JPS58143573A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPS58143573A
JPS58143573A JP2589082A JP2589082A JPS58143573A JP S58143573 A JPS58143573 A JP S58143573A JP 2589082 A JP2589082 A JP 2589082A JP 2589082 A JP2589082 A JP 2589082A JP S58143573 A JPS58143573 A JP S58143573A
Authority
JP
Japan
Prior art keywords
layer
gaas
xas
doped
alxga1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2589082A
Other languages
Japanese (ja)
Inventor
Naoki Kobayashi
直樹 小林
Yoshiharu Horikoshi
佳治 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2589082A priority Critical patent/JPS58143573A/en
Publication of JPS58143573A publication Critical patent/JPS58143573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To give the titled transistor the characteristics which will be applicable to the manufacture of an extra high speed transistor and an extra high speed integrated circuit by a method wherein, in order to prevent the lowering of electron mobility caused by the clustering in AlxGa1-xAs, AlAs0.95P0.05 which was lattice-matched with GaAs is used instead of AlxGa1-xAs. CONSTITUTION:On a semiinsulating GaAs substrate 1, a non-doped high purity GaAs layer 2 of 0.5-1mum in thickness, a non-doped AlAs0.95P0.05 layer 3 of 50-100Angstrom in thickness which was lattice-matched to GaAs, an Si-doped N type AlAs0.05P0.05 layer 4a (carrier density of 0.5-2X10<18>cm<-3>) of triple-layer construction, and an ohmic metal electrode of a source and drain, arraged on said tripe-layer structure pinching the metal gate of a Schottky junction, are provided. On the AlAs0.95P0.5/GaAs hetero interface of this field-effect transistor, there is no lowering of two-dimensional electron mobility caused by the clustering of the AlxGa1-xAs layer which is experienced in the case of AlxGa1-xAs/ GaAs heretofore in use, and the generation of a dislocation and a defect on the hetero-interface is small because a lattice-matching was performed.

Description

【発明の詳細な説明】 本発明は、例えば超高速コンビエータ用の素子として用
いられる電界効果トランジスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor used, for example, as an element for an ultra-high speed combinator.

従来、ヘテロ構造を用いた高電子移動度トランジスタと
しては、GaAa / AAGaAsのンングルヘテロ
構造を用いたHEMT (High Eムctron 
MobitityTransistor )がある。こ
れは、第1図に示すように、半絶縁性GaAa基板1に
M B E(Motecuムr BeamEpitax
y)で成長させたノンドープの高純IJI’ GaAs
層2(厚さ0.8μm)ノンドープAtxGa1−xA
s層3(厚さ60A)lおよびStドープしたi形At
xGa1−XAsAs層x〜0.3.厚さ0.1pm)
(キャリア濃度0.5〜2 X 10” cm−”  
)を備え、さらに、5,6.7はオーム性金属電極のソ
ース、シlノトキ接合の金属ゲート及びオーム性金属電
極のドレインである。
Conventionally, high electron mobility transistors using heterostructures include HEMTs (high electron mobility transistors) using GaAa/AAGaAs nanostructures.
MobilityTransistor). As shown in FIG.
Non-doped high purity IJI' GaAs grown in y)
Layer 2 (thickness 0.8 μm) non-doped AtxGa1-xA
s-layer 3 (thickness 60A) l and St-doped i-type At
xGa1-XAsAs layer x~0.3. thickness 0.1pm)
(Carrier concentration 0.5-2 x 10"cm-"
), and 5, 6.7 are the source of the ohmic metal electrode, the metal gate of the Shilnotki junction, and the drain of the ohmic metal electrode.

Siノンドープのれ−AtxGa1−xAs層4から出
た電子の一部が電子親和力の大きいノンドープGaAj
層2に移り、この電子移動によ塾生じたヘテロ界面のG
aAs層2側のエネルギーポテンシャル井戸に、この電
子がたまり2次元電子ガス層(2DEC)8を形成する
。この領域には不純物が一部ドープされておらず、なお
かつ高濃度の電子がたまっているため、イオン化した不
純物による散乱が著しく減少し高移動度が実現された。
A part of the electrons emitted from the Si non-doped layer-AtxGa1-xAs layer 4 is formed in a non-doped GaAj layer with a large electron affinity.
Moving on to layer 2, the G of the hetero interface created by this electron transfer
These electrons accumulate in the energy potential well on the aAs layer 2 side, forming a two-dimensional electron gas layer (2DEC) 8. This region is partially undoped with impurities and has a high concentration of electrons, so scattering due to ionized impurities is significantly reduced and high mobility is achieved.

しかし、、 mXca、−XAs層には、成長法によっ
て程度の差こそあれ、MとGaのクラスタリングが生じ
ている。すなわち、この混晶中では微視的にみて、第2
図に示すように白丸のGaAsとハツチングした円形の
AtAsとの単結晶領域がモザイク状になっている。こ
のクラスタリングは2DEG8の形成に悪影響を及ぼす
とともに、電子9がん〜Ga1−XA8層3のGaAs
クラスタを通じAtxGal−XAs層3にもしみ出し
、それが散乱因子となって電子移動度を低下させる。又
このクラスタリングによる移動度低下を解決するために
ktXGal−XAsの代りにAtAaを用いた例もあ
るが、この場合GaAsとA7Aaの格子不整合によっ
てヘテロ界面に発生する転位および欠陥のためかえって
電子移動度は低下する。
However, in the mXca, -XAs layer, clustering of M and Ga occurs to varying degrees depending on the growth method. In other words, in this mixed crystal, microscopically, the second
As shown in the figure, a single crystal region of GaAs (white circles) and AtAs (hatched circles) forms a mosaic. This clustering has a negative effect on the formation of 2DEG8, and the electron 9 cancer ~ Ga1-XA8 layer 3 GaAs
It also seeps into the AtxGal-XAs layer 3 through the clusters, becoming a scattering factor and reducing electron mobility. There is also an example of using AtAa instead of ktXGal-XAs to solve the mobility decrease caused by clustering, but in this case, the lattice mismatch between GaAs and A7Aa causes dislocations and defects to occur at the hetero interface, which causes electron movement to increase. The degree decreases.

本発明は、A7XGa、、As中のクラスタリング。The present invention relates to clustering in A7XGa, As.

Aj、Ga I−x A sとGaAaの格子不整合に
起因する2次元電F移動度の低下を解決するために、A
tXGa1−XAsの代りにGaAaに格子整合した)
dlAm o、s s Po、o sを用いることによ
り、超高速トランジスタ、超高速集積回路の作製に適用
し得る特性を有せしめた電界効果トランジスタを提供す
るものである。
Aj, Ga I-x A
(lattice matched to GaAa instead of tXGa1-XAs)
By using dlAm o, s s Po, and o s, a field effect transistor having characteristics applicable to the production of ultra-high speed transistors and ultra-high speed integrated circuits is provided.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第3図は本発明の実施例であり、従来の構造と違う点は
んe、、Ga1−xAsの層3.4の代りにGa As
に格子整合したuA8g、g5 pa05の層3a 、
 4aを用いていることである。この構造でも、従来の
ktxGa1□x As /GaAsと同様に/L4A
8(1g5P(1o5/GaAl1 へテロ界面のGa
 As近傍に2次元電子ガス層8が形成される。
Fig. 3 shows an embodiment of the present invention, and the difference from the conventional structure is that GaAs is used instead of the Ga1-xAs layer 3.4.
Layer 3a of uA8g, g5 pa05 lattice matched to
4a is used. In this structure as well, /L4A as in the conventional ktxGa1□x As /GaAs
8(1g5P(1o5/GaAl1 Ga at the hetero interface
A two-dimensional electron gas layer 8 is formed near As.

A7Aa、)、95po、osはGaAsと格子整合し
ているため、ヘテロ界面のGaAs近傍には電子移動度
を低下させる転位、欠陥が少ない。
Since A7Aa, ), 95po, and os are lattice matched with GaAs, there are few dislocations and defects that reduce electron mobility near the GaAs at the hetero interface.

又)A−ZAaQ、Q5p0.05でもAjxGal−
XAsでみられるようなりラスタリングが第4図に示す
ように生じていると考えられるが、ハツチング付加の丸
印で示すA7Asクランタと、点付加の丸印で示すAI
1.PクラスタのいずれもGaAaよりも高いバンドギ
ャップエネルギーを持ち、ん〜Ga1−XAsでみられ
たようなGaAsクラスタを通じてのAtXGa1□A
8層への電子のしみ出しはない。従って、クラスタリン
グによる2次元電子移動度の低下はなく、AtxGal
 、As /GaAs HEMTよりもさらに高速電界
トランジスタの作製が可能となる。
Also) A-ZAaQ, Q5p0.05 but AjxGal-
It is thought that rastering occurs as seen in XAs as shown in Figure 4, but the A7As clustering shown by the hatched circles and the AI shown by the dotted circles.
1. Both P clusters have higher bandgap energies than GaAa, and AtXGa1□A through GaAs clusters as seen in Ga1-XAs.
There is no seepage of electrons into the 8th layer. Therefore, there is no decrease in two-dimensional electron mobility due to clustering, and AtxGal
, it becomes possible to fabricate a field transistor even faster than an As/GaAs HEMT.

以北述べたように、本発明による電界効果トランジスタ
のAtAso、g5 PG、05 / GJLA8 ヘ
テロ界面においては、従来のAtxGal、、As /
GaAaで見られたようなAI−zGa (−z A’
層のクラスタリングに起因する2次元電子の移動度低下
がなく、又格子整合していることによりヘテロ界面での
転位、欠陥の発生が少ないために、さらに高移動度トラ
ンジスタを容易に実現することが可能となる。
As mentioned above, at the AtAso,g5PG,05/GJLA8 heterointerface of the field effect transistor according to the present invention, the conventional AtxGal,,As/
AI-zGa (-z A') as seen in GaAa
There is no reduction in two-dimensional electron mobility caused by layer clustering, and lattice matching reduces the occurrence of dislocations and defects at heterointerfaces, making it easier to realize higher mobility transistors. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電界効果形トランジスタの1例を示す縦
断面図、第2図は第1図の電界効果形トランジスタの動
作を説明するための模式図、第3図は本発明の実施例を
示す断面図、第4図は第3図の実施例の動作を説明する
ための模式図である。 l・・・半絶縁性GaAs基板、2・・・ノンドープG
aAs層、3・・・ノンドープAZxGal−xAs層
、4− Si ’ト’−1n形M工Ga1−8Aa層、
5・・・ソース、6・・・ベース、7・・・ドレイン、
8・・・ノンドープん−Ga1−XAs層、3a・・)
/ドープ、vAS(1,s Po、o 5層、4a −
・−Siドープn形J’J−As O,95P005層
O 特許出願人  日本電信電話公社 代  理  人   白  水  常  雄外1名 II  胆 第 2 閃 ヤ 3 閃 η 4 図 −り
FIG. 1 is a vertical cross-sectional view showing an example of a conventional field effect transistor, FIG. 2 is a schematic diagram for explaining the operation of the field effect transistor shown in FIG. 1, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a schematic diagram for explaining the operation of the embodiment shown in FIG. 3. l... Semi-insulating GaAs substrate, 2... Non-doped G
aAs layer, 3... non-doped AZxGal-xAs layer, 4- Si 'to'-1n type M engineering Ga1-8Aa layer,
5... Source, 6... Base, 7... Drain,
8...Non-doped-Ga1-XAs layer, 3a...)
/doped, vAS(1,s Po, o 5 layers, 4a −
・-Si-doped n-type J'J-As O, 95P005 layer O Patent applicant: Nippon Telegraph and Telephone Public Corporation Agent: Tsune Hakusui, 1 person outside II, 2nd, 3rd, 3rd, 4th,

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性GaAs基板上に、0.5〜1μm厚のノンド
ープの高純度Ga As層と、GaAsに格子整合した
50〜100人厚のノンドープALA!IO,65Po
、05層、および、0.1〜05μm厚のGaAsに格
子整合したSiドープh形kLAB6.65P@66層
(キャリア濃度0.5〜2 x 10” Fd )の3
層構造を有し、#、3層構造の上にシ目ットキ接合の金
属ゲートをはさんで配置されたソース、ドレインのオー
ム性金属電極を備えた電界効果トランジスタ。
On a semi-insulating GaAs substrate, there is a 0.5-1 μm thick undoped high-purity GaAs layer and a 50-100 μm thick undoped ALA that is lattice matched to GaAs! IO, 65Po
, 05 layer, and 0.1-05 μm thick GaAs lattice-matched Si-doped h-type kLAB6.65P@66 layer (carrier concentration 0.5-2 x 10” Fd).
A field effect transistor that has a layered structure and includes ohmic metal electrodes for the source and drain, which are placed on top of the three-layer structure with a metal gate in the form of a metal junction.
JP2589082A 1982-02-22 1982-02-22 Field-effect transistor Pending JPS58143573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2589082A JPS58143573A (en) 1982-02-22 1982-02-22 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2589082A JPS58143573A (en) 1982-02-22 1982-02-22 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPS58143573A true JPS58143573A (en) 1983-08-26

Family

ID=12178380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2589082A Pending JPS58143573A (en) 1982-02-22 1982-02-22 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS58143573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605945A (en) * 1983-05-11 1986-08-12 Hitachi, Ltd. Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605945A (en) * 1983-05-11 1986-08-12 Hitachi, Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP3428962B2 (en) GaN based high mobility transistor
JP3372470B2 (en) Nitride III-V compound semiconductor device
US20060121682A1 (en) Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors
US20090001384A1 (en) Group III Nitride semiconductor HFET and method for producing the same
US20020113249A1 (en) Semiconductor element
JPH03266439A (en) Substrate of group iii-v compound semiconductor heterostructure and semiconductor device of group iii-v compound heterostructure
US7902571B2 (en) III-V group compound semiconductor device including a buffer layer having III-V group compound semiconductor crystal
US6489639B1 (en) High electron mobility transistor
JP2009049121A (en) Heterojunction type field effect transistor and production method thereof
JPH06132318A (en) Heterojunction field-effect transistor and its manufacture
CN106847911A (en) A kind of broad stopband III V CMOS strain field-effect transistor
Wong et al. N-polar III-nitride transistors
US6919589B2 (en) HEMT with a graded InGaAlP layer separating ohmic and Schottky contacts
US11233143B2 (en) High electron mobility transistor having a boron nitride alloy interlayer and method of production
JPS60134481A (en) Semiconductor device
JPS58143572A (en) Field-effect transistor
JPS58143573A (en) Field-effect transistor
US5786244A (en) Method for making GaAs-InGaAs high electron mobility transistor
JPH08213594A (en) Field-effect transistor
JPH04208537A (en) Field-effect transistor
JPS63272080A (en) Semiconductor device
JPS609174A (en) Semiconductor device
JP2773338B2 (en) Field effect transistor
JP2000012834A (en) Double-hetero-structure high electron mobility transistor, manufacture thereof and wafer for the transistor
JPH088354B2 (en) Heterojunction field effect transistor