JPS58106388A - Heat pipe and production thereof - Google Patents

Heat pipe and production thereof

Info

Publication number
JPS58106388A
JPS58106388A JP20416981A JP20416981A JPS58106388A JP S58106388 A JPS58106388 A JP S58106388A JP 20416981 A JP20416981 A JP 20416981A JP 20416981 A JP20416981 A JP 20416981A JP S58106388 A JPS58106388 A JP S58106388A
Authority
JP
Japan
Prior art keywords
pipe
porous particles
working fluid
pipes
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20416981A
Other languages
Japanese (ja)
Inventor
Koichi Masuko
耕一 益子
Masataka Mochizuki
正孝 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20416981A priority Critical patent/JPS58106388A/en
Publication of JPS58106388A publication Critical patent/JPS58106388A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To contrive to enhance heat transfer peformance, by a method wherein a supporting pipe provided with small holes at both end parts thereof is concentrically fitted into an outer casing pipe, and a porous particles and a working fluid are sealed between the pipes, in a heat pipe with porous wick. CONSTITUTION:A supporting pipe 3 is concenterically fitted and fixed in an outer casing pipe 2, and small through-hole 3a are provided at both end parts of the pipe 3. Adsorptive porous particles 4 of synthetic zeolite or the like are packed between the outer casing pipe 2 and the supporting pipe 3 in the condition of close contact with each other, a working fluid is poured between the pipes 2 and 3, and both ends of the pipes are closed by end plates 5a, 5b. In this construction, the vapor of the working fluid flows along the inside periphery of the pipe 3 from one end side to the other end side, and releases heat. The condensed liquid of the working fluid enters into the layer of the porous particles 4 through the small holes 3a, and is returned to a heating part by passing between the particles. Accordingly, since a capillary pressure is generated in the entire part of the layer of the particles 4, a high capillary pressure can be obtained, and heat transfer capability can be enhanced.

Description

【発明の詳細な説明】 この発明はライ、りを多孔質材としたタイプのヒートパ
イプおよびその製造方法に関するものである@ 周知のように、ヒートパイプにおけるライ、りは、液相
作動流体の還流路を形成するとともに1液相作動流体を
還流させるために必要な毛細管圧力を生じさせるもので
あり、従来そのウィックとして、金属網や多孔質焼結金
属あるいは外装パイプの内面に形成した61(グループ
)が知られている。ところで、最大毛細管圧力Pmaz
はで表わされるが、前記ウィックのうち、金属網や多孔
質焼結金属からなるものでは、最大毛細管圧力Pm&X
  を大きくすべく、実効毛細管半径reを可及的に小
さくすると、それに伴って液相作動流体に対する流動抵
抗が大きくなり、ヒートパイプの性能すなわち熱輸送量
をある相変以上には向上させ得ない欠点があった。また
、尚ライ、りでは、液相作動流体の流線を横切るものが
特に存在しないので流動抵抗が小さいが、その反面実効
毛細管半径reが大きく、そのため得られる最大毛細管
圧力Pm&gが小さく、シたがって例えば加熱部を高い
位置に設定し1液相作動流体を重力に逆らつテ還流させ
るトップヒートモードには不適当であるなどの欠点があ
った。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a type of heat pipe using a porous material, and a method for manufacturing the same. It forms a reflux path and generates the capillary pressure necessary to reflux a one-liquid phase working fluid. Conventionally, the wick is made of metal mesh, porous sintered metal, or 61 (61) formed on the inner surface of an exterior pipe. group) is known. By the way, the maximum capillary pressure Pmaz
Among the above wicks, for those made of metal mesh or porous sintered metal, the maximum capillary pressure Pm&X
If the effective capillary radius re is made as small as possible in order to increase There were drawbacks. In addition, in the case of lie and ri, the flow resistance is small because there is nothing that crosses the streamline of the liquid-phase working fluid, but on the other hand, the effective capillary radius re is large, so the maximum capillary pressure Pm&g obtained is small, and the shift For example, this method has drawbacks such as being unsuitable for a top heat mode in which the heating section is set at a high position and a one-liquid phase working fluid is refluxed against gravity.

この発明は上記の事情に鑑みてなされたもので、毛細管
圧力が大きく、かつ液相作動流体に対する流動抵抗が小
さいヒートパイプ、換言すわば事輸送能力の高いヒート
パイプおよびそのヒートパイプを製造するための方法を
提供することを目的とするものである。
This invention was made in view of the above circumstances, and is intended to produce a heat pipe with high capillary pressure and low flow resistance to liquid-phase working fluid, in other words, a heat pipe with high capacity for transporting materials, and the heat pipe. The purpose is to provide a method for

以下この発明の実施例を添付の図面を参照して説明する
◇ まずこの発明のヒートパイプの一実施例について説明す
ると1第1図は縦断面図であり、第2図はそのM−11
1矢視断面図であって、このヒートパイプ1は、外装パ
イプ2の内部に、これより小径でかつ内外周面に開口す
る小孔3aを両端部に有する支持パイプ3をほぼ同心状
に挿入・配置し、これらの各パイプ2、乙の間に多孔質
粒子4を互いに密着させた状態で充填し1さらに内部に
作動液を注入するとともに両端部を端板5a、5bで密
閉した構成とされている。ここで、前記多孔質粒子4は
、吸着材として知られている合成ゼオライトや活性アル
之す等の粒子、好ましくは100メッシ、程度の粒子で
あって、その粒子4同士の間隙が液相作動液体の主たる
流路を構成し箋かつその粒子4自体が有している空孔が
直径10−4〜1O−5IIs1程度の微細孔であるた
めに、高い毛細管圧力を生じるので、前記多孔質粒子4
が全体としてウィックの作用をなすようになっている。
Embodiments of the present invention will be described below with reference to the attached drawings. ◇ First, an embodiment of the heat pipe of the present invention will be explained. 1. Figure 1 is a vertical cross-sectional view, and Figure 2 is a longitudinal cross-sectional view of the heat pipe.
1 is a sectional view taken in the direction of arrow 1, in which a support pipe 3 having a smaller diameter than the outer pipe 2 and having small holes 3a at both ends that are open to the inner and outer circumferential surfaces is inserted almost concentrically into the interior of the outer pipe 2.・Porous particles 4 are placed between each of these pipes 2 and 2 in a state in which they are in close contact with each other, 1 and a working fluid is injected inside, and both ends are sealed with end plates 5a and 5b. has been done. Here, the porous particles 4 are particles of synthetic zeolite, activated aluminium, etc., which are known as adsorbents, preferably particles of about 100 mesh, and the gaps between the particles 4 exhibit liquid phase operation. Since the pores that constitute the main flow path of the liquid and that the particles 4 themselves have are micropores with a diameter of about 10-4 to 1O-5IIs1, high capillary pressure is generated. 4
As a whole, it acts as a wick.

したがって、上記構成のヒートパイプ1では、その一端
部に熱を与えると、内部の作動流体が蒸発・気化し、そ
の蒸気が前記支持パイプ3の内周側を通って他端部側に
流れてその他端部で放熱するとともにS凝縮・液化し、
その液相作動流体が支持パイプ3に形成した小孔3aを
通って多孔質粒子4からなる層内に入り込んだ後1主に
その粒子4同士の間隙を流路として前記一端部すなわち
加熱部側に還流し1作動流体がこのように循環流動を繰
り返すことにより熱輸送が行なわれる。
Therefore, in the heat pipe 1 having the above configuration, when heat is applied to one end of the heat pipe, the internal working fluid evaporates and vaporizes, and the vapor flows through the inner peripheral side of the support pipe 3 to the other end. At the other end, heat is radiated and S condenses and liquefies.
After the liquid-phase working fluid passes through the small hole 3a formed in the support pipe 3 and enters the layer made of porous particles 4, 1 mainly uses the gaps between the particles 4 as a flow path to the one end, that is, the heating section side. Heat transport is carried out by repeating this circulation flow of the working fluid.

しかして上記のヒートパイプ1では、液相作動流体を還
流させるための毛細管圧力が、加熱部側における前記多
孔質粒子4の間隙のみならず、多孔質粒子4自体の空孔
において生じ1しかもその空孔は前述したように直径が
10〜10 11%程度の微細孔であるから、結局従来
になく高い毛細管圧力を得ることができ、また液相作動
流体は相互に密着された多孔質粒子の間隙を主たる流路
としてM ?+ttするので、液相作動流体に対する作
動抵抗を、金属網や多孔質焼結金属をウィックとして用
いた従来のヒートパイプに比べて大幅に小さくすること
ができる。したがって上記のヒートパイプ1では、毛細
管圧力が高く、かつ液相作動流体に対する流動抵抗が小
さく、これに加え液相作動流体の還流路と気相作動流体
の流路とは、支持バイブロによって隔絶されているため
に、気相作動流体の流速が高速であっても、加熱部側へ
還流しつつある液相作動流体が、その途中で気相作動流
体によって引きちぎられて飛散することかないので、高
い熱輸送能力を得ることができる。
In the heat pipe 1 described above, the capillary pressure for refluxing the liquid-phase working fluid is generated not only in the gaps of the porous particles 4 on the heating section side but also in the pores of the porous particles 4 themselves. As mentioned above, the pores are micropores with a diameter of about 10 to 1011%, so it is possible to obtain an unprecedentedly high capillary pressure, and the liquid phase working fluid is made of porous particles that are in close contact with each other. M with the gap as the main flow path? +tt, the operating resistance against the liquid-phase working fluid can be significantly reduced compared to conventional heat pipes that use metal mesh or porous sintered metal as the wick. Therefore, in the heat pipe 1 described above, the capillary pressure is high and the flow resistance to the liquid-phase working fluid is low, and in addition, the return path for the liquid-phase working fluid and the flow path for the gas-phase working fluid are separated by the support vibro. Therefore, even if the flow rate of the gas-phase working fluid is high, the liquid-phase working fluid that is flowing back to the heating part side will not be torn off and scattered by the gas-phase working fluid on the way, resulting in a high Heat transport ability can be obtained.

なお1上記のヒートパイプにおいて、前記支持パイプ3
の小孔3a全多孔質粒子4の粒径よりも小さくすること
が因齢な場合があるが、その場合に番ま、多孔質粒子4
の粒径よりも小さい網目の金網を支持バイブロに巻き付
ければよい。
Note 1: In the above heat pipe, the support pipe 3
In some cases, it is necessary to make the small pores 3a smaller than the particle size of all porous particles 4;
It is sufficient to wrap a wire mesh with a mesh smaller than the grain size around the support vibro.

つぎに上記のヒートパイプ1を製造する手順すなわちこ
の発明の製造方法について説明する。まずと−ドパイブ
用素管すなわち外装パイプ2を用曾する0その外装パイ
プ2としては1&14管、アルミ管等適宜の金属管であ
ればよいが、熱伝導率の良いものが好ましく1またその
内周面は脱脂等の処理をしてきれいに洗浄しておく。そ
の外装パイプ2内に、これよりも小径でかつ両端部に小
孔6aを影成した支持パイプ3を、第6図(2)に示す
ようにほぼ同心状に挿入するとと、うに、外装パイプ2
の一方の開口端に端板5bを取付けてここを密閉する。
Next, the procedure for manufacturing the heat pipe 1 described above, that is, the manufacturing method of the present invention will be explained. First of all, use the base pipe for the dopipe, that is, the exterior pipe 2.The exterior pipe 2 may be any suitable metal pipe such as a 1&14 pipe or an aluminum pipe, but it is preferable to use one with good thermal conductivity. The surrounding surface should be thoroughly cleaned by degreasing, etc. When a support pipe 3 having a smaller diameter and having small holes 6a formed at both ends is inserted into the exterior pipe 2 almost concentrically as shown in FIG. 6(2), the exterior pipe 2
An end plate 5b is attached to one open end of the opening to seal it.

その端板5bを取付ける手段としては、TIG溶接やロ
ウ溶接を採用すればよい。しかる後、前記外装パイプ2
と支持バイブロとの間に、合成ゼオライトや活性アルミ
ナ等の100メッシ、程度の多孔質粒子4を第3図03
)にボすように充填する。ついでその粒子4を各パイプ
2.6に対して外装パイプ2と支持パイプ3との間の間
隔を狭める。そのための方法としては、前記支持パイプ
3にバルジ加工を施し1あるいは支持パイプ3内に適宜
のプラグを挿入することにより支持バイブロを拡管させ
る方法、外装パイプ2内に支持パイプ3および多孔質粒
子4を前述のように挿入した後1外装パイプ2に引抜加
工を施して外装パイプ2を縮径させる方法、あるいは外
装パイプ2を予め加熱・拡管させておき1その状態で支
持パイプ3および多孔質粒子4を前述したように外装パ
イプ2内に挿入し、しかる後外装パイプ2を冷却・縮径
する方法のいずれかを採用すればよい。なお、各パイプ
2.6の間の間隔を狭めるべく1−記の方法を実施する
際に、前記多孔質粒子4が各パイプ2.3の間から漏洩
しないように適当な封止手段を施すことは勿論である。
As a means for attaching the end plate 5b, TIG welding or brazing welding may be employed. After that, the exterior pipe 2
Between the support vibro and the supporting vibro, porous particles 4 of about 100 mesh, such as synthetic zeolite or activated alumina, are placed between the
). The particles 4 are then applied to each pipe 2.6 to reduce the distance between the sheathing pipe 2 and the support pipe 3. Methods for this include expanding the support vibro by bulging the support pipe 3 or inserting an appropriate plug into the support pipe 3, or inserting the support pipe 3 and porous particles 4 into the exterior pipe 2. After inserting the outer pipe 2 as described above, the diameter of the outer pipe 2 is reduced by drawing the outer pipe 2, or the outer pipe 2 is heated and expanded in advance, and the support pipe 3 and porous particles are inserted in that state. 4 may be inserted into the exterior pipe 2 as described above, and then the exterior pipe 2 may be cooled and reduced in diameter. In addition, when carrying out the method described in 1- in order to narrow the interval between each pipe 2.6, appropriate sealing means is applied to prevent the porous particles 4 from leaking from between each pipe 2.3. Of course.

つぎに第3図幻jに示すように1注入管6を有す、る端
板5aを、外装パイプ2の開口している他方の端部に取
付けてここを閉塞し1しかる後外装パイプ2内に適宜の
作動流体を封入する。作動流体の封入は従来一般に行な
われている方法によって行なえばよく、その概略な参考
までに述べれば、前記注入管6を介して外装パイプ2内
の非凝縮性気体を真空吸引して排気した後、作動流体を
その注入管6を介して外装ノぐイブ2内に適当量注入し
1しかる後注入管6を圧潰して封止するとともに1その
封止箇所よりも先端部側で切断すればよい。
Next, as shown in FIG. 3, an end plate 5a having an injection pipe 6 is attached to the other open end of the exterior pipe 2 to close it. A suitable working fluid is sealed inside. The working fluid may be sealed by a conventional method, and for general reference, after the non-condensable gas in the exterior pipe 2 is vacuum-suctioned and exhausted through the injection pipe 6. , an appropriate amount of working fluid is injected into the exterior nozzle 2 through the injection pipe 6, 1 the injection pipe 6 is crushed and sealed, and 1 is cut off at the tip end side of the sealed part. good.

以上の説明から明らかなようにこの発明によれば、外装
パイプとその内部に挿入した支持パイプとの間に互いに
密着するよう充填した多孔質粒子がウィックの作用をな
すので、その粒子自体微細孔を有しているために高い毛
細管圧力を生じさせることができると同時に、前記粒子
はバインダーを用いずに互いに密着しているから、粒子
同士の間隙が液相作動流体の流路となること(より、流
蛎抵抗を小さくすることができ1.シたがってこの発明
によれば液相作画流体を効率良く加熱部側に還流させる
ことができるので、熱輸送能力の高いヒートパイプを得
ることができ、またこの発明の方法では、外装パイプと
支持パイプとの間の間隔を狭めることにより、それらの
間に充填した多孔質粒子を互いに密着させるから、不純
物が混入したり、粒子同士の間隙や粒子自体が有する空
孔が閉塞したりするおそnがなく、シたがって性能の良
いヒートパイプを得ることができる。
As is clear from the above description, according to the present invention, the porous particles filled between the exterior pipe and the support pipe inserted therein so as to be in close contact with each other function as a wick, so that the particles themselves have fine pores. Because it has a high capillary pressure, it is possible to generate a high capillary pressure, and at the same time, since the particles are closely attached to each other without using a binder, the gaps between the particles become flow paths for the liquid phase working fluid ( Therefore, according to the present invention, the liquid phase drawing fluid can be efficiently refluxed to the heating part side, so that a heat pipe with high heat transport ability can be obtained. Moreover, in the method of the present invention, by narrowing the gap between the exterior pipe and the support pipe, the porous particles filled between them are brought into close contact with each other. There is no possibility that the pores of the particles themselves will be blocked, and therefore a heat pipe with good performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のヒートパイプの一実施例を示す略解
断面図、第2図は第1図の■−■線矢視図、第3図(A
)CB)す)はそれぞれこの発明の方法による製造過程
を示す略解断面図である。 1・・・ヒートパイプ、2・・・外装パイプ、3・・・
支持パイプ、3&・・・小孔、4・・・多孔質粒子〇出
願人  藤倉電線株式会社 代理人  弁理士 豊田武人 (はか1名)
Fig. 1 is a schematic cross-sectional view showing one embodiment of the heat pipe of the present invention, Fig. 2 is a view taken along the line ■-■ in Fig. 1, and Fig. 3 (A
) CB)) are schematic cross-sectional views showing the manufacturing process according to the method of the present invention. 1... Heat pipe, 2... Exterior pipe, 3...
Support pipe, 3 &... small hole, 4... porous particle Applicant Fujikura Electric Cable Co., Ltd. Agent Patent attorney Taketo Toyota (1 person)

Claims (1)

【特許請求の範囲】 1、 外装パイプとその内部にほぼ同心状に挿入されか
つ両端部に小孔を有する支持パイプとの間に、多孔質粒
子が互いに密着した状態に充填され1かつ前記外装パイ
プ内に作動液が封入されてなるヒートパイプ。 2、両端部に小孔を有する支持パイプを外装パイプ内に
ほぼ同心状に挿入した後1これらのパイプの間に多孔質
粒子を充填し、しかる後前記各パイプの間の間隔を狭め
ることにより前記多孔質粒子を互いに密着させ1ついで
前記外装パイプを密封するとともにその内部の非凝縮性
気体を真空排気した後外装パイプ内に作動液を注入する
ことを特徴とするヒートパイプの製造方法。 6、前記多孔質粒子を互いに密着させるべく前記各パイ
プの間の間隔を狭めるために、前記支持パイプを拡管さ
せることを特徴とする特許請求の範囲第2項記載のヒー
トパイプの製造方法04、前記多孔質粒子を互いに密着
させるべく前記各パイプの間の間隔を狭めるために、前
記多孔質粒子を充填した後為前記外装パイプに引抜加工
を施して外装パイプを縮径させることを特徴とする特許
請求の範囲第2項記載のヒートパイプの製造方法。 5、前記多孔質粒子を互いに密着させるべく前記各パイ
プの間の間隔を狭めるために、前記外装パイプを予め加
熱拡管させておき、その状態で外装パイプ内に前記支持
パイプを挿入するとともに1これらのパイプの間に多孔
質粒子を充填し1しかる後前記外装パイプを冷却・縮径
させることを特徴とする特許請求の範囲第2項記載のヒ
ートパイプの製造方法。
[Claims] 1. Porous particles are filled in close contact with each other between the exterior pipe and a support pipe inserted substantially concentrically into the interior thereof and having small holes at both ends; A heat pipe with a working fluid sealed inside the pipe. 2. After inserting support pipes with small holes at both ends into the exterior pipe in a substantially concentric manner, 1. Filling the space between these pipes with porous particles, and then narrowing the interval between each of the pipes. A method for manufacturing a heat pipe, comprising: bringing the porous particles into close contact with each other; then sealing the exterior pipe; and after evacuating the non-condensable gas inside the exterior pipe, a working fluid is injected into the exterior pipe. 6. A heat pipe manufacturing method according to claim 2, characterized in that the support pipe is expanded in order to narrow the distance between the pipes so that the porous particles are brought into close contact with each other. In order to narrow the distance between the pipes so that the porous particles are brought into close contact with each other, the outer pipe is subjected to a drawing process after being filled with the porous particles to reduce the diameter of the outer pipe. A method for manufacturing a heat pipe according to claim 2. 5. In order to narrow the distance between the pipes in order to bring the porous particles into close contact with each other, the exterior pipe is heated and expanded in advance, and in this state, the support pipe is inserted into the exterior pipe, and 1. 3. The method of manufacturing a heat pipe according to claim 2, wherein porous particles are filled between the pipes, and then the outer pipe is cooled and reduced in diameter.
JP20416981A 1981-12-17 1981-12-17 Heat pipe and production thereof Pending JPS58106388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20416981A JPS58106388A (en) 1981-12-17 1981-12-17 Heat pipe and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20416981A JPS58106388A (en) 1981-12-17 1981-12-17 Heat pipe and production thereof

Publications (1)

Publication Number Publication Date
JPS58106388A true JPS58106388A (en) 1983-06-24

Family

ID=16485973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20416981A Pending JPS58106388A (en) 1981-12-17 1981-12-17 Heat pipe and production thereof

Country Status (1)

Country Link
JP (1) JPS58106388A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310319C (en) * 2002-08-20 2007-04-11 索尼株式会社 Heat transmission device and method for production thereof
KR100785529B1 (en) 2006-07-31 2007-12-13 정 현 이 Heat expansion transfer device using zeolite as fluid transport medium
US7484553B2 (en) * 2002-03-29 2009-02-03 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat pipe incorporating outer and inner pipes
CN102425966A (en) * 2011-09-23 2012-04-25 江苏大学 Manufacturing method of nanoemulsion pulsating heat pipe
CN107228563A (en) * 2017-06-23 2017-10-03 陈翠敏 Samming furnace structure
JP2018523569A (en) * 2015-07-24 2018-08-23 ヌヴェラ・フュエル・セルズ,エルエルシー Method of manufacturing a concentric tube catalytic reactor assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7484553B2 (en) * 2002-03-29 2009-02-03 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat pipe incorporating outer and inner pipes
CN1310319C (en) * 2002-08-20 2007-04-11 索尼株式会社 Heat transmission device and method for production thereof
KR100785529B1 (en) 2006-07-31 2007-12-13 정 현 이 Heat expansion transfer device using zeolite as fluid transport medium
CN102425966A (en) * 2011-09-23 2012-04-25 江苏大学 Manufacturing method of nanoemulsion pulsating heat pipe
JP2018523569A (en) * 2015-07-24 2018-08-23 ヌヴェラ・フュエル・セルズ,エルエルシー Method of manufacturing a concentric tube catalytic reactor assembly
JP2021169092A (en) * 2015-07-24 2021-10-28 ヌヴェラ・フュエル・セルズ,エルエルシー Method of fabricating concentric-tube catalytic reactor assembly
US11389778B2 (en) 2015-07-24 2022-07-19 Powertap Hydrogen Fueling Corp. Method of fabricating concentric-tube catalytic reactor assembly
CN107228563A (en) * 2017-06-23 2017-10-03 陈翠敏 Samming furnace structure

Similar Documents

Publication Publication Date Title
JP4725560B2 (en) Adsorption module and method of manufacturing adsorption module
US3857441A (en) Heat pipe wick restrainer
JP4003884B2 (en) Heat pipe type heat sink and method of manufacturing the heat sink
WO2005114084A1 (en) Integrated circuit heat pipe heat spreader with through mounting holes
WO2005006395A2 (en) Heat transfer device and method of making same
TW201408979A (en) Heat pipe and method for manufacturing the same
JPS58106388A (en) Heat pipe and production thereof
US6997243B2 (en) Wick structure of heat pipe
US20060260786A1 (en) Composite wick structure of heat pipe
WO2005108897A2 (en) Heat transfer device and method of making same
WO2010121365A1 (en) Heat transfer device having metallic open cell porous wicking structure
US3394445A (en) Method of making a composite porous metal structure
JP4821563B2 (en) Adsorption module and method of manufacturing adsorption module
US3314475A (en) Composite structure
JP2008111587A (en) Adsorption module and method for producing the same
JP4830799B2 (en) Adsorption module
JP2009097733A (en) Adsorption heat exchanger and its manufacturing method
JP6757613B2 (en) Heat storage system, heat storage container, heat storage device using heat storage container, and warming device using heat storage device
US3365785A (en) Method of making composite metal structure
US3460612A (en) Cylindrical porous metal structure
JPS62258996A (en) Heat exchanger
JP2774592B2 (en) Manufacturing method of metal thermos
JPS6141398B2 (en)
JP2003148886A (en) Heat pipe and its manufacturing method
JPH03501998A (en) Heat pipes using hydrogen oxidation means