JPS63134028A - Dry desulfurizing method - Google Patents

Dry desulfurizing method

Info

Publication number
JPS63134028A
JPS63134028A JP61281176A JP28117686A JPS63134028A JP S63134028 A JPS63134028 A JP S63134028A JP 61281176 A JP61281176 A JP 61281176A JP 28117686 A JP28117686 A JP 28117686A JP S63134028 A JPS63134028 A JP S63134028A
Authority
JP
Japan
Prior art keywords
iron oxide
reducing gas
absorbent
desulfurization
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61281176A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
弘 小川
Kazuo Sakanaya
和夫 魚屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61281176A priority Critical patent/JPS63134028A/en
Publication of JPS63134028A publication Critical patent/JPS63134028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE:To simultaneously perform desulfurization and dust removal of reducing gas in the same vessel by passing sulfide-contg. reducing gas jetted with iron oxide powder through a deposited layer of iron oxide formed on the surface of a filter consisting of porous ceramic. CONSTITUTION:An absorbent layer 2 is formed by depositing iron on the surface of a filter 1 consisting of porous ceramic. H2S incorporated in reducing gas is absorbed and removed by the following reaction equation when it is passed through the absorbent layer 2 consisting of iron oxide. Fe2O3+2H2S+H2 2FeS +3H2O. Since the particle diameter of the used absorbent is regulated to 10-100mu and is very small, the surface area per unit volume is large and also the contact time is made short and the usage of a desulfurizing agent is reduced. Further in the above-metnioned reaction, since only the surfaces of iron oxide particles are allowed to react, the smaller the particle diameter is, the larger the absorption capacity per unit volume is made and the utilization factor of iron oxide is enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脱硫方法に係り、特に高温・高圧条件下におい
て行われる炭化水素系燃料のガス化により生成する還元
性ガス中から硫化物を除去する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a desulfurization method, and in particular to a method for removing sulfides from reducing gas produced by gasification of hydrocarbon fuel under high temperature and high pressure conditions. Regarding how to.

〔従来の技術〕[Conventional technology]

原油価格の高騰や輸入原油の重質化が我国のエネルギー
や化学原料の将来の見通しを暗くしている。この対応と
して原油から軽質分を蒸留した残渣分、いわゆる蒸留残
渣あるいは石炭を原料としてガス化を行い、それにより
て得られる一酸化炭素(CO)と水素(H2)の利用が
検討されている。すなわち、このようにして得られたC
o、)1.を直接燃料に利用する方法、あるいは将来石
油(ナフサ)から得ていたエチレン、プロピレン酢酸等
への転換を計る方法等、の石油代替エネルギー政策が打
ち出されている。
The soaring price of crude oil and the heavier imports of crude oil are bleaking the future outlook for Japan's energy and chemical raw materials. As a solution to this problem, consideration is being given to gasifying the residue obtained by distilling light components from crude oil, so-called distillation residue, or coal as a raw material, and using the resulting carbon monoxide (CO) and hydrogen (H2). That is, C obtained in this way
o,)1. Policies for alternative energy to petroleum are being proposed, such as using it directly as fuel, or converting it to ethylene, propylene acetic acid, etc. obtained from petroleum (naphtha) in the future.

重質油や石炭中の硫黄化合物はガス化反応時に硫化物、
主としてH,5(10%程度COS>に転化し、COや
H2の還元性ガス中に混入する。また還元性ガス中には
このようなH,Sのほか、微細な塵埃、すなわちダスト
も含まれている。従って燃料として使用する場合には、
硫黄酸化物や煤塵となって大気汚染源となったり2合成
原料の場合には触媒被毒となるため2種々の精製法が提
案され、いくつかは稼動中である。
Sulfur compounds in heavy oil and coal are converted into sulfides and
It is mainly converted to H, 5 (approximately 10% COS) and mixed into the reducing gas of CO and H2. In addition to these H and S, the reducing gas also contains fine dust, that is, dust. Therefore, when used as fuel,
Since sulfur oxides and soot become a source of air pollution, and in the case of two synthetic raw materials, they poison the catalyst, two different purification methods have been proposed, and some of them are currently in operation.

その1つとしては湿式法があり、それは硫化水素を化学
吸収させて除去する方法である。
One of them is a wet method, which removes hydrogen sulfide by chemical absorption.

この方法は溶液に硫化水素を吸収させるためダストも同
時に除去できるが、ガスを冷却する必要があり、それに
伴うエネルギー損失や吸収液の再生、排水処理などの問
題がある。
This method allows hydrogen sulfide to be absorbed into the solution, so dust can also be removed at the same time, but the gas needs to be cooled, resulting in problems such as energy loss, regeneration of the absorption liquid, and wastewater treatment.

他の方法としては300〜800°Cの高温下で吸収剤
(例えば酸化鉄、酸化モリブテン等が知られている)に
吸収させた後、酸素により硫黄酸化物として脱着すると
ともに吸収剤を再生して繰り返し利用するいわゆる乾式
法も提案されている。この場合には以上の脱硫処理のほ
かダスト除去処理も行なわねばならず、従ってダスト除
去処理関係の装置も配備しなければならない。
Another method is to absorb it into an absorbent (for example, iron oxide, molybdenum oxide, etc.) at a high temperature of 300 to 800°C, and then desorb it as sulfur oxide with oxygen and regenerate the absorbent. A so-called dry method has also been proposed, which involves repeated use. In this case, in addition to the above-mentioned desulfurization treatment, a dust removal treatment must also be performed, and therefore equipment related to the dust removal treatment must also be provided.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来から酸化鉄は脱硫剤としてよく知られている。酸化
鉄としては鉄鉱石自身でも脱硫性能はあるが、吸着再生
により粉化するため耐熱性担体2例えばシリカ、アルミ
ナ、チタニア等に酸化鉄を担持して使用する方法も提案
されている。
Iron oxide has been well known as a desulfurization agent. Iron ore itself has desulfurization performance as iron oxide, but a method has also been proposed in which iron oxide is supported on a heat-resistant carrier 2 such as silica, alumina, titania, etc. in order to be pulverized by adsorption and regeneration.

本発明者等は酸化鉄を耐熱性担体に担持した吸着剤とす
る固定層方式の乾式脱硫法について鋭意研究を重ねた結
果1次の問題に直面した。
The inventors of the present invention encountered the first problem as a result of extensive research into a fixed bed dry desulfurization method using iron oxide as an adsorbent supported on a heat-resistant carrier.

耐熱性担体に担持てきる酸化鉄ばF e 203として
30重量%が限度であり、しかも3 mmダ程度の粒状
脱硫剤では実用的なH2S除去率80%になるまで吸着
させたときのFe2O3の反応率(利用率)が22%に
過ぎない。つまり脱硫剤の7%が利用されただけである
ため、大量の脱硫剤を準備することが必要なのである。
The maximum amount of iron oxide Fe 203 that can be supported on a heat-resistant carrier is 30% by weight, and with a granular desulfurizing agent of about 3 mm, Fe2O3 can be adsorbed to a practical H2S removal rate of 80%. The response rate (utilization rate) is only 22%. In other words, since only 7% of the desulfurizing agent was used, it is necessary to prepare a large amount of desulfurizing agent.

以上の脱硫処理のほかダスト除去処理も行なわねばなら
ず、従ってダスト除去処理関係の装置も配備しなければ
ならない。特に石炭のガス化複合発電プラントでは40
0〜500’C,10〜3 Q ataという高温高圧
条件下での除しんを行う必要があり、既存の電気集塵機
やバクフィルターは使用できず、上記脱硫装置開発とは
別に専用の集塵機も開発中である。
In addition to the above-mentioned desulfurization treatment, a dust removal treatment must also be performed, and therefore equipment related to the dust removal treatment must also be provided. Especially in coal gasification combined cycle power plants, 40
It is necessary to perform dust removal under high temperature and high pressure conditions of 0 to 500'C and 10 to 3 Q ata, and existing electrostatic precipitators and back filters cannot be used, so a dedicated dust collector was also developed in addition to the desulfurization equipment development mentioned above. It's inside.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は硫化物、主としてH2S、を含有する還元性ガ
ス中に酸化鉄粉末を噴射し、多孔質セラミックスからな
るフィルター表面に形成される酸化鉄の堆積層に該還元
性ガスを通して硫化物を除去することを特徴とする乾式
脱硫方法である。
The present invention removes sulfides by injecting iron oxide powder into a reducing gas containing sulfides, mainly H2S, and passing the reducing gas through a deposited layer of iron oxide formed on the surface of a filter made of porous ceramics. This is a dry desulfurization method characterized by:

ここで2本発明方法にて硫化物を除去する乾式吸収剤は
粒末状酸化鉄であり2粒末の粒径は10〜100μが適
当である。この吸収剤構成成分の他に1通気性、接着性
、吸湿防止を考慮して他の無機成分1例えばアルミナ。
Here, the dry absorbent for removing sulfides in the method of the present invention is granular iron oxide, and the appropriate particle size of the granules is 10 to 100 microns. In addition to this absorbent component, other inorganic components such as alumina may be added in consideration of breathability, adhesion, and prevention of moisture absorption.

シリカ、アルミナ・シリケート、ゼオライト。Silica, alumina silicate, zeolite.

ケイソウ土、パーライト、長石、白土など)を加えるこ
ともできる。
(diatomaceous earth, perlite, feldspar, white clay, etc.) can also be added.

本発明では上記吸収剤の堆積層を形成させるために多孔
質セラミックフィルターを使用する。ここで、第1図は
本発明に係る多孔質セラミック・フィルターの1例を示
す外観図。
In the present invention, a porous ceramic filter is used to form the deposited layer of the absorbent. Here, FIG. 1 is an external view showing one example of a porous ceramic filter according to the present invention.

第2図は第1図のフィルターを縦方向に切断した部分断
面図で、脱硫操作中のセラミックフィルターの状況を示
している。
FIG. 2 is a partial longitudinal cross-sectional view of the filter of FIG. 1, showing the state of the ceramic filter during desulfurization.

第1図中、1は吸収剤をその表面に堆積した多孔質セラ
ミックスからなる円筒状フィルターである。第2図中、
2は前記多孔質セラミックス・フィルタ一本体3の表面
に堆積した吸収剤層である。ここで多孔質セラミックス
フィルタ一本体3としては1例えばコージライト、ムラ
イト、ジルコニア、アルミナ、シリカ、炭化珪素、窒化
珪素、サイアロンなどが挙げられる。なお図中において
G1はH,S等の硫化物とダストを含む原ガスであり、
G2は吸収剤の堆積層2とフィルタ一本体3を通遇し、
処理されたクリーンなガスである。
In FIG. 1, 1 is a cylindrical filter made of porous ceramics with an absorbent deposited on its surface. In Figure 2,
Reference numeral 2 denotes an absorbent layer deposited on the surface of the porous ceramic filter body 3. Examples of the porous ceramic filter body 3 include cordierite, mullite, zirconia, alumina, silica, silicon carbide, silicon nitride, and sialon. In the figure, G1 is raw gas containing sulfides such as H and S and dust,
G2 communicates with the absorbent deposit layer 2 and the filter main body 3,
It is a processed clean gas.

〔作用〕[Effect]

還元性ガス中の硫化水素H,Sは、上記酸化鉄からなる
吸収剤層2を通過する時2次式によって吸収除去される
と考えられる。
It is thought that hydrogen sulfide H and S in the reducing gas are absorbed and removed by a quadratic equation when passing through the absorbent layer 2 made of iron oxide.

Fe20s + 2H,S + H2→2Fe S +
 3H20この方法の吸収剤は原ガスとの接触面積が大
きい程吸収速度が早くなるが1本発明の方法で使用する
吸収剤の粒径は10〜100μと非常に小さいので、単
位容積当りの表面積は膨大であり、従って接触時間も短
くてすみ。
Fe20s + 2H, S + H2→2Fe S +
3H20 The absorption rate of the absorbent used in this method increases as the contact area with the raw gas increases.1 The particle size of the absorbent used in the method of the present invention is extremely small, 10 to 100μ, so the surface area per unit volume is The number of contacts is huge, so the contact time is short.

脱硫剤の使用量が少なくてすむ。又上記反応は酸化鉄粒
子の極く表面のみが反応するだけのため2粒子径が小さ
い程単位容積当りの吸収容量が大きく、即ち酸化鉄の利
用率が向上する。この点からも微粒子を使用する本発明
の方法は有効である。
The amount of desulfurization agent used can be reduced. Further, in the above reaction, only the surface of the iron oxide particles reacts, so the smaller the particle diameter, the larger the absorption capacity per unit volume, that is, the utilization rate of iron oxide improves. Also from this point of view, the method of the present invention using fine particles is effective.

従来から酸化鉄を吸収剤とする脱硫反応では酸化鉄の粒
径が小さい程有利なことは周知の事実であるが、脱硫処
理後のガス中に微粒子が含まれると、後流の配管閉塞や
エロージョンの原因となるなど好ましくないものであっ
た1本発明で使用するフィルタ一本体は十分耐熱性を持
った多孔質セラミックスから構成することにより、粉末
状の酸化鉄をその表面で捕足し、吸収剤の堆積層を形成
すると同時に、プレコートされたバクフィルターと同様
に、原ガス中のダストを集塵する。
It is a well-known fact that in desulfurization reactions using iron oxide as an absorbent, the smaller the particle size of iron oxide, the more advantageous it is. However, if fine particles are included in the gas after desulfurization, it can cause clogging of pipes downstream. The main body of the filter used in the present invention is made of porous ceramics with sufficient heat resistance, which traps and absorbs powdered iron oxide on its surface. At the same time as forming a deposited layer of the agent, it also collects dust in the raw gas, similar to a pre-coated bag filter.

なお、集塵されて、フィルタ一本体に堆積した吸収剤と
ダストは通常逆洗操作、原ガス供給を停止し、逆に処理
ガス側からクリーンガスを通気する。により払い落す。
Note that the absorbent and dust collected and deposited on the filter body are usually backwashed and the supply of raw gas is stopped, and conversely, clean gas is vented from the processing gas side. brush it off.

脱硫装置より取り出された硫化鉄、一部未反応の酸化鉄
及びダストは空気と反応させ、再生された酸化鉄は分別
され、再び吸収剤として利用する。
Iron sulfide, partially unreacted iron oxide, and dust taken out from the desulfurization equipment are reacted with air, and the regenerated iron oxide is separated and used again as an absorbent.

本発明は上記還元性ガスの脱硫と除しんとを同一容器内
で同時に行うことができる。
According to the present invention, desulfurization and atom removal of the reducing gas can be performed simultaneously in the same container.

〔比較例〕[Comparative example]

市販の酸化チタン〔アナターゼ形Tt 02 。 Commercially available titanium oxide [anatase type Tt 02].

球形2〜4 in :]にTiO2が76重量%1Fe
203として24重量%となるように硝酸第2鉄水溶液
を含浸させ、乾燥後450°Cにて3時間焼成して収着
剤とした。
Spherical 2-4 in: ] with 76 wt% TiO2 1Fe
It was impregnated with an aqueous ferric nitrate solution to a concentration of 24% by weight as 203, dried, and then baked at 450°C for 3 hours to obtain a sorbent.

上記方法で調製した吸収剤2 s、1 t (20m6
)を第1表に示す試験条件で第3図に示した様に粒状吸
収剤を小型反応器に充填して脱硫試験を行った。
Absorbent prepared by the above method 2 s, 1 t (20 m6
) was carried out under the test conditions shown in Table 1 by filling a small reactor with granular absorbent as shown in Figure 3 and carrying out a desulfurization test.

図中の4は石英製反応管、5は粒状吸収剤。In the figure, 4 is a quartz reaction tube, and 5 is a granular absorbent.

6はセラミック製多孔板である。6 is a ceramic porous plate.

なお1図中におけるG1は第1表に示した原ガスであり
、G2は粒状吸収剤層を通過した処理ガスである。
Note that G1 in Figure 1 is the raw gas shown in Table 1, and G2 is the processing gas that has passed through the granular absorbent layer.

この試験におけるH2Sの吸着の状況を第5図の曲線A
に示した。H2S除去率が77%になるまでに吸着した
H2Sは16.8mmolであつf?−0 〔実症例〕 比較例で使用した硝酸第2鉄水溶液を乾燥後、450℃
にて3時間焼成してまず酸化鉄を得た。この酸化鉄を粉
砕し、35oメツシーのふるいを通過した粉末状酸化鉄
6.07(2ml)に対し、平均粒子径20μのパーラ
イト0.69添加して2円板上セラミツトフィルター上
にケーキ層をつくった。このケーキ層からなる粉末吸収
剤層を用いて比較例と同様な第1表に示す試験条件で第
4図に示した様にケーキ状吸収剤層を小型反応器に装着
して、脱硫試験を行った。図中の7は粉末状酸化鉄から
なるケーキ状吸収剤層、8は多孔質セラミック製フィル
ターである。本フィルターの組成は主に3 A lx 
Os・2SiO2(ムライト)であり、少量の5in2
を含有しており、気孔率=32%、気孔径(公称)=1
00μ、板厚= 7 rraである。この試験における
H7Sの吸着の状況を第5図の曲線Bに示した。このと
きの吸着H,Sは40.2 m molfあツタ。
Curve A in Figure 5 shows the state of H2S adsorption in this test.
It was shown to. The H2S adsorbed until the H2S removal rate reached 77% was 16.8 mmol and f? -0 [Actual case] After drying the ferric nitrate aqueous solution used in the comparative example, it was heated to 450°C.
After firing for 3 hours, iron oxide was first obtained. This iron oxide was crushed and passed through a 35o mesh sieve.To 6.07 (2 ml) of powdered iron oxide, 0.69 pearlite with an average particle size of 20μ was added, and a cake layer was placed on the ceramic filter on two discs. I made it. Using this powder absorbent layer consisting of a cake layer, a desulfurization test was carried out by installing the cake-like absorbent layer in a small reactor as shown in Figure 4 under the same test conditions as in the comparative example shown in Table 1. went. In the figure, 7 is a cake-like absorbent layer made of powdered iron oxide, and 8 is a porous ceramic filter. The composition of this filter is mainly 3A lx
Os・2SiO2 (mullite), a small amount of 5in2
Contains, porosity = 32%, pore diameter (nominal) = 1
00μ, plate thickness = 7 rra. The state of H7S adsorption in this test is shown in curve B in FIG. At this time, the adsorption H and S were 40.2 m molf.

第5図から、 H,S除去率が80%以上維持できる吸
着時間は比較例116分に対して本実施例の粉末吸収剤
は314分と大幅に向上した。特に250分までは出ロ
H,S!1度は。
From FIG. 5, it can be seen that the adsorption time for maintaining the H, S removal rate of 80% or more was 314 minutes for the powder absorbent of the present example, compared to 116 minutes for the comparative example, which was significantly improved. Especially until the 250th minute, it's H, S! Once.

599m以下であり、はソ完全にH2Sを除去する脱硫
性能を示した。
599 m or less, and showed desulfurization performance that completely removed H2S.

また本試験において第4図の入口ガスG1としてIs’
/Nrn’のダストを同伴させたときの除しん性能を計
測した結果を第2表に示した。
In addition, in this test, as the inlet gas G1 in Fig. 4, Is'
Table 2 shows the results of measuring the dust removal performance when dust of /Nrn' was entrained.

明らかの如く表から本発明による乾式脱硫方法は脱硫機
能と同時に優れた除じん機能を示した。
As is clear from the table, the dry desulfurization method according to the present invention exhibited an excellent dust removal function as well as a desulfurization function.

〔発明の効果〕〔Effect of the invention〕

本発明に係る乾式脱硫方法によれば、硫化物を含有する
還元性ガス中に酸化鉄粉体を噴射し、多孔質セラミック
フィルター表面に形成される該酸化鉄の堆積層に該還元
性ガスを通過させて、硫化物を高効率で除去することが
でき、しかも同時にダスト除去機能を有するガス処理装
置を提供できる。
According to the dry desulfurization method of the present invention, iron oxide powder is injected into a reducing gas containing sulfide, and the reducing gas is applied to a deposited layer of iron oxide formed on the surface of a porous ceramic filter. It is possible to provide a gas treatment device that can remove sulfides with high efficiency by allowing the gas to pass therethrough, and also has a dust removal function at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する多孔質セラミックフィルター
の外観図、第2図は第1図のフィルターを縦方向に切断
した部分断面図、第3図は比較例において説明した脱硫
試験における粒状吸収剤の充填状況を示す説明図、第4
図は本発明の実施例に係る粉末状吸収剤が脱硫試験時に
おいて、ケーキ状に堆積させた状況を示す説明図、第5
図は本発明による脱硫性能試験結果を示す線図である。
Figure 1 is an external view of the porous ceramic filter used in the present invention, Figure 2 is a partial cross-sectional view of the filter in Figure 1 cut in the longitudinal direction, and Figure 3 is granular absorption in the desulfurization test explained in the comparative example. Explanatory diagram showing the filling situation of the agent, No. 4
The figure is an explanatory diagram showing the situation in which the powdered absorbent according to the example of the present invention was deposited in a cake shape during a desulfurization test.
The figure is a diagram showing the results of a desulfurization performance test according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 硫化物を含有する還元性ガス中に酸化鉄粉体を噴射し、
その後多孔質セラミックスからなるフィルター表面に形
成される該酸化鉄の堆積層に該還元性ガスを通して硫化
物を除去することを特徴とする乾式脱硫方法。
Inject iron oxide powder into reducing gas containing sulfide,
A dry desulfurization method characterized in that the reducing gas is then passed through the deposited layer of iron oxide formed on the surface of a filter made of porous ceramics to remove sulfides.
JP61281176A 1986-11-26 1986-11-26 Dry desulfurizing method Pending JPS63134028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281176A JPS63134028A (en) 1986-11-26 1986-11-26 Dry desulfurizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281176A JPS63134028A (en) 1986-11-26 1986-11-26 Dry desulfurizing method

Publications (1)

Publication Number Publication Date
JPS63134028A true JPS63134028A (en) 1988-06-06

Family

ID=17635408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281176A Pending JPS63134028A (en) 1986-11-26 1986-11-26 Dry desulfurizing method

Country Status (1)

Country Link
JP (1) JPS63134028A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303515A (en) * 1989-05-18 1990-12-17 Kawasaki Heavy Ind Ltd Dry type desulfurizing and dust removing method
US5244641A (en) * 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5538703A (en) * 1993-10-29 1996-07-23 Massachusetts Institute Of Technology Hot gas desulfurization by injection of regenerable sorbents in gasifier-exit ducts
KR20010096697A (en) * 2001-07-24 2001-11-08 A manufacturing method of a pore iron oxide desulfurizing agent for adsorption hydrogen sulfide gas.
GB2502228B (en) * 2011-03-14 2018-08-29 Weatherford Switzerland Trading And Dev Gmbh Sampling container for collection of fluids
CN110772890A (en) * 2018-07-30 2020-02-11 天津大学 Ferroferric oxide-loaded SiC foamed ceramic and preparation method and application thereof
CN110772911A (en) * 2018-07-30 2020-02-11 天津大学 Microwave reaction device and reaction system for removing bioaerosol and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303515A (en) * 1989-05-18 1990-12-17 Kawasaki Heavy Ind Ltd Dry type desulfurizing and dust removing method
US5244641A (en) * 1992-04-28 1993-09-14 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5306685A (en) * 1992-04-28 1994-04-26 Phillips Petroleum Company Absorption of hydrogen sulfide and absorbent composition therefor
US5538703A (en) * 1993-10-29 1996-07-23 Massachusetts Institute Of Technology Hot gas desulfurization by injection of regenerable sorbents in gasifier-exit ducts
KR20010096697A (en) * 2001-07-24 2001-11-08 A manufacturing method of a pore iron oxide desulfurizing agent for adsorption hydrogen sulfide gas.
GB2502228B (en) * 2011-03-14 2018-08-29 Weatherford Switzerland Trading And Dev Gmbh Sampling container for collection of fluids
CN110772890A (en) * 2018-07-30 2020-02-11 天津大学 Ferroferric oxide-loaded SiC foamed ceramic and preparation method and application thereof
CN110772911A (en) * 2018-07-30 2020-02-11 天津大学 Microwave reaction device and reaction system for removing bioaerosol and application thereof
CN110772911B (en) * 2018-07-30 2021-11-09 天津大学 Microwave reaction device and reaction system for removing bioaerosol and application thereof
CN110772890B (en) * 2018-07-30 2021-11-19 天津大学 Ferroferric oxide-loaded SiC foamed ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6610264B1 (en) Process and system for desulfurizing a gas stream
GB2191111A (en) Selective removal of hydrogen sulfide over zinc titanate and alumina
KR20090038848A (en) Activated carbon honeycomb catalyst bed for removing mercury from combustion flue gas
US5294409A (en) Regenerative system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream
JPS59131569A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
CN206168171U (en) High temperature flue gas desulfurization denitration demercuration dust removal integrated device
JP2930409B2 (en) Purification method of sulfide-containing gas
JPH0771616B2 (en) Method for removing sulfur oxides from gas using an absorbent material that can be regenerated by reaction with hydrogen sulfide
JP3766100B2 (en) H {circle around (2)} SO and SO {circle around 2} methods of catalytic desulfurization of gases containing compounds, and catalysts for carrying out the method
JPS63134028A (en) Dry desulfurizing method
KR20180128933A (en) Catalytic active filters for use in hot gas filtration, processes for the preparation of filters and methods for simultaneous removal of solid particles and unwanted chemical compounds from the gas stream
Shultz et al. Hydrogen sulfide removal from hot producer gas with sintered absorbents
JPH11104432A (en) Method and apparatus for gas treatment
CA2170845C (en) Process for desulfurizing a h2s -containing gas
CN111097271B (en) Method and device for removing SOx and NOx in catalytic cracking flue gas
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
Kiani et al. Syngas conditioning (catalyst, process: sulfur and tar Cl, F)
CN101466456A (en) Method for removing heavy metals from gases
CN114502277A (en) Composite material and application thereof in desulfurization
CN112642397A (en) Composite material and preparation method and application thereof
JPS6135821A (en) Treatment of gas containing hydrogen sulfide
JP3998218B2 (en) Carbon deposition control desulfurization agent
JPH02303515A (en) Dry type desulfurizing and dust removing method
JP3017730B1 (en) Dry desulfurizing agent, method and apparatus for producing the same, and method and apparatus for using the desulfurizing agent
JPH0685872B2 (en) Desulfurization agent