施例1において研磨剤を46kg(空隙量×o、55
)にして−施したところ9%研磨するに必要な時間は約
4時間であった。(第2図参照)参考例1 実施例1において、研磨剤の不在下で実施した場合は5
時間の時点での研磨率は3.8%であり活性の再生率は
約44%であった。(第2図参照)実施例3 イオウ回収プラントに於て廃熱ボイラーのトラブルによ
りクラウス反応器中の硫黄ガスがパージされないまま緊
急7ヤツトダウンされたためs +tl黄と不完全燃焼
で発生したカーボンとが表面に固着してくっつき合った
チタニャ系クラウス触媒(3謂φ)を実施例1の要領で
2時間表層研磨したところ、元の球状にもどり充填した
ときの通気性を回復した。
Table 1 SO before and after regeneration, oxidation rate, and physical properties Example 2 In Example 1, 46 kg of abrasive (void amount x o, 55
) and the time required for polishing by 9% was about 4 hours. (Refer to Figure 2) Reference Example 1 In Example 1, when carried out in the absence of abrasive, 5
The polishing rate at the time point was 3.8% and the activity regeneration rate was about 44%. (See Figure 2) Example 3 At the sulfur recovery plant, due to trouble with the waste heat boiler, the sulfur gas in the Claus reactor was not purged and an emergency shutdown was performed. When the surface of the titania-based Claus catalyst (so-called φ3) which was stuck to the surface and stuck to each other was polished for 2 hours in the same manner as in Example 1, it returned to its original spherical shape and regained the air permeability when packed.

触媒の硫黄回収率の測定は内径20朗φの外部を保温し
たパイレックス管内に見掛容積20m/の触媒粒を充填
し触媒層温度260℃に於て下記組成の混合ガスを5V
=1600hr1 (室温換算)にて接触せしめた後の
出口ガスをガスクロマトクラフ法により分析して次式に
て回収率を算出した0混合ガス組成 H,S   5o2H,ON2 2.45%  122%   25%  バランス新規
触媒と再生前後の物性及d黄回収率は表2のとおりであ
った。
To measure the sulfur recovery rate of the catalyst, catalyst particles with an apparent volume of 20 m/cm were packed into a Pyrex tube with an inner diameter of 20 mm and the outside kept warm, and a mixed gas of the following composition was applied at 5 V at a catalyst bed temperature of 260°C.
= 1600hr1 (room temperature equivalent) The outlet gas was analyzed by gas chromatograph method and the recovery rate was calculated using the following formula. 0 Mixed gas composition H, S 5o2H, ON2 2.45% 122% 25 % Balance The physical properties and yellow recovery rate of the new catalyst before and after regeneration are shown in Table 2.

表2 実施例4 天然ガス燃焼排ガスの乾式脱硝設備において、不完全燃
焼により多量に発生したカーボンが触媒を被覆し、通気
性を失った触媒(3IIIIlφ)を実施例1に従って
30分表層研磨したところ、2.3 wt%カーボンが
除去でき通気性を回復した。触媒の脱硝活性は内径22
朋φの外部を保温したパイレックス管内に見掛は容積1
3iの触媒粒を充填し触媒層温度290℃に於て下記組
成の混合ガスを5V=15000hr  (基準換算)
にて接触せしめた後のNOX濃度変化をml定1次式に
て算出した′。
Table 2 Example 4 In a dry denitrification equipment for natural gas combustion exhaust gas, a catalyst (3IIIlφ) which had lost air permeability due to a large amount of carbon generated due to incomplete combustion covering the catalyst was subjected to surface polishing for 30 minutes according to Example 1. , 2.3 wt% carbon was removed and air permeability was restored. The denitrification activity of the catalyst is the inner diameter of 22
The apparent volume of the Pyrex tube that insulates the outside of the tube is 1.
Filled with 3i catalyst particles, and at a catalyst bed temperature of 290°C, a mixed gas with the following composition was applied for 5V = 15,000 hr (standard conversion)
The change in NOX concentration after contact was calculated using the ml constant linear equation.

混合ガス組成 No   NH,O,H,Ori。Mixed gas composition No NH, O, H, Ori.

200ppm  180ppm  3%  10%  
残余性能は次のごとくであった。
200ppm 180ppm 3% 10%
The residual performance was as follows.

実施例5 実施例1と同じ触媒5 kgと海砂2.5 kgを直径
250fi、奥行300 amのフタ付鉄製円筒容器に
入れl 20 <pmの速度で5時間回才させると研磨
率帖 は7.4%であった。
Example 5 When 5 kg of the same catalyst and 2.5 kg of sea sand as in Example 1 were placed in an iron cylindrical container with a lid, having a diameter of 250 ft and a depth of 300 am, and aged for 5 hours at a speed of l 20 <pm, the polishing rate was It was 7.4%.

実施例6 実施例5における海砂量を1.25 kgとし他は実施
例5と同様にして実験したところ5時間後の研磨率はへ
2%であった。
Example 6 An experiment was conducted in the same manner as in Example 5 except that the amount of sea sand in Example 5 was 1.25 kg, and the polishing rate after 5 hours was 2%.

参考例2 実施例5における海砂量をゼロとし、他は同様にして実
施したところ5時間後の研磨率は1.4%であった。
Reference Example 2 When the same procedure as in Example 5 was carried out except that the amount of sea sand was set to zero, the polishing rate after 5 hours was 1.4%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は触媒再生前後のX線マイクロアナライザーによ
るバナジウム原子の分布図であり、第2図は再生時間と
研磨率の関係を示、す。 特許出願人 堺化学工業株式会社 代表者須原二部
FIG. 1 is a distribution map of vanadium atoms measured by an X-ray microanalyzer before and after catalyst regeneration, and FIG. 2 shows the relationship between regeneration time and polishing rate. Patent applicant Sakai Chemical Industry Co., Ltd. Representative Suhara Nibe

Claims (1)

【特許請求の範囲】[Claims] 被毒物質あるいは沈積物によって活性の低下した粒状触
媒を研磨剤と共に振動もしくは回転する容器中に入れ、
表層研磨することにより被毒物質あるいは沈積物を除去
することを特徴とする触媒の再生方法。
A granular catalyst whose activity has decreased due to poisonous substances or deposits is placed in a vibrating or rotating container together with an abrasive.
A catalyst regeneration method characterized by removing poisonous substances or deposits by surface polishing.
JP57030053A 1982-02-25 1982-02-25 Catalyst regeneration method Pending JPS58146447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030053A JPS58146447A (en) 1982-02-25 1982-02-25 Catalyst regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030053A JPS58146447A (en) 1982-02-25 1982-02-25 Catalyst regeneration method

Publications (1)

Publication Number Publication Date
JPS58146447A true JPS58146447A (en) 1983-09-01

Family

ID=12293079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030053A Pending JPS58146447A (en) 1982-02-25 1982-02-25 Catalyst regeneration method

Country Status (1)

Country Link
JP (1) JPS58146447A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183136A (en) * 1985-02-08 1986-08-15 Hitachi Ltd Production of glass body having refractive index distribution
JPS61259764A (en) * 1985-05-13 1986-11-18 Mitsubishi Heavy Ind Ltd Regeneration of catalyst for catalytic reduction and denitration of ammonia
JPS62200107A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
US4729975A (en) * 1985-05-17 1988-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Method for regenerating a denitration catalyst for exhaust gases from coal-burning apparatus
KR20040042667A (en) * 2002-11-15 2004-05-20 유정근 Method for recycling waste de-NOx catalyst
US7454864B2 (en) 2003-04-25 2008-11-25 Smith Thomas J Planting pots and multi-compartment tray having self-orienting configuration
JP2010264418A (en) * 2009-05-18 2010-11-25 Ihi Corp Method for cleaning denitration catalyst
JP2011161373A (en) * 2010-02-09 2011-08-25 Chugoku Electric Power Co Inc:The Method for regenerating denitration catalyst
JP2013146674A (en) * 2012-01-19 2013-08-01 Kyuden Sangyo Co Inc Activity restoration device and activity restoration method for honeycomb catalyst
US8627599B2 (en) 2010-09-22 2014-01-14 Costa Farms, LLC Planting pot display system
CN111330443A (en) * 2020-05-03 2020-06-26 戎有梅 Organic waste gas photocatalysis equipment with pollutant processing function

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250991A (en) * 1975-10-22 1977-04-23 Toyota Motor Corp Method of regenerating catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250991A (en) * 1975-10-22 1977-04-23 Toyota Motor Corp Method of regenerating catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183136A (en) * 1985-02-08 1986-08-15 Hitachi Ltd Production of glass body having refractive index distribution
JPS61259764A (en) * 1985-05-13 1986-11-18 Mitsubishi Heavy Ind Ltd Regeneration of catalyst for catalytic reduction and denitration of ammonia
US4729975A (en) * 1985-05-17 1988-03-08 Mitsubishi Jukogyo Kabushiki Kaisha Method for regenerating a denitration catalyst for exhaust gases from coal-burning apparatus
JPS62200107A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
JPH0246846B2 (en) * 1986-02-27 1990-10-17 Hitachi Shipbuilding Eng Co
KR20040042667A (en) * 2002-11-15 2004-05-20 유정근 Method for recycling waste de-NOx catalyst
US7454864B2 (en) 2003-04-25 2008-11-25 Smith Thomas J Planting pots and multi-compartment tray having self-orienting configuration
JP2010264418A (en) * 2009-05-18 2010-11-25 Ihi Corp Method for cleaning denitration catalyst
JP2011161373A (en) * 2010-02-09 2011-08-25 Chugoku Electric Power Co Inc:The Method for regenerating denitration catalyst
US8627599B2 (en) 2010-09-22 2014-01-14 Costa Farms, LLC Planting pot display system
JP2013146674A (en) * 2012-01-19 2013-08-01 Kyuden Sangyo Co Inc Activity restoration device and activity restoration method for honeycomb catalyst
CN111330443A (en) * 2020-05-03 2020-06-26 戎有梅 Organic waste gas photocatalysis equipment with pollutant processing function

Similar Documents

Publication Publication Date Title
JP3480596B2 (en) Dry desulfurization denitrification process
JPS58146447A (en) Catalyst regeneration method
EP1838435A1 (en) Agglomerates of precipitated silica, method for their preparation and their use as filter medium in gas filtration
US3578390A (en) Method of removing sulfur dioxide from gases containing the same
JPH0714486B2 (en) Dry regeneration method of catalyst
JP3279905B2 (en) Absorber for sulfur compounds from gas stream and desulfurization method using the same
KR920005938B1 (en) Catalyst for the reduction of nitrogen oxides a method for its preparation and the use thereof
EP0643991A1 (en) Nitrogen oxide decomposing catalyst and denitration method using the same
TW200808440A (en) Absorption composition and process for purifying streams of substances
US5863855A (en) Nitrogen oxide removing catalysts
JPH0741142B2 (en) Method for removing low-concentration nitrogen oxides in road tunnel ventilation gas
EP0203028A1 (en) Method for regenerating a denitration catalyst for exhaust gases from coal-burning apparatus
US3443886A (en) Exhaust gas treatment
CN112638505A (en) Selective catalytic reduction process and method for regenerating deactivated SCR catalyst of parallel flue gas treatment system
JPH11104432A (en) Method and apparatus for gas treatment
RU2147918C1 (en) Hydrogen sulfide-containing gas desulfurization method
CN111097271B (en) Method and device for removing SOx and NOx in catalytic cracking flue gas
JP3486696B2 (en) Desulfurization method using gas containing sulfurous acid gas as gas to be treated
TWI683698B (en) Packed tower with composite filler
JPS63134028A (en) Dry desulfurizing method
JPS6135821A (en) Treatment of gas containing hydrogen sulfide
JPS6321536B2 (en)
JP2000153152A (en) Catalyst for water treatment
JPH0615173A (en) Gas purifying catalyst and gas purifying method
JPH04200642A (en) Method for recoverying catalyst