JPS58145884A - Long heat pipe for heat transfer - Google Patents

Long heat pipe for heat transfer

Info

Publication number
JPS58145884A
JPS58145884A JP57026996A JP2699682A JPS58145884A JP S58145884 A JPS58145884 A JP S58145884A JP 57026996 A JP57026996 A JP 57026996A JP 2699682 A JP2699682 A JP 2699682A JP S58145884 A JPS58145884 A JP S58145884A
Authority
JP
Japan
Prior art keywords
working fluid
tubular body
inner peripheral
large number
phase working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57026996A
Other languages
Japanese (ja)
Other versions
JPH0227596B2 (en
Inventor
Masataka Mochizuki
正孝 望月
Koichi Masuko
耕一 益子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP57026996A priority Critical patent/JPS58145884A/en
Publication of JPS58145884A publication Critical patent/JPS58145884A/en
Publication of JPH0227596B2 publication Critical patent/JPH0227596B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Abstract

PURPOSE:To enable the long distance heat transfer by a structure wherein a large number of thread of ultrafine yarns are densely attached onto the inner peripheral surface of a flexible tubular body and are pressed by a corrugated tube perforated with a large number of small holes in the heat pipe for power cable use or the like. CONSTITUTION:In the heat pipe, the loop flow passage of liquid phase working fluid is formed by the fine gaps between the ultrafine yarns 3, which are made of glass fibers or the like and out of which a large number of threads densely attached along the direction of axis line of the pipe onto the inner peripheral surface of the flexible metallic tubular body 2 are made. Furthermore, the corrugated tube 4 perforated with a large number of small holes 5 is inserted in the inner peripheral side of said ultrafine yarn layer so as to urge the ultrafine yarns 3 against the inner peripheral surface of the tubular body 2 in order to partition the passage of gaseous phase working fluid and of the liquid phase working fluid with the corrugated tube 4. Accordingly, effective capillary tube radii become small and, as a result, high capillarity pressure can be obtained and, furthermore, the pressure losses in the respective passages are small and consequently long distance heat transfer can be made possible.

Description

【発明の詳細な説明】 この発明はヒートパイプに関し、とくに長距離に亘りて
熱輸送するためのと−トパイプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat pipes, and particularly to heat pipes for transporting heat over long distances.

周知のようにヒートパイプは、熱伝導率の最も高い鯛に
比べて数十値〜百般十倍の熱伝導率を有しているので、
熱交換器や大腸熟濃水器、さらにはl!癩−一等の各種
の分野で用いられており、最近では電カケープルの間接
冷却等にも用いられるようになってきた。
As is well known, heat pipes have a thermal conductivity several tens to ten times higher than sea bream, which has the highest thermal conductivity.
Heat exchangers, large intestine water concentrators, and even l! It is used in various fields such as leprosy, etc., and recently it has also been used for indirect cooling of electric cables.

ヒートパイプによって電カケープルを間接冷却する場合
、電カケープルはその全長に口って発熱するので、その
ためのヒートパイプとしては相当長尺なものが要求され
、またそのような長尺ヒートパイプを輸送し、あるいは
布設するには、そのヒートパイプをドラムに巻付けて行
うことが望まれ、さらにそのヒートパイプを電カケープ
ルに合わせて高低差のある布設を行なう必要がある。
When indirectly cooling a power cable using a heat pipe, the power cable generates heat over its entire length, so a fairly long heat pipe is required for this purpose, and it is difficult to transport such a long heat pipe. Alternatively, in order to install the heat pipe, it is desirable to wrap the heat pipe around a drum, and it is also necessary to install the heat pipe at different heights to match the power cable.

したがって電カケープルの間接冷却用のヒートパイプと
しては、十分な可撓性を有することが望ましく、併せて
毛細管圧力が高く、かつ液相作動流体および気相作動流
体の圧力損失が小さいことが要求される。
Therefore, as a heat pipe for indirect cooling of electric power cables, it is desirable to have sufficient flexibility, and it is also required that the capillary pressure is high and the pressure loss of the liquid-phase working fluid and the gas-phase working fluid is small. Ru.

しかるに従来、可撓性のあるヒートパイプとしてコルゲ
ート管を外装体としたヒートパイプが知られているが、
−このようなヒートパイプでは、フルゲート管の内周面
が波うつているので、ウィックをたとえ金属網としても
その金属網をフルゲート管の内周面に密着させることが
極めて困難であり、−造上種々の1llIがあった。こ
のような同一を#訣すべく外装体をある程度の可撓性を
有した直管状の金属管とすることが考えられるが、外装
体を単に可撓性金属管としただけでは、そのヒートバイ
ブを湾曲させた場合、局部的に折れ曲がったりするおそ
れがあるうえに、ウィックが金属管の内局面から離隔し
、その結果気相作動流体のitsが狭くなったり、ある
いはウィックが絞られてII@作動流体の圧力損失が大
きくなったりする閤−がある。
However, conventionally, heat pipes with corrugated tubes as exterior bodies have been known as flexible heat pipes.
- In such a heat pipe, the inner peripheral surface of the full-gate tube is wavy, so even if the wick is made of metal mesh, it is extremely difficult to make the metal mesh tightly adhere to the inner peripheral surface of the full-gate tube. There were various types of 1llI. It is conceivable to make the exterior body a straight metal tube with a certain degree of flexibility in order to achieve this sameness, but if the exterior body is simply made of a flexible metal tube, the heat vibration If the pipe is bent, there is a risk that it may be bent locally, and the wick may be separated from the inner surface of the metal pipe, resulting in narrowing of the gas-phase working fluid or constricting the wick. There are cases where the pressure loss of the working fluid becomes large.

また従来ウィックとして、溝(グループ)や金属網ある
いは多孔質焼結金属等が知られているが、溝(グループ
)をウィックとした従来のヒートパイプでは、得られる
毛細雪圧力が低くく、熱を長距離輸送する必要のある電
カケープルの間接冷却には不向きである。また金属網や
多孔質焼結金属をウィックとしたヒートパイプにあって
は、溝をウィックとした前記のヒートパイプに比べて高
い毛細雪圧力を得ることができるものの、その反−金属
網や多孔質焼結金属では液相作動流体の綜しているから
、液相作動流体の圧力損失が大きく、さらに多孔質焼結
金属をウィックとして用いた場合には、ヒートバイブ全
体としての可撓性がなくなり、結局従来のヒートパイプ
では電カケープルの間接冷却を行なうことが困難であっ
た。
In addition, grooves (groups), metal nets, porous sintered metal, etc. are conventionally known as wicks, but with conventional heat pipes using grooves (groups) as wicks, the capillary snow pressure obtained is low, and the heat It is unsuitable for indirect cooling of electric power cables that need to be transported over long distances. Furthermore, heat pipes with a metal mesh or porous sintered metal as a wick can obtain higher capillary snow pressure than the heat pipes with grooves as a wick. Since the liquid-phase working fluid is contained in the porous sintered metal, the pressure loss of the liquid-phase working fluid is large.Furthermore, when porous sintered metal is used as the wick, the flexibility of the entire heat vibrator is reduced. As a result, it was difficult to indirectly cool the power cable using conventional heat pipes.

この発明は上記の事情に1みてなされたもので、十分な
可撓性を有し、かつ毛細管圧力が轟く、さらには液相作
動流体および気相作動流体の圧り損失が少なく、したが
って電カケープルの間接冷却等長距離にnす、またある
程度の高低差がある場合であっても熱輸送を行なうこと
のできるヒートパイプを提供することを目的とするもの
である。
This invention has been made in view of the above circumstances, and has sufficient flexibility, high capillary pressure, and low pressure loss of liquid-phase working fluid and gas-phase working fluid. The object of the present invention is to provide a heat pipe that can transport heat over long distances, such as indirect cooling, and even when there is a certain degree of height difference.

すなわちこの発明の特徴とするところは、外装体を可撓
性を有する管状体で形成するとともに、その管状体の内
周面にウィックの作用をなす多数条の極@輪を密着配置
し、さらにその物輻纏の内周側に、多数の小孔を有する
コルゲート管を挿入してそのコルゲート管によって前記
極細線を管状体の内周面に押さえ付けるよう構成した点
にある。
In other words, the present invention is characterized in that the exterior body is formed of a flexible tubular body, and a large number of poles/rings that act as a wick are closely arranged on the inner circumferential surface of the tubular body. A corrugated tube having a large number of small holes is inserted into the inner circumferential side of the material wrapper, and the corrugated tube presses the ultrafine wire against the inner circumferential surface of the tubular body.

以下この発明の実施例を添付の図面を参照して説明する
。第1図はこの発明の一実施例を示す部分断面図であり
、またJI2図は第1図の■−■纏矢視断面図であって
、このヒートパイプ1は、外装体をなす管状体2の内周
面に、ウィックの作用をなす多数条の極細線3を、前記
管状体2の軸線方向(沿って密着配置し、さらにその極
11m[3の内周側にフルゲート管4を挿入し、そして
その雪状体2内の非凝縮性気体を真空排気した優、適宜
の作lll1a1体を封入した構成とされている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a partial cross-sectional view showing one embodiment of the present invention, and FIG. JI2 is a cross-sectional view taken along the line ■-■ in FIG. A large number of ultra-thin wires 3 acting as a wick are closely arranged on the inner peripheral surface of the tubular body 2 along the axial direction of the tubular body 2, and a full gate tube 4 is inserted on the inner peripheral side of the tube 2. Then, the non-condensable gas in the snow-like body 2 is evacuated, and a suitable structure is enclosed.

前記管状体2は、たとえば金属テープの両側部を同一方
向に湾曲させるとともにその両側端部を突合せて溶接す
ることにより管状に形成したものであって、全体として
可撓性を有しており、また前記極細113は直径が5〜
100μ−程度のガラスIINやカーボン繊繍等からな
るものであって、それ自体可撓性を有するとともに各a
llの■にその長手方向すなわち前配管状体2の軸線方
向に沿う微纏な閤■が形成され、その間隙が液相作動流
体の運漁路となるとともに毛細管圧力を生じるようにな
っている。さらに前記コルゲート14は極細線3を管状
体2の内周面に対して密着させるべく押し付けるもので
あって、その内周側と外周側とを連通させる多数の小孔
5が形成されている。
The tubular body 2 is formed into a tubular shape by, for example, curving both sides of a metal tape in the same direction and welding the ends of the tape against each other, and has flexibility as a whole. Further, the ultra-fine 113 has a diameter of 5~
It is made of glass IIN of about 100μ, carbon fiber, etc., and is flexible in itself, and each a
A fine gap (■) is formed in the (■) of ll along its longitudinal direction, that is, along the axial direction of the front pipe-like body 2, and the gap serves as a transport route for the liquid-phase working fluid and generates capillary pressure. . Furthermore, the corrugated wire 14 is used to press the ultrafine wire 3 against the inner circumferential surface of the tubular body 2, and has a large number of small holes 5 that communicate the inner circumferential side and the outer circumferential side.

したがって前記フルゲート管4によって気相作動流体の
流路と液相作動流体の流路とが前記コルゲート管4によ
って区画されている。
Therefore, the corrugated pipe 4 separates a gas phase working fluid flow path and a liquid phase working fluid flow path by the full gate pipe 4 .

しかして、上記のように構成したヒートパイプ1では、
管状体2.極細線3およびコルゲート管4のいずれもが
可撓性を有しているから、全体として可撓性を有してお
り、したがって相当長尺なものとしても、そのヒートパ
イプ1を例えばドラムに巻付けて運搬や布設作業を行な
うことができ、しかもドラムに轡付けるべく湾曲させた
場合、前記フルゲート管4が全体を円弧状に湾曲させる
ようにガイドするので局部的に折れ曲ったり、くびれた
りすることがない。また上記のヒートパイプ1では、そ
の適宜の箇所をm熱するとともに、他の適宜の箇所を冷
却すると、加熱部で蒸発した作動流体がフルゲート管4
に形成した小孔5を通ってコルゲートI4の内周側に到
り、その内周側を廻気圧の低い冷却部に流動し、かつそ
の冷却部において放熱・凝縮し、また加熱部において作
動流体が蒸発することにより毛細管圧りが生じるので、
極細線3の間のfllFaを通って液相作動流体が加熱
部に向けて還流する。この場合、上記のヒートパイプ1
にあっては、前記極細線3によって冷却部から加熱部に
内う還流路が直線状なっているから、液相作動流体の圧
力損失が小さくなり、また極細線afQ1士の間隙が権
めて狭いために、実効毛編管半径が極めて小さいことに
より毛細管圧力が大きくなり、加えて上記のヒートパイ
プ1にあっては前記コルゲート管4によって気相作動流
体の流路と液相作動流体の流路とが区画されているので
、加熱部と冷却部とのS度差が大きく、それに伴って管
状体2内における気相作動流体の流速が速くなったとし
ても、極細線3内を流れる液相作動流体が飛散すること
がなく、したがって上記のヒートパイプ1では、加熱部
と冷却部との距離が長い場合であっても、液相作動流体
を十分連流させることができ、換言すれば長い距離に口
って熱輸送することができ、さらに加熱部がある程度^
い位置にあっても熱輸送することができる。
However, in the heat pipe 1 configured as above,
Tubular body 2. Since both the ultra-thin wire 3 and the corrugated pipe 4 have flexibility, the entire heat pipe 1 is flexible, so even if it is quite long, the heat pipe 1 can be wound around a drum, for example. When the pipe is bent to fit on the drum, the full-gate pipe 4 guides the entire pipe in an arcuate manner, preventing local bending or constriction. Never. In addition, in the heat pipe 1 described above, when a suitable part of the heat pipe 1 is heated and other suitable parts are cooled, the working fluid evaporated in the heating part is transferred to the full gate pipe 4.
It flows through the small hole 5 formed in the inner circumferential side of the corrugate I4, flows through the inner circumferential side to the cooling section where the ambient pressure is low, and radiates and condenses heat in the cooling section, and the working fluid flows in the heating section. evaporation causes capillary pressure,
The liquid-phase working fluid flows back toward the heating section through the fllFa between the ultrathin wires 3. In this case, the heat pipe 1 above
In this case, the reflux path from the cooling section to the heating section is made straight by the ultra-fine wire 3, so the pressure loss of the liquid-phase working fluid is reduced, and the gap between the ultra-fine wires afQ1 is small. Due to its narrowness, the effective capillary tube radius is extremely small, which increases the capillary pressure. In addition, in the heat pipe 1 described above, the corrugated tube 4 separates the flow path of the gas phase working fluid and the flow path of the liquid phase working fluid. Even if the difference in S degrees between the heating section and the cooling section is large and the flow velocity of the gas-phase working fluid in the tubular body 2 increases accordingly, the liquid flowing in the ultrafine wire 3 The phase working fluid does not scatter, and therefore, in the heat pipe 1 described above, even when the distance between the heating section and the cooling section is long, the liquid phase working fluid can be sufficiently communicated. It can transport heat over long distances, and has a certain heating area.
Heat can be transported even in difficult positions.

すなわら上記のヒートパイプによれば、長距離に口っで
熱輸送し、また運搬峙ヤ布設時に湾曲させ、さらには^
低差のある布設を行なう必要のある電カケープルの間接
冷却を十分行なうことができる。
In other words, according to the above-mentioned heat pipe, heat can be transported over long distances, it can be bent during transportation, and it can also be bent during installation.
Enables sufficient indirect cooling of power cables that need to be installed at different heights.

以上の説明から明らかなようにこの発明のヒートパイプ
によれば、外装体を可撓性を有する管状体で形成すると
ともに、その管状体の内周面にウィックの作用をなす極
細線を密肴配置し、さらにその極msmの内周側に、多
数の小孔を有するコルゲート管を挿入してそのコルゲー
1へ管によって前記極細線を管状体の内周面に押さえ付
けるよう構成したから、極細線を用いたことに伴い実効
毛細管半経が小さくなるので、高い毛細管圧力を得るこ
とができ、しかもウィックの作用をなす極細線内に形成
された液相作動流体の流路が直線状をなしているうえに
、液相作動流体の流路と気相作動流体の流路とがフルゲ
ート管によって隔絶されているので、液相作動流体およ
び気相作動流体の圧力損失が小さく、したがって長距離
に亘って熱輸送を行なうことができ、さらに外装体およ
びウィックならびにコルゲート管が可撓性を有している
とともにコルゲルト管が全体を滑らかに湾曲させるガイ
ドの作用をなすので、局部的に折れ曲るなどのことなく
全体を満らかい湾曲させることができ、しかもコルゲー
ト管によって極細線を押さえ付けているので、湾曲させ
た際に極細線が管状体の内周面から離隔することを防止
することができる。したがって総じてこの発明のヒート
パイプによれば、電カケープルの間接冷却を良好に行な
うことができる。
As is clear from the above description, according to the heat pipe of the present invention, the exterior body is formed of a flexible tubular body, and the inner peripheral surface of the tubular body is densely coated with ultrafine wires that act as a wick. Furthermore, a corrugated tube having a large number of small holes is inserted into the inner circumferential side of the ultra-fine wire 1, and the ultra-fine wire is pressed against the inner circumferential surface of the tubular body by the tube. Since the effective capillary half diameter becomes smaller due to the use of the wire, high capillary pressure can be obtained, and the flow path of the liquid phase working fluid formed in the ultrathin wire that acts as a wick is straight. In addition, the flow path for liquid-phase working fluid and the flow path for gas-phase working fluid are separated by a full-gate pipe, so the pressure loss of liquid-phase working fluid and gas-phase working fluid is small, and therefore it can be used over long distances. In addition, the exterior body, wick, and corrugated tube are flexible, and the corrugated tube acts as a guide to smoothly curve the entire structure, so it does not bend locally. The entire body can be perfectly curved without any problems, and since the ultra-fine wire is held down by the corrugated tube, the ultra-fine wire is prevented from separating from the inner circumferential surface of the tubular body when it is bent. I can do it. Therefore, overall, the heat pipe of the present invention allows indirect cooling of the power cable to be performed satisfactorily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す部分断面図、第2図
は第1図の■−■線矢視断面図である。 1・・・ヒートパイプ、2−・・管状体、3・・・極細
線、4・・・フルゲート管、5・・・小孔。
FIG. 1 is a partial cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■--■ in FIG. DESCRIPTION OF SYMBOLS 1... Heat pipe, 2... Tubular body, 3... Ultrafine wire, 4... Full gate tube, 5... Small hole.

Claims (1)

【特許請求の範囲】[Claims] 可撓性を有する管状体の内周面に、多数条の一一纏を、
前記管状体の軸線方向に沿って密着配置し、かつ多数の
小孔を有するフルゲート管を、曽記極纏纏を前記管状体
の内周面に押さえ付けるべく前記極纏纏の内周側に挿入
し、さらに前記管状体内に作動流体を封入してなる長尺
熱輸送用ヒートパイプ。
A large number of strips are placed on the inner peripheral surface of the flexible tubular body.
A full-gate tube, which is closely arranged along the axial direction of the tubular body and has a large number of small holes, is placed on the inner peripheral side of the polar matte in order to press the polar matte against the inner peripheral surface of the tubular body. A long heat pipe for heat transport, which is inserted into the tubular body and further includes a working fluid sealed in the tubular body.
JP57026996A 1982-02-22 1982-02-22 Long heat pipe for heat transfer Granted JPS58145884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026996A JPS58145884A (en) 1982-02-22 1982-02-22 Long heat pipe for heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026996A JPS58145884A (en) 1982-02-22 1982-02-22 Long heat pipe for heat transfer

Publications (2)

Publication Number Publication Date
JPS58145884A true JPS58145884A (en) 1983-08-31
JPH0227596B2 JPH0227596B2 (en) 1990-06-18

Family

ID=12208763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026996A Granted JPS58145884A (en) 1982-02-22 1982-02-22 Long heat pipe for heat transfer

Country Status (1)

Country Link
JP (1) JPS58145884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004982A1 (en) * 1985-02-21 1986-08-28 Fujikura Ltd. Heat pipe
NL9002496A (en) * 1990-11-15 1992-06-01 Beijer Rtb B V De Solar heating system for domestic or industrial use - has high efficiency heat transfer system through vapour phase internal recycling of transfer media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187766U (en) * 1975-01-10 1976-07-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187766U (en) * 1975-01-10 1976-07-14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004982A1 (en) * 1985-02-21 1986-08-28 Fujikura Ltd. Heat pipe
NL9002496A (en) * 1990-11-15 1992-06-01 Beijer Rtb B V De Solar heating system for domestic or industrial use - has high efficiency heat transfer system through vapour phase internal recycling of transfer media

Also Published As

Publication number Publication date
JPH0227596B2 (en) 1990-06-18

Similar Documents

Publication Publication Date Title
US4588023A (en) Device for releasing heat
US4109709A (en) Heat pipes, process and apparatus for manufacturing same
US4449578A (en) Device for releasing heat
JPS59185995A (en) Hybrid spiral type turbulence inducing body for heat exchanger
US4251907A (en) Method for the manufacture of thin-walled metal tubes
JPS58145884A (en) Long heat pipe for heat transfer
JP2002066720A (en) Metal composite member and method of manufacturing it
JPS58127091A (en) Long heat pipe for heat transport
JPS5960184A (en) Heat pipe
JP2677883B2 (en) heat pipe
JPS6115088A (en) Heat transfer tube for boiling
US4236288A (en) Method of fabricating heat transfer conduits
JPS58110991A (en) Flexible heat pipe
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JPS5915792A (en) Long-sized heat-conveying heat pipe
SU1108323A1 (en) Heat pipe
JP2732755B2 (en) Double pipe heat pipe
EP0062729B1 (en) A conduit device
JPH0463316B2 (en)
JPS5935785A (en) Heat pipe
JPS58110992A (en) Flexible heat pipe
WO2022259605A1 (en) Power supply cable and power supply cable with connector
JPH074877A (en) Heat pipe
JPS5833091A (en) Double pipe type heat exchanger
JPH01121690A (en) Structure of wick for heat pipe