JPH0824846B2 - Gas purification catalyst and gas purification method - Google Patents

Gas purification catalyst and gas purification method

Info

Publication number
JPH0824846B2
JPH0824846B2 JP3359621A JP35962191A JPH0824846B2 JP H0824846 B2 JPH0824846 B2 JP H0824846B2 JP 3359621 A JP3359621 A JP 3359621A JP 35962191 A JP35962191 A JP 35962191A JP H0824846 B2 JPH0824846 B2 JP H0824846B2
Authority
JP
Japan
Prior art keywords
gas
layer
dust
exhaust gas
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3359621A
Other languages
Japanese (ja)
Other versions
JPH0615173A (en
Inventor
幸雄 久保
勝也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP3359621A priority Critical patent/JPH0824846B2/en
Publication of JPH0615173A publication Critical patent/JPH0615173A/en
Publication of JPH0824846B2 publication Critical patent/JPH0824846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジン排
ガス・ボイラ排ガスなどに含まれるばいじん(ダスト)
と窒素酸化物(NOx)を、また、場合によっては、硫
黄酸化物(SOx)をも同時に除去するガス浄化触媒及
びガス浄化方法に関するものである。
TECHNICAL FIELD The present invention relates to dust contained in diesel engine exhaust gas, boiler exhaust gas, etc.
The present invention relates to a gas purification catalyst and a gas purification method for simultaneously removing nitrogen oxide (NOx) and, in some cases, sulfur oxide (SOx).

【0002】[0002]

【従来の技術】従来、ディーゼルエンジン排ガス中のダ
スト除去方法としては、発泡セラミックなどの多孔質フ
ィルターによるろ過集じんが主流である。この方法で
は、フィルター内に捕集されたダストによって、フィル
ターの目詰まりが進行し、通気抵抗が一定値以上に高く
なると、排ガスを切り換え捕集されたダストを焼却・除
去することによって、フィルターを再生する。なお、こ
の方法では、窒素酸化物、硫黄酸化物は別途処理しなけ
ればならない。
2. Description of the Related Art Hitherto, as a method for removing dust from exhaust gas of a diesel engine, filtration and dust collection using a porous filter such as foam ceramic has been the mainstream. In this method, when the filter is clogged due to the dust collected in the filter and the ventilation resistance becomes higher than a certain value, the exhaust gas is switched to incinerate and remove the collected dust. Reproduce. In this method, nitrogen oxides and sulfur oxides must be treated separately.

【0003】また、特開平1−159034号公報に
は、ディーゼルエンジン排ガスの煙道中にアンモニアガ
スを注入し、その後、消石灰とバナジウム酸化物を担時
したγ−アルミナ又はアナターゼ型チタニアの粉末を噴
射し、つぎに、排ガス後流にセラミックスフィルターを
設けて、排ガス中の粉末及び燃焼ばいじんを捕集すると
ともに、この捕集灰の層を排ガスが通過するようにして
脱硝する方法が記載されている。また、特開昭61−1
11128号公報、111129号公報には、灰分、塩
化水素、窒素酸化物、硫黄酸化物を含む燃焼炉排ガス処
理装置として、多孔質セラミック材の排ガス流入面側に
目詰まり防止用の特殊反応助剤プリコート層を介して、
消石灰又は炭酸カルシウム及び塩化カルシウムを含む固
形物層を形成し、排ガス流出面側に窒素酸化物除去用触
媒層を設けた装置が記載されている。
Further, in Japanese Unexamined Patent Publication No. 1-159034, an ammonia gas is injected into a flue of exhaust gas of a diesel engine, and then γ-alumina or anatase-type titania powder carrying slaked lime and vanadium oxide is injected. Then, a method is described in which a ceramics filter is provided downstream of the exhaust gas to collect powder and combustion dust in the exhaust gas, and denitrate the exhaust gas so that the exhaust gas passes through the layer. . In addition, JP-A-61-1
No. 11128, 111129 discloses a special reaction aid for preventing clogging on the exhaust gas inflow side of a porous ceramic material as a combustion furnace exhaust gas treatment device containing ash, hydrogen chloride, nitrogen oxides and sulfur oxides. Through the precoat layer,
An apparatus is described in which a solid layer containing slaked lime or calcium carbonate and calcium chloride is formed, and a catalyst layer for removing nitrogen oxides is provided on the exhaust gas outflow surface side.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来、
ディーゼルエンジン排ガスを浄化する場合、ダストのみ
を除去し、窒素酸化物、硫黄酸化物は、別途処理しなけ
ればならなかった。また、特開平1−159034号公
報、特開昭61−111128号公報、111129号
公報記載の方法を利用して、ダストと同時に窒素酸化物
を除去することも考えられるが、前段における消石灰を
含む触媒粉末で、後段のセラミックフィルターが目詰ま
りし易く、長時間効率よく、排ガス処理を行なうことが
困難であった。本発明は、上記の諸点に鑑みなされたも
ので、集じんと脱硝、又は集じんと脱硝と脱硫とを同時
に効率よく同時に行なうことができるガス浄化触媒及び
ガス浄化方法を提供することを目的とするものである。
As described above, as described above,
When purifying exhaust gas from a diesel engine, only dust had to be removed and nitrogen oxides and sulfur oxides had to be treated separately. Further, it is conceivable to remove nitrogen oxides at the same time as dust by utilizing the methods described in JP-A-1-159904 and JP-A-61-111128, but the slaked lime in the preceding stage is included. With the catalyst powder, the ceramic filter in the subsequent stage was easily clogged, and it was difficult to efficiently treat the exhaust gas for a long time. The present invention has been made in view of the above points, and an object thereof is to provide a gas purification catalyst and a gas purification method that can efficiently perform dust collection and denitration, or dust collection, denitration, and desulfurization at the same time. To do.

【0005】[0005]

【課題を解決するための手段及び作用】上記の目的を達
成するために、本発明のガス浄化触媒は、シリカ、アル
ミナのうち少なくとも1種からなり、1〜50μ径の発
泡状細孔を有する粒状多孔体、板状多孔体又は中空円筒
状多孔体の細孔表面に、酸化ニッケル及び酸化チタンか
らなる活性成分を0.2〜30μの厚みに均一に担持さ
せたことを特徴としている。細孔径が1μ末満の場合
は、ガス拡散抵抗が大きくなり過ぎ、通気抵抗が過大と
なるか、あるいはガス拡散律速により反応速度が低下す
るという不具合がある。一方、細孔径が50μを越える
と、焼成条件等を工夫しても、触媒強度の維持が困難と
なる。また、担持厚みを0.2μ未満にしようとする場
合、細孔表面全体への均一な担持が困難となり、担持ム
ラが生じて触媒性能が低下する。一方、担持厚みが細孔
径の50〜60%以上になると、部分的な細孔の閉塞が
多くなり、ガス拡散抵抗が過大となったり、有効反応表
面積が減少するなどの不都合がある。したがって本発明
における最大細孔径50μの場合でも、担持厚みは30
μに抑える必要がある。本触媒の調製方法は、後述する
実施例1にも記載している通り、1〜50μの発泡状細
孔を有する多孔質のSiO/Al担体に触媒成
分としての硝酸ニッケル、硝酸チタン混合溶液に浸漬
し、細孔表面(担体)に触媒活性成分を担持する含浸担
持方法である。この方法では、触媒の担持層としては、
細孔表面(担体)のみに触媒担持層が形成されるのでは
なく、担体中にも活性成分が含浸担持されるものであ
る。すなわち、ここで言う担持層とは、担体成分のSi
/Al及び触媒活性成分が共存する層(含浸
層)も含まれており、単に担体表面にコーティングされ
た層のみを指すものではない。したがって、細孔径が5
0μの場合に、細孔径の1/2以上の担持厚み30μに
なっても細孔が閉塞することにはならない。また、上記
のガス浄化触媒において、捕集ダストの燃焼促進用に、
活性成分に白金を加えたり、又は活性成分に脱硫成分と
しての酸化銅を加えたりするのが望ましい。
In order to achieve the above object, the gas purification catalyst of the present invention comprises at least one of silica and alumina and has foamed pores having a diameter of 1 to 50 μm. granular porous body, the pore surfaces of the plate-like porous member or a hollow cylindrical porous body, is characterized in that is uniformly supported nickel oxide and titanium oxide Tona Ru active ingredient to the thickness of 0.2~30μ . If the pore size is less than 1 μm, the gas diffusion resistance becomes too large and the ventilation resistance becomes excessive, or the reaction rate decreases due to gas diffusion rate control. On the other hand, if the pore size exceeds 50 μ, it becomes difficult to maintain the catalyst strength even if the firing conditions and the like are devised. Further, if the supporting thickness is made to be less than 0.2 μm, it becomes difficult to uniformly support the entire surface of the pores, resulting in uneven support and deterioration of catalyst performance. On the other hand, when the supported thickness is 50 to 60% or more of the pore diameter, there are disadvantages such that the partial pores are often blocked, the gas diffusion resistance becomes excessive, and the effective reaction surface area decreases. Therefore, even when the maximum pore diameter of the present invention is 50 μ, the supported thickness is 30
It is necessary to suppress to μ. As described in Example 1 described later, the catalyst is prepared by using nickel nitrate and nitric acid as catalyst components on a porous SiO 2 / Al 2 O 3 carrier having foamed pores of 1 to 50 μm. This is an impregnation-supporting method of immersing in a titanium mixed solution and supporting a catalytically active component on the surface of the pores (support). In this method, as the catalyst supporting layer,
The catalyst supporting layer is not formed only on the surface of the pores (support), but the active component is impregnated and supported in the support. That is, the supporting layer referred to here is the carrier component Si.
A layer (impregnated layer) in which O 2 / Al 2 O 3 and a catalytically active component coexist is also included, and it does not indicate only the layer coated on the surface of the carrier. Therefore, the pore size is 5
In the case of 0 μ, even if the supported thickness is 30 μ, which is ½ or more of the pore diameter, the pores are not blocked. Further, in the above gas purification catalyst, for promoting combustion of the collected dust,
It is desirable to add platinum to the active ingredient or copper oxide as a desulfurizing ingredient to the active ingredient.

【0006】本発明の触媒は、以下の製法により、製造
が可能となった。 (1) シリカ、アルミナのうち1種以上の粉末と、粒
径1〜50μのカーボン粉末を混合し、水又はバインダ
ーを加えて粒状、板状、又は中空円筒状に成型し、つぎ
にこの成型物を乾燥させ、空気中で900℃で焼成して
カーボン成分を焼失させ発泡状細孔を形成せしめ、細孔
表面に上記活性成分をディップコーティング又はCVD
(chemical vapor depositio
n)等の方法で均一に担持させる。 (2) シリカ、アルミナのうち1種以上の粉末と、粒
径1〜50μのカーボン粉末を混合し、水又はバインダ
ーを加えて粒状、板状、又は中空円筒状に成型し、つぎ
にこの成型物を乾燥させて空気中で900℃で焼成して
カーボン成分を焼失させ発泡状細孔を形成せしめ、その
細孔表面にまずチタニアの薄層をディップコーティング
又はCVD等の方法でコーティングし、つぎに上記活性
成分を均一に担持させる。
The catalyst of the present invention can be produced by the following production method. (1) Mixing one or more powders of silica and alumina and carbon powder having a particle size of 1 to 50 μ, adding water or a binder to form a granular, plate-like or hollow cylindrical shape, and then forming The product is dried and baked in air at 900 ° C. to burn off the carbon component to form foamed pores, and the active ingredient is dip-coated or CVD on the surface of the pores.
(Chemical vapor deposition
n) and the like to uniformly support. (2) One or more powders of silica and alumina are mixed with carbon powder having a particle size of 1 to 50μ, and water or a binder is added to form a granular, plate-like or hollow cylindrical shape, and then this forming The material is dried and fired at 900 ° C. in air to burn off the carbon component to form foamed pores, and the surface of the pores is first coated with a thin layer of titania by a method such as dip coating or CVD. The above-mentioned active ingredient is uniformly supported on.

【0007】本発明のガス浄化方法は、上記のガス浄化
触媒を用い、排ガスを粒状多孔体間を通過させるか、又
は板状多孔体もしくは中空円筒状多孔体を一方の面から
他方の面に通過させて、排ガス中の窒素酸化物及びダス
ト、又は窒素酸化物、ダスト及び硫黄酸化物を除去する
ことを特徴としている。なお、排ガス中に、アンモニ
ア、炭化水素などの還元剤を添加する。そして、ガス浄
化操作を継続すると、多孔体のガス入口側にダストが堆
積して通気抵抗が増大するし、また酸化銅が硫酸銅に転
化して脱硫活性を失うため、使用済の粒状多孔体、板状
多孔体又は中空円筒状多孔体に再生ガスを流し、ダスト
の燃焼及び二酸化硫黄の脱離を行なう。再生ガスとして
は、空気、希釈空気、酸素、酸素富化空気などが用いら
れる。また、請求項6のガス浄化方法は、粒状ガス浄化
触媒を用いて充填層又は移動層を形成し、その層に排ガ
スを通過させて浄化させる際に、層を2分割し、ガス入
口側の層には反応性を持たない粒子を充填して排ガス中
のダスト除去のみを行なわせ、後流側の層に請求項1、
2又は3に記載のガス浄化触媒を充填し、排ガスの脱
硝、又は脱硝及び脱硫を行なわせることを特徴としてい
る。さらに、請求項7のガス浄化方法は、粒状ガス浄化
触媒で充填層又は移動層を形成し、その層に排ガスを通
過させて浄化させる際に、層を3分割し、ガス入口側の
層には反応性を持たない粒子を充填して排ガス中のダス
ト除去のみを行なわせ、2番目の層に請求項3に記載の
ガス浄化触媒又は硫酸銅のみを担持させたガス浄化触媒
を充填して主に排ガスの脱硫を行なわせ、ガス出口側の
層に請求項1又は2に記載のガス浄化触媒を充填して排
ガスの脱硝を行なわせることを特徴としている。
The gas purification method of the present invention uses the above-mentioned gas purification catalyst to pass the exhaust gas between the granular porous bodies, or the plate-shaped porous body or the hollow cylindrical porous body from one surface to the other surface. It is characterized by removing nitrogen oxides and dust, or nitrogen oxides, dusts and sulfur oxides in the exhaust gas by passing them. A reducing agent such as ammonia or hydrocarbon is added to the exhaust gas. Then, when the gas purification operation is continued, dust is accumulated on the gas inlet side of the porous body to increase the ventilation resistance, and the copper oxide is converted to copper sulfate to lose the desulfurization activity. A regeneration gas is flowed through the plate-shaped porous body or the hollow cylindrical porous body to burn dust and desorb sulfur dioxide. As the regeneration gas, air, dilution air, oxygen, oxygen-enriched air, etc. are used. Further, in the gas purification method of claim 6, when a packed bed or a moving bed is formed by using a granular gas purification catalyst, and the exhaust gas is passed through the bed to be purified, the bed is divided into two parts, and the gas inlet side The layer having non-reactivity is filled in the layer so that only dust in the exhaust gas is removed, and the layer on the downstream side is provided with:
It is characterized in that it is filled with the gas purification catalyst described in 2 or 3, and the exhaust gas is subjected to denitration, or denitration and desulfurization. Further, in the gas purification method of claim 7, when a packed bed or a moving bed is formed with a particulate gas purification catalyst and the exhaust gas is passed through the bed to be purified, the bed is divided into three parts, and a layer on the gas inlet side is formed. Is filled with non-reactive particles to remove only the dust in the exhaust gas, and the second layer is filled with the gas purification catalyst according to claim 3 or the gas purification catalyst supporting only copper sulfate. It is characterized in that the exhaust gas is desulfurized mainly, and the layer on the gas outlet side is filled with the gas purification catalyst according to claim 1 or 2 to denitrate the exhaust gas.

【0008】再生ガスを処理対象ガスと同じ方向で流す
と、まず入口側に堆積したダストに着火し、おき燃焼の
状態でダストが燃焼する。ダストに着火させるためには
再生ガス温度を上昇させる必要があるが、触媒に白金成
分を添加することあるいは再生ガスとして酸素富化空気
を用いることは、燃焼促進、着火温度低下のために有効
である。ただし、条件によっては過熱による触媒劣化を
防止するため希釈空気を再生ガスとして用いることもあ
り得る。硫酸銅を酸化銅に戻し、脱硫活性を再生するた
めには、本来硫酸銅の熱分解まで触媒を加熱する必要が
あるが、本発明の方法では、再生ガスはダスト燃焼熱に
よってさらに加熱されて触媒層又は触媒内部を通過する
ため、この際に外部からの熱供給なしに再生することが
可能である。請求項6に記載の、層を2分割し、ガス入
口側の層ではダスト除去のみを行なわせ、後流側の層に
ガス浄化触媒を充填して脱硝と脱硫を行なわせる方法で
も、再生時にダスト除去層で発生した燃焼熱が再生ガス
によって触媒層に運ばれ、触媒再生に用いられるが、ダ
スト燃焼による局所発熱が触媒層では生じないため、触
媒の劣化抑制にさらに効果的である。請求項7に記載
の、層を3分割し、ガス入口側の層ではダスト除去のみ
を行なわせ、2番目の層で脱硫、3番目の層で脱硝を行
なわせる方法では、通常運転時にSOに起因する脱硝
触媒活性の低下が生じにくい上、再生時にダスト除去層
で発生した燃焼熱が再生ガスによってまず脱硫層に運ば
れて触媒再生に用いられ、最後に脱硝触媒層を通過する
ため、ダスト燃焼発熱による脱硝触媒の劣化はさらに抑
制される。
When the regenerated gas is caused to flow in the same direction as the gas to be treated, the dust accumulated on the inlet side is ignited first, and the dust is burned in the state of combustion. In order to ignite the dust, it is necessary to raise the temperature of the regenerated gas, but adding a platinum component to the catalyst or using oxygen-enriched air as the regenerated gas is effective for promoting combustion and lowering the ignition temperature. is there. However, depending on the conditions, dilution air may be used as the regeneration gas in order to prevent catalyst deterioration due to overheating. In order to restore copper sulfate to copper oxide and regenerate desulfurization activity, it is necessary to heat the catalyst originally until the thermal decomposition of copper sulfate, but in the method of the present invention, the regeneration gas is further heated by the heat of dust combustion. Since it passes through the catalyst layer or the inside of the catalyst, it can be regenerated without external heat supply. The method according to claim 6, wherein the layer is divided into two parts, only the dust is removed in the layer on the gas inlet side, and the layer on the downstream side is filled with a gas purification catalyst to perform denitration and desulfurization. The combustion heat generated in the dust removal layer is carried to the catalyst layer by the regeneration gas and used for catalyst regeneration, but since local heat generation due to dust combustion does not occur in the catalyst layer, it is more effective in suppressing catalyst deterioration. According to claim 7, the layer divided into three, in the layer of the gas inlet side to perform only dust removal, desulfurization in the second layer, the method to perform the denitration in the third layer, SO 2 during normal operation In addition, the denitrification catalyst activity is less likely to decrease due to, and the combustion heat generated in the dust removal layer during regeneration is first carried to the desulfurization layer by the regeneration gas and used for catalyst regeneration, and finally passes through the denitration catalyst layer. Deterioration of the denitration catalyst due to dust combustion heat generation is further suppressed.

【0009】[0009]

【実施例】以下、本発明の実施例を挙げて説明する。 実施例1 シリカ55wt%、アルミナ45wt%の粉末担体原料
10に対し、平均粒径15μのカーボン粉末を2の割合
で混合し、水を噴霧しながら転動造粒機で粒状に造粒し
た。つぎにこの成型物を乾燥させ、空気中で900℃で
焼成してカーボン成分を焼失させて平均細孔径が20μ
径の発泡状細孔を有する担体を形成せしめた後、硝酸ニ
ッケル、硝酸チタン混合溶液への浸漬と、空気雰囲気下
400℃での焼成を4回繰り返し、細孔表面に活性成分
を均一に担持させた。最終的に、平均細孔径が16μ
で、細孔表面に酸化チタン、酸化ニッケル混合層が平均
6μの厚みでほぼ均一に担持された触媒が得られた。
お、担体表面のコーティング層の平均厚みは2μ、担体
表面に含浸した含浸層の平均厚みは4μであった。
EXAMPLES Examples of the present invention will be described below. Example 1 Carbon powder having an average particle size of 15 μ was mixed with powder carrier material 10 of 55 wt% silica and 45 wt% alumina at a ratio of 2 and granulated by a tumbling granulator while spraying water. Next, this molded product is dried and burned at 900 ° C. in air to burn off the carbon component, so that the average pore size is 20 μm.
After forming a carrier with foamed pores of diameter, immersing it in a mixed solution of nickel nitrate and titanium nitrate and firing at 400 ° C in air atmosphere is repeated 4 times to uniformly load the active ingredient on the pore surface. Let Finally, the average pore size is 16μ
Thus, a catalyst was obtained in which a mixed layer of titanium oxide and nickel oxide was uniformly supported on the surface of the pores with an average thickness of 6 μm. What
The average thickness of the coating layer on the surface of the carrier is 2μ.
The average thickness of the impregnated layer impregnated on the surface was 4 μm.

【0010】実施例2 実施例1と同じ粉末担体原料とカーボン粉末の混合物に
水を加えてスラリー化し、抽出し成型機で板状に成型し
た。つぎにこの成型物を乾燥させ、空気中で900℃で
焼成してカーボン成分を焼失させて平均細孔径が16μ
径の発泡状細孔を有する担体を形成せしめた後、実施例
1と同じ原料、方法で細孔表面に活性成分を均一に担持
させた。最終的に、平均細孔径が12μで、細孔表面に
酸化チタン、酸化ニッケル混合層が平均5μの厚みでほ
ぼ均一に担持された触媒が得られた。なお、担体表面の
コーティング層の平均厚みは2μ、担体表面に含浸した
含浸層の平均厚みは3μであった。
Example 2 Water was added to a mixture of the same powder carrier raw material and carbon powder as in Example 1 to form a slurry, which was extracted and molded into a plate shape by a molding machine. Next, this molded product is dried and burned at 900 ° C. in air to burn off the carbon component, so that the average pore diameter is 16 μm.
After allowed forming a carrier having a foam-like pore diameter and the same raw material, is uniformly supported the active ingredient in the pore surfaces in the manner as in Example 1. Finally, a catalyst having an average pore diameter of 12μ and a titanium oxide / nickel oxide mixed layer having an average thickness of 5μ on the pore surfaces was obtained. In addition, the carrier surface
The average thickness of the coating layer was 2μ, and the carrier surface was impregnated.
The average thickness of the impregnated layer was 3μ.

【0011】実施例3 実施例1と同じ粉末担体原料とカーボン粉末の混合物に
水を加えてスラリー化し、ラバープレスで中空円筒状に
成型した。つぎにこの成型物を乾燥させ、空気中で90
0℃で焼成してカーボン成分を焼失させて平均細孔径が
12μ径の発泡状細孔を有する担体を形成せしめた。こ
の成型物に真空中で金属Tiを蒸着させ、再度空気中で
900℃で焼成して酸化チタン層を形成させた後、硝酸
ニッケル水溶液への浸漬と、空気雰囲気下400℃での
焼成を2回繰り返し、細孔表面に酸化ニッケル層を均一
に担持させた。 最終的に、平均細孔径が8μで、細孔
表面に酸化チタン及び酸化ニッケル層が両層合わせて平
均4μの厚みでほぼ均一に担持された触媒が得られた。
なお、担体表面のコーティング層の平均厚みは2μ、担
体表面に含浸した含浸層の平均厚みは2μであった。
記の製造例では、触媒細孔径は混合するカーボン粉末粒
径で、活性成分担持量及び担持層の厚みは含浸溶液濃
度、含浸回数、蒸着時間によって自由に調節することが
できた。
Example 3 Water was added to a mixture of the same powder carrier raw material and carbon powder as in Example 1 to form a slurry, which was molded into a hollow cylinder by a rubber press. Next, the molded product is dried and dried in air to 90
The average pore size is
A carrier having foamed pores with a diameter of 12 μ was formed. Metal Ti was vapor-deposited on this molded product in a vacuum, and again fired at 900 ° C. in air to form a titanium oxide layer, then immersed in an aqueous solution of nickel nitrate and fired at 400 ° C. in an air atmosphere. Repeated times, the nickel oxide layer was uniformly supported on the surface of the pores. Finally, a catalyst having an average pore diameter of 8 μ and having a titanium oxide layer and a nickel oxide layer combined on the surface of the pores with an average thickness of 4 μ was obtained almost uniformly.
The average thickness of the coating layer on the carrier surface was 2μ.
The average thickness of the impregnated layer impregnated on the body surface was 2μ. In the above-mentioned production example, the catalyst pore size was the carbon powder particle size to be mixed, and the amount of the active ingredient supported and the thickness of the carrier layer could be freely adjusted by the concentration of the impregnation solution, the number of impregnations, and the vapor deposition time.

【0012】実施例4 実施例2の方法で製造した板状触媒を、ヘキサクロロ白
金酸溶液に含浸し、乾燥させた後H5%雰囲気で30
0℃で還元し、表面に白金成分を担持させた。
Example 4 The plate-shaped catalyst prepared by the method of Example 2 was impregnated with a hexachloroplatinic acid solution, dried, and then dried in an atmosphere of H 2 5% at 30%.
Reduction was performed at 0 ° C., and a platinum component was supported on the surface.

【0013】実施例5 実施例1の方法で製造した粒状触媒を硝酸銅溶液に含浸
し、乾燥させた後空気雰囲気で400℃で焼成し、表面
に酸化銅成分を担持させた。
Example 5 The granular catalyst produced by the method of Example 1 was impregnated in a copper nitrate solution, dried and then calcined at 400 ° C. in an air atmosphere to carry a copper oxide component on the surface.

【0014】上記のようにして製造したガス浄化触媒を
用いて、以下のような、ガス浄化性能試験を行なった。 (1) 脱硝 実施例1で製造した粒状触媒を用いた。触媒充填層に、
NOx300ppm、O3%、HO8%、残りN
からなるガスをSV5000h−1で流した。触媒充填
層及びガス温度は350℃に保った。触媒充填層上流
に、ガス中NOxに対し2倍のモル比でNHを供給し
たところ、ほぼ安定して92%のNOx除去率が維持さ
れ、触媒の脱硝効果が確認された。 (2) 脱硝・脱じん・再生(燃焼) 実施例2及び4で製造した板状触媒を用いた。板状充填
に、NOx300ppm、ダスト200mg/Nm
含むディーゼル排ガスを流速4cm/sで流した。触媒
及びガス温度は320℃に保った。触媒充填層上流に、
ガス中NOxに対し2倍のモル比でNHを供給したと
ころ、6時間にわたって86%のNOx除去率が維持さ
れ、触媒の脱硝効果が確認された。6時間通ガス後、触
媒への供給ガスを空気に切り替え、供給空気温度を次第
に上昇させた。実施例2の触媒では、空気温度が490
℃に達した時点で捕集ダストの燃焼が開始した。それに
対し、実施例4の触媒では420℃でダスト燃焼が開始
し、Pt成分による燃焼促進効果が確認された。 (3) 脱硫・脱じん・再生(燃焼同時) 実施例5で製造した粒状触媒を用いた。触媒充填層に、
SOx600ppm、ダスト200mg/Nmを含む
ディーゼル排ガスをSV5000h−1で流した。触媒
充填層及びガス温度は350℃に保った。触媒充填層入
口/出口のガス組成を比較すると、6時間にわたって7
2%のSOx除去率が維持された後破過し、触媒の脱硫
効果が確認された。6時間通ガス後、触媒への供給ガス
を空気に切り替え、供給空気温度を520℃まで昇温し
て、1時間かけてダストを燃焼させた。ダスト燃焼後の
触媒層に再度当初と同じディーゼル排ガスを流したとこ
ろ、脱硫効果はほぼ旧に復しており、排ガス供給、ダス
ト燃焼を5回繰り返した後も同様であった。このことか
らダスト燃焼と同時に脱硫成分の再生が同時に起こって
いることが確認された。
Using the gas purification catalyst produced as described above, the following gas purification performance test was conducted. (1) Denitration The granular catalyst produced in Example 1 was used. In the catalyst packed bed,
NOx 300ppm, O 2 3%, H 2 O 8%, balance N 2
A gas consisting of was flowed at SV5000h- 1 . The catalyst packed bed and the gas temperature were kept at 350 ° C. When NH 3 was supplied upstream of the catalyst packed bed at a molar ratio twice that of NOx in the gas, the NOx removal rate of 92% was maintained almost stably, and the denitration effect of the catalyst was confirmed. (2) Denitration / Dust removal / regeneration (combustion) The plate catalysts produced in Examples 2 and 4 were used. Diesel exhaust gas containing 300 ppm of NOx and 200 mg / Nm 3 of dust was passed through the plate-like filling at a flow rate of 4 cm / s. The catalyst and gas temperatures were kept at 320 ° C. Upstream of the catalyst packed bed,
When NH 3 was supplied at a molar ratio twice that of NOx in the gas, the NOx removal rate of 86% was maintained for 6 hours, and the denitration effect of the catalyst was confirmed. After passing gas for 6 hours, the gas supplied to the catalyst was switched to air, and the temperature of the supplied air was gradually raised. The catalyst of Example 2 has an air temperature of 490
The combustion of the collected dust started when the temperature reached ℃. On the other hand, in the catalyst of Example 4, dust combustion started at 420 ° C., and it was confirmed that the Pt component promoted combustion. (3) Desulfurization / Dust removal / Regeneration (simultaneous combustion) The granular catalyst produced in Example 5 was used. In the catalyst packed bed,
SOx600ppm, shed diesel exhaust gas containing dust 200 mg / Nm 3 in SV5000h -1. The catalyst packed bed and the gas temperature were kept at 350 ° C. Comparing the gas composition at the inlet / outlet of the catalyst packed bed, it was 7
After the SOx removal rate of 2% was maintained, breakthrough occurred, and the desulfurization effect of the catalyst was confirmed. After passing the gas for 6 hours, the gas supplied to the catalyst was switched to air, the temperature of the supplied air was raised to 520 ° C., and the dust was burned for 1 hour. When the same diesel exhaust gas as that at the beginning was flowed again in the catalyst layer after the dust combustion, the desulfurization effect was almost restored to the old one, and it was the same after repeating the exhaust gas supply and the dust combustion five times. From this, it was confirmed that the desulfurization component was regenerated at the same time as the dust combustion.

【0015】つぎに、本発明の粒状ガス浄化触媒、板状
ガス浄化触媒、中空円筒状ガス浄化触媒を使用する装置
例について説明する。 (1) 粒状ガス浄化触媒 図1及び図2に示すように、この排ガス処理装置は、金
網、多孔板、パンチングメタル等の多孔支持体20で形
成され、内部に粒状ガス浄化触媒21からなる粒子充填
層22を有する円盤状容器24と、この円盤状容器24
を収納する本体26と、この本体26に、円盤状容器2
4が回転できるように支承された回転軸28と、本体2
6内を二室30、32に仕切るための、回転軸方向の仕
切板34と、一方の室30に接続された排ガス入口36
及び浄化ガス出口38と、他方の室32に接続された再
生ガス入口40及び再生オフガス出口42とを備えてい
る。44、46はガスシール部である。なお、排ガスの
流れ方向と再生ガスの流れ方向とを同方向とすることも
可能である。この装置において、回転式の円盤状容器2
4に充填した粒子充填層22の一部に排ガスを通過させ
て、ガス中のダストを捕集・除去するとともに、ガス中
のNOx、又はNOx及びSOxを除去し、粒子充填層
22の残部に再生ガスを流しながら粒子充填層22を連
続的又は間欠的に回転させ、集じん・脱硝、又は集じん
・脱硝・脱硫と、粒子充填層内に捕集されたダストの焼
却・除去及び粒子(触媒)の再生とを同時に、かつ、連
続的に行なう。なお、粒状ガス浄化触媒21は、発泡状
細孔を有しているので、この細孔内を若干のガスが通過
するが、通気抵抗が大きいので、大部分のガスは触媒2
1、21間の間隙を通過する。
Next, an example of an apparatus using the granular gas purification catalyst, plate-shaped gas purification catalyst and hollow cylindrical gas purification catalyst of the present invention will be described. (1) Granular Gas Purification Catalyst As shown in FIGS. 1 and 2, this exhaust gas treatment device is formed of a porous support 20 such as a wire mesh, a perforated plate, or a punching metal, and has a particle gas purification catalyst 21 inside. A disk-shaped container 24 having a filling layer 22, and the disk-shaped container 24
A main body 26 for accommodating a disk-shaped container 2
4, a rotation shaft 28 rotatably supported by the main body 2
A partition plate 34 in the direction of the rotation axis for partitioning the interior of the chamber 6 into two chambers 30 and 32, and an exhaust gas inlet 36 connected to one chamber 30.
And a purified gas outlet 38, and a regeneration gas inlet 40 and a regeneration off-gas outlet 42 connected to the other chamber 32. 44 and 46 are gas seal portions. It should be noted that the flow direction of the exhaust gas and the flow direction of the regenerated gas can be the same. In this device, the rotary disk-shaped container 2
The exhaust gas is allowed to pass through a part of the particle packed layer 22 filled in No. 4 to collect and remove dust in the gas, and NOx, or NOx and SOx in the gas are removed, and the rest of the particle packed layer 22 is removed. The particle packed bed 22 is continuously or intermittently rotated while flowing a regeneration gas to collect dust / denitrification or dust / denitrification / desulfurization, and incinerate / remove dust collected in the particle packed bed and particles ( Regeneration of the catalyst) is performed simultaneously and continuously. Since the granular gas purification catalyst 21 has foamed pores, some gas passes through these pores, but most of the gas is catalyst 2 because the ventilation resistance is large.
It passes through the gap between 1 and 21.

【0016】図3及び図4は、粒状ガス浄化触媒21の
他の使用例を示している。この排ガス処理装置は、多孔
支持体20で形成され、内部に粒子充填層22を有する
中空円筒状容器50と、この中空円筒状容器50を、粒
子充填層22外面と本体26内面との間に間隙52が生
じるように収納する本体26と、この本体26に、中空
円筒状容器50が回転できるように支承された回転軸2
8と、本体26内を二室54、56に仕切るための仕切
板58と、一方の室54の粒子充填層外側の間隙52に
接続された排ガス入口36と、一方の室54の粒子充填
層内側の中空部60に接続された浄化ガス出口38と、
他方の室56の粒子充填層内側の中空部60に接続され
た再生ガス入口40と、他方の室56の粒子充填層外側
の間隙52に設けられた再生オフガス出口42とを備え
ている。62、64はガスシール部、66、68、7
0、72、74、76は仕切板である。なお、排ガスの
流れ方向と再生ガスの流れ方向とを対向する方向とする
ことも可能である。この装置において、回転式の中空円
筒状容器50に充填した粒子充填層22の一部に排ガス
を通過させて、ガス中のダストを捕集・除去するととも
に、ガス中NOx、又はNOx及びSOxを除去し、粒
子充填層22の残部に再生ガスを流しながら粒子充填層
22を連続的又は間欠的に回転させ、集じん・脱硝、又
は集じん・脱硝・脱硫と、粒子充填層内に捕集されたダ
ストの焼却・除去及び粒子(触媒)の再生とを同時に、
かつ、連続的に行なう。
3 and 4 show another example of use of the particulate gas purification catalyst 21. This exhaust gas treating apparatus is formed of a porous support 20, and has a hollow cylindrical container 50 having a particle packing layer 22 therein, and the hollow cylindrical container 50 is provided between the outer surface of the particle packing layer 22 and the inner surface of the main body 26. A main body 26 which is housed so as to form a gap 52, and a rotary shaft 2 which is rotatably supported by the main body 26 so that the hollow cylindrical container 50 can rotate
8, a partition plate 58 for partitioning the inside of the main body 26 into two chambers 54 and 56, an exhaust gas inlet 36 connected to the gap 52 outside the particle packing layer of one chamber 54, and a particle packing layer of one chamber 54. A purified gas outlet 38 connected to the inner hollow portion 60,
The other chamber 56 is provided with a regeneration gas inlet 40 connected to the hollow portion 60 inside the particle packing layer, and a regeneration off-gas outlet 42 provided in a gap 52 outside the particle packing layer of the other chamber 56. 62 and 64 are gas seal parts, 66, 68 and 7
Partition plates 0, 72, 74 and 76 are provided. The flow direction of the exhaust gas and the flow direction of the regenerated gas may be opposite to each other. In this apparatus, the exhaust gas is passed through a part of the particle-filled layer 22 filled in the rotary hollow cylindrical container 50 to collect and remove dust in the gas, and also to remove NOx in the gas or NOx and SOx. The particle-packed layer 22 is continuously and intermittently rotated while flowing a regeneration gas to the rest of the particle-packed layer 22 to collect dust / denitrification, or dust / denitrification / desulfurization, in the particle-packed layer. Incineration / removal of generated dust and regeneration of particles (catalyst) at the same time,
And continuously.

【0017】(2) 板状ガス浄化触媒 図5及び図6に示すように、金属製支持体80で、数枚
〜数十枚の板状ガス浄化触媒82を一体に支持し、通気
性円筒84を形成する。この通気性円筒84を図3及び
図4に示す粒子充填層22と同様に設置する。ガスは、
通気性円筒84の外方向から内方向へ、又は内方向から
外方向へ板状ガス浄化触媒82の発泡状細孔を通過して
流れる。なお、金属製支持体として、棒状部材の代わり
に、金網、多孔板、パンチングメタルなどの多孔支持体
を用いてもよい。
(2) Plate-shaped gas purifying catalyst As shown in FIGS. 5 and 6, a metal support 80 integrally supports several to several tens of plate-shaped gas purifying catalysts 82 to form a breathable cylinder. 84 is formed. This breathable cylinder 84 is installed in the same manner as the particle-filled layer 22 shown in FIGS. 3 and 4. Gas is
The gas flows through the foamed pores of the plate-like gas purification catalyst 82 from the outside to the inside of the breathable cylinder 84 or from the inside to the outside. As the metal support, a porous support such as a wire mesh, a perforated plate, or a punching metal may be used instead of the rod-shaped member.

【0018】また、図7及び図8に示すように、板状ガ
ス浄化触媒82を2枚対設し、下端及び両側に盲板8
6、88を設けて、排ガスを板状ガス浄化触媒82を通
して浄化するように構成することもできる。90は本
体、92は排ガス入口、94は浄化ガス出口、96は再
生ガス入口、98、100は仕切板である。なお、再生
時は、浄化ガス出口94が再生オフガス出口となる。
Further, as shown in FIGS. 7 and 8, two plate-shaped gas purification catalysts 82 are provided in pairs, and the blind plates 8 are provided at the lower end and both sides.
6, 88 may be provided to purify the exhaust gas through the plate-shaped gas purification catalyst 82. Reference numeral 90 is a main body, 92 is an exhaust gas inlet, 94 is a purified gas outlet, 96 is a regeneration gas inlet, and 98 and 100 are partition plates. During the regeneration, the purified gas outlet 94 becomes the regeneration off-gas outlet.

【0019】(3) 中空円筒状ガス浄化触媒 図9及び図10に示すように、中空円筒状ガス浄化触媒
102を、図7及び図8に示す板状ガス浄化触媒82と
同様に設置する。他の構成は図7及び図8に示す場合と
同様である。
(3) Hollow cylindrical gas purifying catalyst As shown in FIGS. 9 and 10, the hollow cylindrical gas purifying catalyst 102 is installed in the same manner as the plate gas purifying catalyst 82 shown in FIGS. 7 and 8. Other configurations are similar to those shown in FIGS. 7 and 8.

【0020】[0020]

【発明の効果】本発明は、上記のように構成されている
ので、つぎのような効果を奏する。 (1) 集じんと脱硝、又は集じんと脱硝と脱硫とを同
時に効率よく行なうことができる。 (2) 捕集ダストを焼却する場合、燃焼速度が速いの
で、低めの温度で行なうことができ、捕集ダストの焼却
処理が円滑に行なわれる。 (3) 捕集ダストを焼却する場合、捕集ダストの焼却
熱により、使用済み脱硫成分の再生(熱分解→SO
離)が同時に起こる。 (4) 触媒を連続的又は間欠的に移動(回転)させる
か、あるいは排ガスと再生ガスの導入位置を連続的又は
間欠的に移動させることにより、ガス浄化処理(脱じん
・脱硝・脱硫)と再生(ダスト焼却・SO脱離)を同
時に行なうことができる。
Since the present invention is configured as described above, it has the following effects. (1) Dust collection and denitration, or dust collection, denitration, and desulfurization can be simultaneously and efficiently performed. (2) When the collected dust is incinerated, the burning speed is high, so that it can be performed at a lower temperature, and the incineration process of the collected dust is smoothly performed. (3) When incinerating the collected dust, the used desulfurization component is regenerated (pyrolysis → SO 2 desorption) at the same time due to the incineration heat of the collected dust. (4) By carrying out a gas purification treatment (dedusting, denitration, desulfurization) by moving (rotating) the catalyst continuously or intermittently, or by moving the introduction positions of the exhaust gas and the regenerated gas continuously or intermittently. Regeneration (dust incineration / SO 2 desorption) can be performed simultaneously.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の粒状ガス浄化触媒を用いた排ガス処理
装置の一例を示す縦断面説明図(図2における1−1線
断面図)である。
FIG. 1 is a vertical cross-sectional explanatory view (cross-sectional view taken along line 1-1 in FIG. 2) showing an example of an exhaust gas treating apparatus using a particulate gas purification catalyst of the present invention.

【図2】図1における2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 in FIG.

【図3】本発明の粒状ガス浄化触媒を用いた排ガス処理
装置の他の例を示す縦断面説明図(図4における3−3
線断面図)である。
FIG. 3 is a vertical cross-sectional explanatory view (3-3 in FIG. 4) showing another example of the exhaust gas treating apparatus using the particulate gas purification catalyst of the present invention.
It is a line sectional view).

【図4】図3における4−4線断面図である。4 is a cross-sectional view taken along line 4-4 of FIG.

【図5】本発明の板状ガス浄化触媒の使用例を示す斜視
図である。
FIG. 5 is a perspective view showing an example of use of the plate-like gas purification catalyst of the present invention.

【図6】図5に示す板状ガス浄化触媒まわりの拡大断面
図である。
FIG. 6 is an enlarged cross-sectional view around the plate-shaped gas purification catalyst shown in FIG.

【図7】本発明の板状ガス浄化触媒の他の使用例を示す
断面図である。
FIG. 7 is a cross-sectional view showing another example of use of the plate-shaped gas purification catalyst of the present invention.

【図8】図7における8−8線断面図である。8 is a sectional view taken along line 8-8 in FIG.

【図9】本発明の中空円筒状ガス浄化触媒の使用例を示
す断面図である。
FIG. 9 is a cross-sectional view showing an example of use of the hollow cylindrical gas purification catalyst of the present invention.

【図10】図9における10−10線断面図である。10 is a sectional view taken along line 10-10 in FIG.

【符号の説明】[Explanation of symbols]

20 多孔支持体 21 粒状ガス浄化触媒 22 粒子充填層 24 円盤状容器 26 本体 28 回転軸 36 排ガス入口 38 排ガス出口 40 再生ガス入口 42 再生オフガス出口 50 中空円筒状容器 80 金属製支持体 82 板状ガス浄化触媒 84 通気性円筒 92 排ガス入口 94 浄化ガス出口 96 再生ガス入口 102 中空円筒状ガス浄化触媒 20 Porous Support 21 Granular Gas Purification Catalyst 22 Particle Packing Layer 24 Disk Container 26 Main Body 28 Rotating Shaft 36 Exhaust Gas Inlet 38 Exhaust Gas Outlet 40 Regeneration Gas Inlet 42 Regeneration Offgas Outlet 50 Hollow Cylindrical Container 80 Metal Support 82 Plate Gas Purification catalyst 84 Breathable cylinder 92 Exhaust gas inlet 94 Purification gas outlet 96 Regenerated gas inlet 102 Hollow cylindrical gas purification catalyst

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/89 A 35/04 331 B B01D 53/36 102 B 102 D 104 A Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B01J 23/89 A 35/04 331 B B01D 53/36 102 B 102 D 104 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリカ、アルミナのうち少なくとも1種
からなり、1〜50μ径の発泡状細孔を有する粒状多孔
体、板状多孔体又は中空円筒状多孔体の細孔表面に、
ニッケル及び酸化チタンからなる活性成分を0.2〜
30μの厚みに均一に担持させたことを特徴とするガス
浄化触媒。
1. A silica consists of at least one of alumina, granular porous body having a foamed pores 1~50μ diameter, the pore surfaces of the plate-like porous member or a hollow cylindrical porous body, acid
0.2 The nickel and titanium oxide Tona Ru active ingredient
A gas purifying catalyst, which is uniformly carried in a thickness of 30 μm.
【請求項2】 捕集ダストの燃焼促進用に、活性成分に
白金を加えたことを特徴とする請求項1記載のガス浄化
触媒。
2. The gas purifying catalyst according to claim 1, wherein platinum is added to the active component for promoting combustion of the collected dust.
【請求項3】 活性成分に脱硫成分としての酸化銅を加
えたことを特徴とする請求項1又は2記載のガス浄化触
媒。
3. The gas purification catalyst according to claim 1 or 2, wherein copper oxide as a desulfurizing component is added to the active component.
【請求項4】 請求項1、2又は3記載のガス浄化触媒
を用い、排ガスを粒状多孔体間を通過させるか、又は板
状多孔体もしくは中空円筒状多孔体を一方の面から他方
の面に通過させて、排ガス中の窒素酸化物及びダスト、
又は窒素酸化物、ダスト及び硫黄酸化物を除去すること
を特徴とするガス浄化方法。
4. An exhaust gas is passed between granular porous bodies by using the gas purification catalyst according to claim 1, 2 or 3, or a plate-shaped porous body or a hollow cylindrical porous body is passed from one surface to the other surface. Nitrogen oxide and dust in the exhaust gas,
Alternatively, a gas purification method characterized by removing nitrogen oxides, dust and sulfur oxides.
【請求項5】 使用済の粒状多孔体、板状多孔体又は中
空円筒状多孔体に再生ガスを流し、ダストの燃焼及び二
酸化硫黄の脱離を行なうことを特徴とする請求項4記載
のガス浄化方法。
5. The gas according to claim 4, wherein a regeneration gas is caused to flow through the used granular porous material, plate-shaped porous material or hollow cylindrical porous material to burn dust and desorb sulfur dioxide. Purification method.
【請求項6】 粒状ガス浄化触媒を用いて充填層又は移
動層を形成し、その層に排ガスを通過させて浄化させる
際に、層を2分割し、ガス入口側の層には反応性を持た
ない粒子を充填して排ガス中のダスト除去のみを行なわ
せ、後流側の層に請求項1、2又は3に記載のガス浄化
触媒を充填し、排ガスの脱硝、又は脱硝及び脱硫を行な
わせることを特徴とするガス浄化方法。
6. A packed bed or a moving bed is formed using a particulate gas purification catalyst, and when the exhaust gas is passed through the bed for purification, the bed is divided into two, and the layer on the gas inlet side is made to have reactivity. Particles that do not have are filled to remove only dust in the exhaust gas, and the gas purification catalyst according to claim 1, 2 or 3 is filled in the layer on the downstream side to perform denitration of the exhaust gas, or denitration and desulfurization. A gas purification method characterized by:
【請求項7】 粒状ガス浄化触媒で充填層又は移動層を
形成し、その層に排ガスを通過させて浄化させる際に、
層を3分割し、ガス入口側の層には反応性を持たない粒
子を充填して排ガス中のダスト除去のみを行なわせ、2
番目の層に請求項3に記載のガス浄化触媒又は硫酸銅の
みを担持させたガス浄化触媒を充填して主に排ガスの脱
硫を行なわせ、ガス出口側の層に請求項1又は2に記載
のガス浄化触媒を充填して排ガスの脱硝を行なわせるこ
とを特徴とするガス浄化方法。
7. When forming a packed bed or a moving bed with a particulate gas purification catalyst and passing exhaust gas through the bed to purify
The layer is divided into three parts, and the layer on the gas inlet side is filled with non-reactive particles to remove only the dust in the exhaust gas.
The second layer is filled with the gas purification catalyst according to claim 3 or the gas purification catalyst supporting only copper sulfate to mainly perform desulfurization of exhaust gas, and the layer on the gas outlet side is according to claim 1 or 2. A method for purifying gas, comprising filling the gas purifying catalyst according to 1 above to denitrate exhaust gas.
JP3359621A 1991-12-30 1991-12-30 Gas purification catalyst and gas purification method Expired - Lifetime JPH0824846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3359621A JPH0824846B2 (en) 1991-12-30 1991-12-30 Gas purification catalyst and gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3359621A JPH0824846B2 (en) 1991-12-30 1991-12-30 Gas purification catalyst and gas purification method

Publications (2)

Publication Number Publication Date
JPH0615173A JPH0615173A (en) 1994-01-25
JPH0824846B2 true JPH0824846B2 (en) 1996-03-13

Family

ID=18465436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3359621A Expired - Lifetime JPH0824846B2 (en) 1991-12-30 1991-12-30 Gas purification catalyst and gas purification method

Country Status (1)

Country Link
JP (1) JPH0824846B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1374978B1 (en) * 2002-06-25 2008-05-14 Ford Global Technologies, LLC SOXx trap for diesel and lean burn gasoline automotive applications
JP2006205091A (en) * 2005-01-28 2006-08-10 Takuma Co Ltd Denitration catalyst and exhaust gas treating method
JP2008215093A (en) * 2007-02-28 2008-09-18 Babcock Hitachi Kk Exhaust gas cleaning filter and automobile equipped with the same
JP2015202425A (en) * 2014-04-11 2015-11-16 国立大学法人金沢大学 Fine particle collection device
JP6358902B2 (en) * 2014-09-02 2018-07-18 株式会社アルバック Method for producing exhaust gas purification catalyst
CN114392609A (en) * 2021-12-30 2022-04-26 安徽工业大学 Preparation method and application of dedusting, desulfurization and denitration integrated double-layer mullite ceramic filter material

Also Published As

Publication number Publication date
JPH0615173A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
JP7108007B2 (en) Catalyst for treating exhaust gas
JP6411358B2 (en) Ammonia oxidation catalyst
RU2675363C2 (en) Ammonia slip catalyst
RU2392456C2 (en) Method and device for cleaning of exhaust gas
RU2669556C2 (en) Zeolite blend catalysts for treating exhaust gas
JP2002520136A (en) Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
JP2003245547A (en) Catalyst for exhaust gas treatment and method for exhaust gas treatment
JP2016531736A (en) Tungsten / titania oxidation catalyst
JP7041062B2 (en) Catalyst beds, and methods for reducing nitrogen oxides
JP6894704B2 (en) Methods and systems for exhaust gas treatment
JP2006289211A (en) Ammonia oxidation catalyst
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
JPH0824846B2 (en) Gas purification catalyst and gas purification method
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
CN113453781A (en) Catalytic filtration system for treating particulate-containing exhaust gas from stationary emission sources
JPH09108570A (en) Oxidation catalyst for cleaning exhaust gas and preparation thereof
JP4277226B2 (en) Catalyst for oxidizing metal mercury, catalyst for purifying exhaust gas provided with catalyst for oxidizing metal mercury, and method for producing the same
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JPH0647282A (en) Catalyst for low temperature denitrification of flue gas, its production and method for low temperature denitrification of flue gas
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JP3316879B2 (en) Exhaust gas purification catalyst for diesel engines
KR20060105906A (en) Catalytic compositions for oxidizing particular matters and catalytic soot filters employing the compositions
KR100460665B1 (en) A method for simultaneous removal of nitrogen oxides and dioxins from waste gases