JPS5915792A - Long-sized heat-conveying heat pipe - Google Patents
Long-sized heat-conveying heat pipeInfo
- Publication number
- JPS5915792A JPS5915792A JP57124875A JP12487582A JPS5915792A JP S5915792 A JPS5915792 A JP S5915792A JP 57124875 A JP57124875 A JP 57124875A JP 12487582 A JP12487582 A JP 12487582A JP S5915792 A JPS5915792 A JP S5915792A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- working fluid
- metal tube
- grooves
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はヒートパイプに関し、特に長距離に亙って熱
輸送するためのヒートパイプに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to heat pipes, and more particularly to heat pipes for transporting heat over long distances.
周知のようにヒートパイプは、熱伝導率の最も高い銅に
比べて数十倍〜百数十倍の熱伝導率を有しているので、
熱交換器や太陽熱温水器、さらには医療曙器等各種の分
野で用いられており、最近では電カケープルの間接冷却
等にも用いられるようになってきた。As is well known, heat pipes have a thermal conductivity that is tens to hundreds of times higher than that of copper, which has the highest thermal conductivity.
It is used in various fields such as heat exchangers, solar water heaters, and even medical equipment, and recently it has also been used for indirect cooling of electric cables.
ヒートパイプによって電カケープルを間接冷却する場合
、電カケープルはその全長に亙って発熱するので、相当
長尺のヒートパイプを、冷却すべき電カケープルに並設
し、かつ電カケープルに合わせて高低差のある布設を行
なう必要があり、そのためにはそのヒートパイプにお【
プる毛細管圧力を増大させるとともに、液相作動流体お
よび気相作動流体の圧力損失を低減することが要求され
、ざらにピー1〜パイプを電カケープルに並設した場合
、そのピー1〜パイプのうち電カケープルに密着し、あ
るいは近接している相当長い部分が加熱部となるので、
局部的なドライアウト〈ウィックの乾き上がり)やそれ
に伴う毛細管圧力の低下を防ぐために、ヒートパイプの
内周面全体に液相作動流体を充分行き渡らせることが必
要となる。When indirectly cooling a power cable using a heat pipe, the power cable generates heat over its entire length, so a fairly long heat pipe is installed parallel to the power cable to be cooled, and the height difference is adjusted to match the power cable. It is necessary to perform a certain installation, and for that purpose, the heat pipe must be installed with [
It is required to increase the capillary pressure of the liquid-phase working fluid and the gas-phase working fluid. The fairly long part that is in close contact with or close to the power cable becomes the heating part, so
In order to prevent local dryout (wick drying out) and the associated drop in capillary pressure, it is necessary to sufficiently distribute the liquid-phase working fluid over the entire inner circumferential surface of the heat pipe.
しかるに、溝(グループ)をウィックとした従来のヒー
トパイプでは、得られる毛細管圧力が低いうえに、その
ウィックとしての溝がピー1−パイプの軸線方向に沿う
ものであるため、内周面全体に液相作動流体を充分行き
渡らせることが困難であり、したがってグループウィッ
クタイプのヒートバイブでは、電カケープルの間接冷却
を充分には行ない得ない場合が多い。また従来、金属網
や多孔質焼結金属をウィックとしたヒートバイブが知ら
れているが、このようなヒートバイブにあっては、溝を
ウィックとした前記のヒートバイブに比べて高い毛細管
圧力を得ることができ、また液相作動流体を内周面全体
にある程度行き渡らせることができるものの、その反面
金属網や多孔質焼結金属では液相作動流体の還流路とな
る微細孔が複雑に曲りかつ縦横に錯綜しているから、液
相作動流体の圧力損失が大きく、さらに多孔質焼結金属
をウィックとして用いた場合には、ヒートバイブ全体と
しての可撓性がなくなり、結局従来のヒートバイブでは
電カケープルの間接冷却を行なうことが困難であった。However, in conventional heat pipes in which grooves (groups) are used as wicks, the obtained capillary pressure is low, and since the grooves as wicks are along the axial direction of the P1-pipe, the entire inner circumferential surface is It is difficult to spread the liquid-phase working fluid sufficiently, and therefore group wick type heat vibrators often cannot provide sufficient indirect cooling of the power cable. Furthermore, heat vibes with wicks made of metal mesh or porous sintered metal have been known, but these heat vibes have a higher capillary pressure than the aforementioned heat vibes with grooves as wicks. However, on the other hand, metal nets and porous sintered metals have intricately curved micropores that serve as return paths for the liquid working fluid. Moreover, since they are intertwined vertically and horizontally, the pressure loss of the liquid-phase working fluid is large.Furthermore, when porous sintered metal is used as a wick, the flexibility of the entire heat vibrator is lost, and in the end, the conventional heat vibrator In this case, it was difficult to indirectly cool the power cable.
この発明は上記の事情に鑑みてなされたもので、電カケ
ープルの間接冷却等長距離に亙り、またある程度の高低
差がある場合であっても熱輸送を行なうことのできるピ
ー1〜パイプを提供覆−ることを目的とするものである
。すなわちこの発明の特徴とするところは、外装体をな
す金属管の内周面にその軸線方向に沿う複数条の凹溝を
形成し、その凹溝内に多数本の極eraを充填して第1
のウィック形成し、また前記金属管の内周面に、相互に
密着した極細線を配置することにより第2のウィックを
形成し、これら第1および第2のウィックにより、液相
作動流体を蒸発M(加熱部)に還流させかつ金属管の内
周面全体に行き渡らせるための毛細管圧力を生じさせる
とともに、そのための流路を形成した点にある。This invention was made in view of the above-mentioned circumstances, and provides a pipe that can transport heat over long distances, such as for indirect cooling of electric power cables, and even when there is a certain degree of height difference. The purpose is to cover up. In other words, the present invention is characterized by forming a plurality of grooves along the axial direction on the inner peripheral surface of the metal tube constituting the exterior body, and filling the grooves with a large number of pole eras. 1
A second wick is formed by arranging ultrafine wires that are in close contact with each other on the inner peripheral surface of the metal tube, and the liquid phase working fluid is evaporated by these first and second wicks. The point is that capillary pressure is generated to cause the flow to flow back to M (heating section) and to spread over the entire inner circumferential surface of the metal tube, and a flow path for this purpose is formed.
以下この発明の実施例を添付の図面を参照して説明する
。Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図はこの発明の一実施例を一部破断して示す斜視図
であって、外装体をなす金属管1は、例えば所定幅の金
属テープの表面に切削加工等により複数条の凹溝2を長
手方向に沿って形成した後、その凹溝2が内側となるよ
う左右両側部を湾曲させるとともに、相互に突き合わせ
た両側端部を溶3−
接して円管状に形成したものであり、第2図および第3
図に示すように前記各凹112内に極細線3が充填・配
置されている。ここで各凹溝2は、幅および深さが共に
0.3〜1u+程度に設定されており、また極細線3と
しては太さが5〜100声程度の炭素繊維あるいはガラ
ス繊維等が用いられており、したがって各極細線3相互
の間に前記金属管1の軸線方向に沿うほぼ直線状の微細
な間隙が形成されている。前記極細線3は凹*2を埋め
つくす程度まで充填され、したがって金属管1の内周面
は実質上清らかな曲面になっており、その金属管1の内
周面には、前記の極細線3と同様な素材、太さからなる
多数本の極細線4が、相互に密着して添設されている。FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention, in which a metal tube 1 constituting the exterior body has a plurality of grooves formed by cutting, for example, on the surface of a metal tape of a predetermined width. 2 is formed along the longitudinal direction, and then the left and right sides are curved so that the groove 2 is on the inside, and the mutually abutted ends are welded to form a cylindrical shape, Figures 2 and 3
As shown in the figure, ultrafine wires 3 are filled and arranged in each of the recesses 112. Here, the width and depth of each groove 2 are set to be about 0.3 to 1u+, and the ultra-fine wire 3 is made of carbon fiber or glass fiber with a thickness of about 5 to 100 tones. Therefore, a substantially linear fine gap along the axial direction of the metal tube 1 is formed between each of the ultrafine wires 3. The ultra-fine wire 3 is filled to the extent that it completely fills the recess*2, so that the inner circumferential surface of the metal tube 1 has a substantially clear curved surface. A large number of ultra-thin wires 4 made of the same material and thickness as 3 are attached in close contact with each other.
この第2の極細線4は、液相作動流体を主に金属管1の
内周面全体に行き渡らせるためのものであって、例えば
第2図および第3図に示すように、螺旋状に、もしくは
金属管1の内周面の円周方向に沿って金属管1の内周面
に添設してもよく、あるいは金属管1の凝縮部(冷却部
)とされた端部に、液相作動流体を溜める液−4=
溜めを設けである場合等第2の極細線4の総てを液相作
動流体によって充分湿潤し得る場合には、第2の極細線
4は、金属管1の軸線方向に沿ってその内周面に添設し
てもよい。さらにその第2の極細線4の内周側に、多数
の小孔を有する金*aや金属網等からなる押え具5が配
置され、前記極細線4がその押え具5によって前記金属
管1の内周面から離脱することを防止されている。そし
て前記金属管1は、その両端部を密閉されるとともに、
その内部の非凝縮性気体を真空排気した後、適宜の作動
流体が封入されている。This second ultra-thin wire 4 is for mainly distributing the liquid-phase working fluid over the entire inner circumferential surface of the metal tube 1, and is arranged in a spiral shape as shown in FIGS. 2 and 3, for example. Alternatively, the liquid may be attached to the inner circumferential surface of the metal tube 1 along the circumferential direction of the inner circumferential surface of the metal tube 1, or the liquid may be attached to the end of the metal tube 1 that is used as the condensing section (cooling section). Liquid for storing phase working fluid - 4 = If a reservoir is provided, etc., and all of the second ultrafine wire 4 can be sufficiently wetted by the liquid phase working fluid, the second ultrafine wire 4 is connected to the metal tube 1. It may be attached to the inner peripheral surface along the axial direction. Further, on the inner circumferential side of the second ultra-fine wire 4, a presser 5 made of gold*a, metal mesh, etc. having a large number of small holes is placed, and the ultra-fine wire 4 is held by the presser 5 against the metal tube 1. It is prevented from coming off from the inner peripheral surface. The metal tube 1 is sealed at both ends, and
After the non-condensable gas inside is evacuated, an appropriate working fluid is sealed.
しかして、上記のように構成したヒートバイブの適宜の
個所を加熱するとともに、他の適宜の個所を冷却すると
、加熱部で蒸発した作動流体が蒸気圧の低い冷却部に流
動し、かつその冷却部において放熱・凝縮し、また加熱
部において作動流体が蒸発することにより毛細管圧力が
生じるので、各極細線3.4の間の間隙を通って液相作
動流体が加熱部に向けて還流する。その場合、上記のヒ
ートバイブにあっては、前記凹溝2内に充填した111
1i3によって冷却部から加熱部に向う直線状ノ還流路
が形成されているから、液相作動流体の圧力損失が小さ
く、また各極細線3.4同士の間隙が極めて狭いために
毛細管半径が小さく、その結果毛細管圧力が大きくなり
、したがって上記のヒートパイプでは、加熱部と冷却部
との距離が長い場合であっても、液相作動流体を充分還
流さることができ、換言すれば長い距離に亙っで熱輸送
することができ、また加熱部がある程度高い位置にあっ
ち熱輸送することができる。また上記のヒートバイブに
あっては、金属管1の内周面に第2の極細線4を配置し
たから、ヒートパイプの外周面の一部に熱を与えて局部
的に加熱した場合には、直線状の前記極細線3が形成す
る還流路と併せて第2の極細線4が形成する還流路を経
てその加熱部に液相作動流体が運流し、しかも第2の極
細線4が相互に密着し、かつ各極細線41体の径が小さ
く、縦横に液相作動流体を行き渡らせる作用をなすから
、金i[管1の円周方向にも液相作動流体を充分行き渡
らせることができ、したがって局部的にドライアウトが
生じることはない。すなわち、総じて上記のように構成
したヒートパイプでは、毛細管圧力が高いうえに、液相
作動流体の圧力損失が小さく、しかも軸線方向のみなら
ず、円周方向にも液相作動流体を充分行き渡らせること
ができるので、長距離に亙って熱輸送を行なうことがで
き、したがって電カケープルの間接冷却にも充分使用す
ることができる。Therefore, when appropriate parts of the heat vibrator configured as described above are heated and other appropriate parts are cooled, the working fluid evaporated in the heating part flows to the cooling part where the vapor pressure is low, and the cooling part is cooled. Capillary pressure is generated by heat dissipation and condensation in the heating part and evaporation of the working fluid in the heating part, so that the liquid-phase working fluid flows back toward the heating part through the gaps between the microscopic wires 3.4. In that case, in the above heat vibrator, the 111 filled in the groove 2 is
1i3 forms a linear reflux path from the cooling section to the heating section, so the pressure loss of the liquid phase working fluid is small, and the capillary radius is small because the gap between each ultrathin wire 3.4 is extremely narrow. As a result, the capillary pressure increases, and therefore, in the heat pipe described above, even when the distance between the heating section and the cooling section is long, the liquid phase working fluid can be sufficiently refluxed. Heat can be transported across the area, and heat can be transported over there to a position where the heating section is at a certain level of height. In addition, in the above-mentioned heat vibrator, since the second ultra-thin wire 4 is arranged on the inner peripheral surface of the metal tube 1, when heat is applied locally to a part of the outer peripheral surface of the heat pipe, , the liquid-phase working fluid flows to the heated part through the reflux path formed by the straight ultra-fine wire 3 and the second ultra-fine wire 4, and the second ultra-fine wire 4 is mutually connected. Since the diameter of each ultrafine wire 41 is small and serves to spread the liquid-phase working fluid vertically and horizontally, it is possible to spread the liquid-phase working fluid sufficiently in the circumferential direction of the gold i[tube 1]. Therefore, no localized dryout occurs. In other words, in the heat pipe constructed as described above, the capillary pressure is high, the pressure loss of the liquid-phase working fluid is small, and the liquid-phase working fluid can be sufficiently distributed not only in the axial direction but also in the circumferential direction. As a result, heat can be transported over long distances, and it can therefore be used satisfactorily for indirect cooling of power cables.
以上の説明で明らかなようにこの発明のヒートパイプに
よれば、外装体をな1金属管の内周面にその軸線方向に
沿う複数条の凹溝を形成し、その凹溝内に多数本の極細
線を充填して第1のウィック形成し、また前記金属管の
内周面に、相互に密着した極細線を配置することにより
第2のウィックを形成し、これら第1および第2のウィ
ックにより、液相作動流体を蒸発部(加熱部)に還流さ
せかつ金属管の内周面全体に行き渡らせるための毛細管
圧力を生じさせるととに、そのための流路を形成したか
ら、高い毛lB管圧力を得ることができるとともに、液
相作動流体の圧力損失を小さく7−
することができ、しかも軸線方向および円周方向の両方
に液相作動流体を充分還流させることができ、したがっ
て加熱部と冷却部との距離が長く、また高低差がある場
合であっても、さらには局部的に加熱された場合であっ
ても、充分熱輸送を行なうことができ、そのためこの発
明によれば、例えば長尺熱輸送が要求され、また高低差
の大きい布設が要求される電カケープルの間接冷却用ヒ
ートバイブを得ることができる。As is clear from the above description, according to the heat pipe of the present invention, a plurality of grooves are formed along the axial direction on the inner peripheral surface of a metal tube, and a large number of grooves are formed in the groove. A first wick is formed by filling the ultra-fine wires of The wick generates capillary pressure to return the liquid-phase working fluid to the evaporation section (heating section) and spread it over the entire inner circumferential surface of the metal tube. 1B pipe pressure can be obtained, the pressure loss of the liquid phase working fluid can be kept small7-, and the liquid phase working fluid can be sufficiently refluxed in both the axial direction and the circumferential direction. Even if the distance between the cooling part and the cooling part is long, there is a height difference, or even if there is local heating, sufficient heat transport can be carried out. For example, it is possible to obtain a heat vibrator for indirect cooling of electric cables that require long-length heat transport and installation with large height differences.
第1図はこの発明の一実施例を示す一部破断した斜視図
、第2図は第1図の■−■線矢視拡大断面図、第3図は
第2図の■−■線矢視断面図である。
1・・・金属管、 2・・・凹溝、 3,4・・・極i
s。
出願人 藤倉電線株式会社
代理人 弁理士 豊田武久
(ばか1名)
8−FIG. 1 is a partially broken perspective view showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view taken along the line ■-■ in FIG. 1, and FIG. 3 is an enlarged sectional view taken along the line FIG. 1...Metal tube, 2...Concave groove, 3, 4...Pole i
s. Applicant Fujikura Electric Wire Co., Ltd. Agent Patent Attorney Takehisa Toyota (one idiot) 8-
Claims (1)
数条の凹溝を形成するとともに、その凹溝内に多数本の
第1の極I!Iを充填し、かつ相互に密着した多数本の
第2の極細線を前記金属管の内周面に沿わせて配置し、
さらに前記金属管内に作動流体を封入してなる長尺熱輸
送用ヒートパイプ。A plurality of grooves are formed along the axial direction on the inner circumferential surface of the metal tube forming the exterior body, and a large number of first poles I! are formed in the grooves. A large number of second ultrafine wires filled with I and in close contact with each other are arranged along the inner peripheral surface of the metal tube,
Furthermore, a long heat pipe for heat transport is formed by sealing a working fluid in the metal tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124875A JPS5915792A (en) | 1982-07-17 | 1982-07-17 | Long-sized heat-conveying heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57124875A JPS5915792A (en) | 1982-07-17 | 1982-07-17 | Long-sized heat-conveying heat pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5915792A true JPS5915792A (en) | 1984-01-26 |
Family
ID=14896252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57124875A Pending JPS5915792A (en) | 1982-07-17 | 1982-07-17 | Long-sized heat-conveying heat pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5915792A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001023822A1 (en) * | 1999-09-27 | 2001-04-05 | Array Bioscience Corporation | Fractal absorber for heat pipes with broad range heat radiation absorptivity |
US6707548B2 (en) | 2001-02-08 | 2004-03-16 | Array Bioscience Corporation | Systems and methods for filter based spectrographic analysis |
-
1982
- 1982-07-17 JP JP57124875A patent/JPS5915792A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001023822A1 (en) * | 1999-09-27 | 2001-04-05 | Array Bioscience Corporation | Fractal absorber for heat pipes with broad range heat radiation absorptivity |
US6707548B2 (en) | 2001-02-08 | 2004-03-16 | Array Bioscience Corporation | Systems and methods for filter based spectrographic analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6945317B2 (en) | Sintered grooved wick with particle web | |
US7775261B2 (en) | Capillary condenser/evaporator | |
US6938680B2 (en) | Tower heat sink with sintered grooved wick | |
US3786861A (en) | Heat pipes | |
US6863117B2 (en) | Capillary evaporator | |
US4042757A (en) | Thermo-electric generators | |
US4394344A (en) | Heat pipes for use in a magnetic field | |
US6241008B1 (en) | Capillary evaporator | |
US20160018166A1 (en) | Flat heat pipe | |
US3746081A (en) | Heat transfer device | |
KR20210033493A (en) | Heat pipe with variable transmittance wick structure | |
US4247830A (en) | Plasma sprayed wicks for pulsed metal vapor lasers | |
JP2021143809A (en) | Vapor chamber and electronic device | |
JPS6141398B2 (en) | ||
JPS5915792A (en) | Long-sized heat-conveying heat pipe | |
JPWO2018097131A1 (en) | heat pipe | |
JP2677883B2 (en) | heat pipe | |
JPS58110991A (en) | Flexible heat pipe | |
JPS6115088A (en) | Heat transfer tube for boiling | |
JPS58106388A (en) | Heat pipe and production thereof | |
JP2732755B2 (en) | Double pipe heat pipe | |
JP3008866B2 (en) | Evaporator for capillary pump loop and heat exchange method thereof | |
JP7311057B2 (en) | Heat spreading devices and electronics | |
TWI790794B (en) | Vapor Chambers and Electronic Machinery Equipped with Vapor Chambers | |
JPS59154713A (en) | Capacity increasing wire |